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ABSTRACT: Isocyanates are useful building blocks for the 
synthesis of amides, though their widespread use has been 
limited by their high reactivity, which often results in poor 
functional group tolerance and a propensity to oligomerize. 
Herein, a rhodium-catalyzed synthesis of amides is described 
coupling boroxines with blocked (masked) isocyanates. The 
success of the reaction hinges on the ability to form both the 
isocyanate and the organorhodium intermediates in situ. 
Relying on masked isocyanate precursors and on the high 
reactivity of the organorhodium intermediate results in broad 
functional group tolerance, including protic nucleophilic 
groups such as amines, anilines and alcohols.

The ubiquitous presence of amides in biological systems and in 
an array of useful products has led chemists to develop new 
syntheses of this functional group.1 Innovations on this front 
also have high relevance in drug discovery where amide 
formation is amongst the most common processes in medicinal 
chemistry.2 The low cost and broad commercial availability of 
isocyanates make them attractive amide precursors.3-4 The 
synthesis of amides from isocyanates has been known for over 
a century, with the reaction of isocyanates with carboxylic 
acids (Figure 1A).5  More recently, addition of nucleophiles 
such as Grignard and organolithium reagents have been 
reported, providing useful alternatives to traditional amide 
bond formation.6 Milder catalytic alternatives have attracted 
much interest with strategies including the directed metalation 
of C-H bonds,7 reductive couplings,8 and redox neutral variants 
employing organoboron or tin reagents.9 Despite these 
advances, the use of isocyanates bearing critical functional 
groups such as N-heterocycles, alcohols, amines, remain 
exceedingly limited.10 Moreover, their propensity to 
oligomerize, which can be exacerbated by metal catalysts or 
common ligands,11 can result in major limitations or prevent 
reaction development.6d,8d Lastly, their acute toxicity can have 
serious consequences (pulmonary edema, sensitization, 
death).12 Thus, we became interested in achieving transition 
metal catalysis with safe, easily-handled isocyanate 
equivalents. Herein we report a rhodium-catalyzed synthesis of 
amides from functionalized masked isocyanate precursors and 
boroxines that addresses these issues (Figure 1B), and 
operates via the chemoselective reaction of a transiently 
formed isocyanate with a catalytic rhodium aryl nucleophile 
(Figure 1C).
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Figure 1. (A) Prior reports of isocyanates as amide building 
blocks. (B) Current work using blocked isocyanates as amide 
building block. (C) Prototypical catalytic cycle.

Blocked (masked) isocyanates are often bench stable solids 
alleviating the hazards intrinsic to isocyanates. Moreover, 
blocking groups regulate isocyanate concentration and 
reactivity with in situ generation of the reactive isocyanate in a 
controlled manner, proving a powerful strategy during 
polymerization reactions.13 This strategy was successfully 
implemented by our group in new reactions of nitrogen- and 
oxygen-substituted blocked isocyanates to mitigate the 
oligomerization of these reactive species.14 Surprisingly, the 
use of blocked isocyanates as amide precursors is rare.15 
Moreover, their use in metal-catalyzed reactions is virtually 
absent from the literature.11c,16,17 Intimations of the value of 
such a strategy in transition metal catalysis are garnered from 
Buchwald’s syntheses of complex ureas,16a,d in which the 
desired reactivity relied on the masking of an isocyanate to 
achieve the desired catalytic transformation. In contrast, a 
catalytic amide synthesis from masked isocyanates demands 
that two transient species present in low concentrations react 
chemoselectively while avoiding common side reactions 
(protodemetallation, homocoupling, etc.) (Figure 1C). 
Moreover, potential blocking group interference with the 
catalytic generation of the organometallic intermediate must 
be avoided.

Page 1 of 6

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Experiments began with masked isocyanate 1a possessing a 
phenol blocking group. Though phenol blocked isocyanates 
undergo thermal deblocking generating the isocyanate around 
120 C, base-promoted deblocking can occur at room 
temperature.13 Boroxine 2a was chosen as the nucleophilic 
partner due to the broad availability and low toxicity of 
ogranoboron species. Unfortunately, reported conditions using 
organoboron reagents and isocyanates failed to provide 
product 3aa from blocked isocyanate 1a.9d-e,15h Gratifyingly, 
after extensive catalyst surveying and optimization, mild 
conditions using 1 mol% of commercially available 
[Rh(OH)(cod)]2, 1 equiv of Et3N, at 50 C provided the desired 
amide product 3aa in high yield (Table 1, entry 1).18 These 
conditions allowed both the lowering of catalyst and boroxine 
loadings relative to work on ‘free’ isocyanates.9d This is in stark 
contrast to Mori’s work where stoichiometric phenol inhibited 
a related reaction of ‘free’ isocyanates.9c Increasing the base 
loading led to a lower yield, with more urea side product (entry 
2). In contrast, a reaction without Et3N yielded mostly starting 
material (entry 3). These results suggest precise control over 
base-promoted isocyanate generation is necessary to form 
amide 3aa efficiently. The formation of 3aa also occurred in the 
absence of base at 120 C (thermal deblocking conditions, entry 
4).13 In contrast, sluggish reactivity was observed at room 
temperature even with increased catalyst loading and longer 
reaction time (entry 5). A cationic rhodium catalyst displayed 
similar reactivity (entry 7) though [Rh(OH)(cod)]2 proved 
optimal due to its shorter reaction time and bench stability. 
Both copper and palladium catalysts yielded no detectable 
product (e.g. entry 8). Finally, control reactions lacking the 
rhodium catalyst yielded no detectable product (entries 9-10).

Table 1. Variation from Optimized Conditionsa,b 

O

N
H

OPh +

[Rh(OH)(cod)]2 (1 mol%)
Et3N (1 eq.)

50 oC, THF (0.5 M)

O

N
H

2a
1.6 equiv

"Ar-B"

Me1a 3aa

O
B

O
B
O

B
pTol

pTolpTol

Commonly observed
side products:

O

N
H

N
H

MeMe

Homocoupling side
producthydrolysis byproduct

Entry Deviation from optimized conditions Yield
1 none 89%
2 3 equiv of Et3N 79%
3 No Et3N 0%
4 No Et3N at 120 C 70%

5 Room temperaturec 44%
6 [Rh(Cl)(cod)]2 0%
7 [Rh(MeCN)2(cod)]BF4

d 89%
8 Cu(OAc)2

e or Pd(OAc)2/PPh3
f 0%

9 No catalyst, no Et3N at 120 C 0%

10 No catalyst 0%
aConditions: 1a (0.2 mmol), 2a (1.6 equiv “Ar-B”), catalyst (1 
mol%), Et3N (0.2 mmol), THF (0.5 M), 50 C. 1H NMR yield 
determined using 1,3,5-trimethoxybenzene as internal 
standard. b[RBO]3:RB(OH)2 = 1:2.1 see SI. c2.5 mol% catalyst. d2 
mol% catalyst. e2 equiv. fPd(OAc)2 (5 mol%), PPh3 (20 mol%).

Table 2. Rhodium-Catalyzed Amide Synthesis Using Masked Isocyanates: Reaction Scope
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Me
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OAr Ar
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B
O
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O
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3.3 equiv 
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O
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aConditions: 1 (0.6 mmol), 2a (1.6 equiv “Ar-B”, see footnote b, Table 1), [Rh]2 (1 mol%), Et3N (0.6 mmol), THF (0.5 M), 50 C; isolated 
yields. b[Rh]2 2.5 mol%. c3.3 equiv “Ar-B”. d0.3 mmol [RBO]3. e5.4 equiv “Ar-B”, 120 C. f0.9 mmol RB(OH)2. g[Rh]2 0.5 mol%. h0.6 mmol 
[RBO]3, [Rh]2 2.5 mol%, 80 C. iConditions: 1 (0.6 mmol), 2a (3.3 equiv “Ar-B”), [Rh]2 (2.5 mol%), Et3N (0.6 mmol), THF (0.1 M), 50 
C; isolated yields. jAt 80 °C. kAt 100 °C.
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With optimized conditions, the scope of blocked isocyanate 
reagents was investigated (Table 2a). The model reaction on 
0.6 mmol scale provided the desired product 3aa in 86% 
isolated yield. Both electron-donating (3ba) and electron-
withdrawing (3ca) groups were tolerated on the isocyanate 
precursor. To our delight, ketones (3da) and aryl halides (3ea-
3fa) were compatible with the reaction. Sterically hindered 
substrates also provided the desired products in excellent to 
moderate yields (3ga-3ha). Conceptually this provides a 
catalytic alternative to Bode’s synthesis of sterically 
hindered/electronically deactivated amides from isocyanates 
using Grignard nucleophiles.6b Despite the tendency for boron 
species to equilibrate in situ,19 a boronic acid pinacol ester 
bearing starting material provided the desired product 3ia, 
albeit in modest yield. Pleasingly, a benzylamine-derived 
blocked isocyanate was a competent reaction partner despite 
the decreased deblocking rate of aliphatic masked isocyanates 
compared to their aromatic counterparts (3ja).13 Methyl amide 
3ka was also formed in good yield, thus providing a safe 
alternative to the use of methyl isocyanate.12 An amino acid 
derivative and a precursor containing an acetal also formed the 
desired products efficiently (3la-3ma). The readily 
epimerizable stereocenter in the former was not conserved 
under the reaction conditions. Gratifyingly, given the typically 
problematic Lewis basic motif,10a-b product 3na could be 
formed using higher temperatures and loadings of the 
organoboron reagent and rhodium.18,20 In contrast, a 
heterocyclic substrate with attenuated Lewis basicity provided 
product 3oa under milder conditions.

 The effect of different organoboron reagents on the 
transformation was then surveyed (Table 2b). A variety of 
boroxines were competent reaction partners including 
sterically hindered (3ac-3ad), electron-rich (3ae), electron-
deficient (3af-3ag), halide-containing (3ah), and heterocyclic 
reagents (3ai-3aj). Remarkably, a pyridyl boroxine was 
compatible with the reaction, though modified conditions were 
necessary (3ak).20 It is noteworthy that catalyst loadings as 
low as 0.5 mol% were possible in some cases (3ag). 

It was hypothesized that this catalytic system could be used 
with blocked isocyanates containing nucleophilic motifs. The 
blocking group would allow access to amphoteric (ambident) 
reagents which are typically beyond the reach of standard 
isocyanate chemistry. Moreover, stringent control over the 
isocyanate concentration imparted by the blocking group 
would allow high chemoselectivity for the transient 
organometallic catalyst to outcompete stoichiometric 
nucleophiles. Gratifyingly, lowering the concentration and 
increasing the boroxine/catalyst loading18 resulted in efficient 
amide formation with a variety of amphoteric masked 
isocyanates (Table 2c). Aniline derivatives produced the 
desired products in high yields (3pa-3ra). A phenolic motif was 
also tolerated. Alcohols (3ta) were compatible, even in cases 
where a rapid intramolecular cyclization may be expected 
(3ua). Finally, the reaction could also be achieved with an 
unprotected (N-H) tryptophan derivative with minimal loss of 
the stereochemical information.21 Interestingly, when the 
reaction was performed at 50 °C, competitive dimer formation 
occurred (3vva). This was alleviated by increasing the reaction 
temperature to 80 °C (3va).21 In addition, variation on the 
structure of the blocking group allowed the reaction to be 
compatible with primary and secondary amines (see 
Supporting Information). Overall, the blocking group strategy 
enabled the high degree of chemoselectivity required to 
achieve product formation from amphoteric isocyanates. 

Finally, efforts were directed at gaining insight on the 
reaction mechanism using the variable time normalization 
analysis (VTNA) developed by Burés (Table 3).22 Under 
‘concentrated conditions’ employed for substrates in Table 2a-
b, a 0th order dependence in 1w and a 0.75 order dependence 
in catalyst was observed. Taken together, these results support 
a rate limiting transmetallation, in line with facile base-
mediated isocyanate unmasking (formation of B, Figure 1).23 
Moreover, the 0.75 order in catalyst suggest the presence of an 
equilibrium with an inactive dimeric species, analogous to 
related rhodium catalyzed additions onto enone 
electrophiles.24 Given the need for alternative reaction 
conditions to achieve efficient product formation with 
ambiphilic isocyanates (Table 2c), we speculated a potential 
change in rate determining step. In fact, VTNA revealed a 0th 
order dependence in catalyst and a 0.6 order in 1w. Taken 
together, these results support a rate determining isocyanate 
unmasking under the ‘dilute conditions’ (formation of D, Figure 
1). Moreover, the 0.6 order in 1w suggests the presence of an 
H-bonded dimer in solution.25 Despite the increased loading of 
catalyst and organoboron reagent in the latter conditions, their 
concentration were halved overall as a result of the dilution of 
the reaction media. Consequently, the rate of transmetallation 
would be expected to decrease slightly under these conditions. 
However, the 5-fold dilution of the base and masked isocyanate 
1w under ‘dilute conditions’ has a much more pronounced 
effect on the rate of base mediated isocyanate unmasking, 
resulting in the change in rate limiting step. Thus, the 
successful amidation of ambiphilic isocyanate hinged on the 
ability to control the rate of isocyanate release. These results 
are expected to have broad implications for further 
developments towards functional group tolerant isocyanate 
based transformations.

Table 3: Results of kinetic studies

O

N
H

OPh
+

[Rh(OH)(cod)]2
Et3N

50 oC, THF
Me

O

N
H

F
F

1w 3wa

O
B

O
B
O

B
p-Tol

p-Tolp-Tol

2a

Conditions 1w
order

Catalyst 
order

Proposed rate-
determining step

Table 2a-b 0 0.75 transmetallation

Table 2c 0.6 0 deblocking

In conclusion, a robust catalytic synthesis of functionalized 
amides has been developed relying on blocked isocyanate 
precursors. Mechanistic studies suggested that reaction 
optimization led to conditions with different rate determining 
steps which proved vital to achieve the desired transformation 
with amphoteric isocyanates. This work provides a rare 
example of the use of blocked isocyanates in transition metal 
catalysis, highlighting the broad functional group tolerance 
possible and the use of otherwise ‘impossible’ isocyanates, and 
enabling their application in complex settings typically beyond 
the reach of normal isocyanates.

ASSOCIATED CONTENT 
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Optimization data, experimental procedures, 
characterization data, kinetic data and discussion, NMR 
spectra.
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