m-CPBA Mediated Metal Free, Rapid Oxidation of Aliphatic Amines to Oximes

Vilas V. Patil, Eknath M. Gayakwad, and Ganapati S. Shankarling*
Department of Dyestuff Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, India

(S) Supporting Information

$$
\begin{aligned}
& \mathrm{R} \bigcap \mathrm{NH}_{2} \xrightarrow[\mathrm{rt}, 20 \mathrm{~min}]{\text { m-CPBA, ethyl acetate }} \quad \mathrm{R} \mathrm{~N}^{-\mathrm{OH}} \\
& \text { Metal free approach } \\
& \text { High oxime selectivity at room temperature } \\
& \text { Commercially available oxidant } \\
& \text { Shorter period, easy workup } \\
& 20 \text { examples } \\
& 100 \% \text { conversion } \\
& \text { yield up to } 78-95 \% \\
& \text { oxime selectivity > 90\% }
\end{aligned}
$$

ABSTRACT: An efficient, rapid oxidation of various aliphatic amines to oximes using m-CPBA as an oxidant in ethyl acetate is described. High conversion (100%) with $>90 \%$ oxime selectivity is achieved at room temperature under catalyst-free conditions. Mild reaction conditions along with an easy work up procedure offer lower byproduct formation and high selectivity for oximes in good yield and purity.

- INTRODUCTION

Oximes serve as important precursors for various commodity chemicals, pharmaceuticals, polymers, heterocycles, and fine chemicals. They can be easily transformed into various important functionalities such as carbonyl, ${ }^{1-3}$ amide, ${ }^{4-7}$ nitrile oxide (which are used as intermediate for the synthesis of substituted isoxazoles and isoxazolines), ${ }^{8-11}$ thiohydroxamic and thiohydroxic acid derivatives, ${ }^{12,13}$ nitriles, ${ }^{14-17} o$-ethers, ${ }^{18}$ nitro compounds ${ }^{19,20}$ and oxime esters ${ }^{21}$ which serve as potential building blocks in organic synthesis. Oxidation of aliphatic amine is an alternative route for the conventional aldehyde-hydroxyl amine method ${ }^{22-25}$ used for the synthesis of oxime. The main problem encountered during this transformation is the sensitivity of aliphatic amines toward oxidation. Owing to this, the reaction often results in a mixture of undesired side products such as aldehyde, nitrile, nitro, and imine which in turn reduces the selectivity for the desired product. Therefore, selective oxidation of aliphatic amines to oximes still remains one of the most stimulating tasks for researchers. Various oxidizing agents ${ }^{26-30}$ such as dimethyldioxirane, sodium perborate, sulfonic peracid, metal catalysts with oxidants such as $\mathrm{H}_{2} \mathrm{O}_{2},{ }^{31-38}$ and TBHP^{39} were used for this oxidative transformation.

However, the oxidant such as dimethyldioxirane is difficult to handle, excess use of oxidants give poor selectivity for oxime due to formation of side products such as nitrile, aldehyde, or imine which limits the scope for these systems. These shortcomings are compensated by environmentally a benign aerobic oxidation protocol, where molecular oxygen is used as an oxidant with transition metal catalysts such as gold-titania, DPPH and $\mathrm{WO}_{3} / \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{InCl}_{3}$ with TEMPO, and acetaldoxime. ${ }^{40-43}$ This approach offers various advantages over
conventional protocols such as minimal waste generation, inexpensive source of oxidant, and recyclability of catalyst over several runs. However, these reactions require longer reaction time from 10 to 16 h , higher temperatures of $100-120^{\circ} \mathrm{C}$, and use expensive transition metal catalysts. Hence improvement in these aspects is still desirable.

As a part of our ongoing research on development of efficient, mild, and benign protocols for oxidation reactions, ${ }^{44-46}$ we report a simple and effective route for selective oxidation of aliphatic amines to oximes using m-CPBA as an oxidant in ethyl acetate. The present protocol is found to be most effective with ethyl acetate solvent, as more than 90% oxime selectivity was achieved with easy product separation. To the best of our knowledge, this is the best route which offers high selectivity, purity, and yield in short time period avoiding harsh conditions and expensive catalysts.

RESULTS AND DISCUSSION

The reaction conditions were optimized by taking amine 1a ($0.935 \mathrm{mmol}, 1$ equiv), m-CPBA ($1.86 \mathrm{mmol}, 2$ equiv) at room temperature. Solvent screening studies reveal that, in almost all solvents, the mixture of oxime and imine along with a small quantity of benzaldehyde and benzonitrile were formed (Table 1, entries 1-12). In the case of nonpolar solvents such as pet ether and toluene, 51% and 72% selectivity for $4 \mathbf{a}$ was observed along with 2a, 3a and 4a (Table 1, entries 1, 2). Additionally, formation of N-benzylbenzamide in 7% and 6%, respectively, was also observed in these two solvents. Oxidation of 1a using halogenated solvents such as chloroform and dichloromethane,

[^0]Table 1. Optimization of Reaction Parameters ${ }^{a}$

${ }^{a}$ Reaction conditions: $\mathbf{1 a}$ ($0.935 \mathrm{mmol}, 1$ equiv); m-CPBA ($1.86 \mathrm{mmol}, 2$ equiv for entries $1-14$), solvent: 2 mL ; Temperature: $30-32{ }^{\circ} \mathrm{C}$; time: 20 $\mathrm{min} .{ }^{b}$ Conversion determined by GC. ${ }^{c} m$-CPBA: 1.75 equiv and reaction kept for $2 \mathrm{~h} .{ }^{d}{ }_{m}$-CPBA: 2.15 equiv and reaction kept for 20 min. ${ }^{e}$ Oxidant (1.86 mmol , 2 equiv for entries $17-23$) and reaction kept for $2 \mathrm{~h} .{ }^{f_{4}}$ equiv of peracetic acid was used.
resulted in 91% and 90% conversion with 9% and 10% of unreacted amine in 2 h , respectively (Table 1, entries 3, 4). In chloroform, 74% of 4 a and 13% of 5 a were formed while in dichloromethane 56% of $\mathbf{4 a}$ and 22% of 5 a were formed, respectively. Liu, Jia et al. ${ }^{47}$ have reported use of m-CPBA for oxidation of benzyl amine $\mathbf{1 a}$ to respective oxime $\mathbf{4 a}$ in acetone under reflux conditions to give only 60% yield after 10 h . Employing present conditions, we were successful in getting 100% conversion with acetone in 20 min for the conversion of benzyl amine 1a to oxime 4a. However, we could get only 60% of oxime $\mathbf{4 a}$ selectivity along with 5% of $\mathbf{5 a}$ (Table 1, entry 5). It was also observed that, in the case of acetone as a solvent, benzyl amine undergoes reaction with acetone to give 21% of 1 -phenyl- N-(propan-2-ylidene)methanamine, a condensation product of acetone with benzyl amine. Among the solvents studied, ethyl acetate was found to be most effective solvent to give 100% conversion, 96% selectivity for $\mathbf{4 a}$ with 93% yield in 20 min (Table 1, entry 9). Only in the case of ethyl acetate was minimum byproduct formation observed (only 2\% 5a formation was detected by GC). In the case of all other solvents, a mixture of products were obtained (Table 1, entries 6-8,10-12). It was noticeable that, as we increased the
reaction temperature from room temperature to $50{ }^{\circ} \mathrm{C}, 4 \mathrm{a}$ selectivity was reduced from 96% to 80%, while 5 a formation was increased from 2% to 19% (Table 1, entries 13, 14). The oxidant molar ratio also serves as an important parameter to decide high or low selectivity for oxime. Oxidant equivalent study shows that, reducing the oxidant loading from 2 to 1.75 gives only 75% of $\mathbf{4 a}$ (Table 1, entry 15). When we increased oxidant loading from 2 to 2.15 , it was observed that selectivity for 4a get reduced from 96% to 82% (Table 1, entry 16). This demonstrated that 2 equiv of m-CPBA were required to give high oxime selectivity.

Screening other oxidants under present condition gave mixture of products (Table 1, entries 17-23). $50 \% \mathrm{H}_{2} \mathrm{O}_{2}$ gives 93% conversion with higher selectivity of 75% for 5 a and only 12% for $\mathbf{4 a}$ in 2 h (Table 1, entry 17). Whereas Oxone gave 98% conversion with 77% selectivity for $4 \mathbf{a}, 13 \%$ for benzaldehyde and only 2% for 5 a (Table 1, entry 18). The oxidants, 70\% TBHP and potassium peroxydisulfate showed lowest conversion of 20% and 23% in 2 h respectively with no or trace formation of $\mathbf{4 a}$ (Table 1, entries 19, 21). Sodium perborate gave 77% conversion with 60% selectivity for 5 a and only $\mathbf{1 3 \%}$ selectivity for $\mathbf{4 a}$ (Table 1, entry 20). Urea hydrogen
peroxide and peracetic acid gave 90% and 69% conversion with 48% and 39% selectivity for 4 a, respectively (Table 1, entries 22, 23). In the case of peracetic acid, it was observed that reaction rate as well as nature of products were affected by peracetic acid concentration. Employing 2 equiv of peracetic acid gives 69% conversion with 39% selectivity for 4 a. In addition, formation of 9% of N -benzylacetamide, an N -acyalted product of benzylamine, was also observed (Table 1, entry 23). On increasing peracetic acid from 2 to 4 equiv, although the reaction gives 97% conversion, selectivity for $\mathbf{4 a}$ was reduced from 39% to 11%, while that for N-benzylacetamide was increased from 11% to 51% along with 35% of $\mathbf{5 a}$ (Table 1, entry 24). No reaction occurred in the absence of oxidant (Table 1, entry 25). Thus, we finalized reaction conditions employing ethyl acetate as a solvent, 2 equiv of m-CPBA at room temperature for 20 min .

The optimized conditions are screened for various benzyl amines and the results obtained are summarized in Table 2.

Table 2. Oxidation of Benzyl Amines to Oximes ${ }^{a}$

${ }^{a}$ Reaction conditions: 1 (1 equiv), m-CPBA (2 equiv), ethyl acetate 2 mL , Temperature: $30-32{ }^{\circ} \mathrm{C}$; reaction time: 20 min ; yield: isolated yield.

The oxidation of benzyl amine gave 100% conversion with 96% selectivity for $\mathbf{4 a}$, along with 2% of imine in 20 min at room temperature (Table 2, entry 4a). Benzyl amines bearing electron donating groups such as $-0 /-m$ and $-p$ methoxy, p -tert-butyl, 3,4-dimethoxy, and p-hydroxy were smoothly oxidized to corresponding oximes in 20 min (Table 2, entries $\mathbf{4 b} \mathbf{- 4 g}$). Interestingly, benzyl amines possessing electron withdrawing groups such as $-o /-m$ or $-p$ nitro also undergo oxidation in 20 min to give corresponding oximes in high yields (Table 2, entries $\mathbf{4 h} \mathbf{- 4 j}$). Benzyl amines substituted with halogens such as $p-\mathrm{F}$ and $p-\mathrm{Cl}$ along with 1-phenylethanamine,
naphthalen-2-ylmethanamine, and benzo[d][1,3]dioxol-5-ylmethanamine gave the corresponding oxime in high yields (Table 2 , entries $4 \mathbf{k}-40$).

It was observed that $\mathbf{4 a}$ obtained after oxidation of $\mathbf{1 a}$ gives mixture of E and Z isomer. From GC analysis, the ratio of $E: Z$ isomer was found to be $86: 10$. However, other substrates of benzyl amine selectively give E isomer which was further confirmed by ${ }^{1} \mathrm{H}$ NMR analysis.

Encouraged by these results, we applied optimized conditions to alicyclic amines and aliphatic amines which are summarized in Table 3. The alicyclic amines such as cyclohexyl

Table 3. Oxidation of Aliphatic Amines ${ }^{a}$

${ }^{a}$ Reaction conditions: 1 (1 equiv), m-CPBA (2 equiv), ethyl acetate 2 mL , Temperature: $30-32{ }^{\circ} \mathrm{C}$; reaction time: 20 min ; yield: isolated yield.
and cyclopentyl amines were oxidized to corresponding oximes in good yields with high purity (Table 3, entries $4 \mathbf{p}, 4 \mathbf{q}$). Especially with cyclohexyl amine white needles are obtained after work up. The GC analysis of the crude product reveals 94% oxime selectivity with 90% yield (Table 3, entry 4 p). Oxidation of octyl amine to its corresponding oxime in dichloromethane gives good yield of 83% at room temperature. ${ }^{48}$ However, the reaction was carried out in excess halogenated solvent (7 mL dichloromethane required for oxidation of $65 \mu \mathrm{~L}$ of amine with excess oxidizing agent in 1 h . Under the present conditions, aliphatic amines such as n-butyl, iso-butyl, and octyl amine gave corresponding oxime in good yield only in 20 min without employing excess solvent and oxidant (Table 3, entries $\mathbf{4 s} \mathbf{- 4 u}$). The oximes obtained from aliphatic amines give a mixture of E - and Z-isomers.
On the basis of literature reports, ${ }^{26,49}$ a plausible mechanism is as shown in Scheme 1. In the first step, m-chloro perbenzoic acid was reacted with aliphatic amine to give hydroxylamine which on further reaction with second mole of m-chloro perbenzoic acid results into nitroso compound. The nitroso compound formed isomerizes into oxime. This mechanistic pathway was further confirmed by carrying out a separate reaction on N-benzylhydroxylamine using one equivalent of m chloro perbenzoic acid following optimized conditions. It was observed that the reaction selectively results in benzaldehyde oxime. From this, it was confirmed that the reaction proceeds through N -benzylhydroxylamine as an intermediate. It was also clear that under present conditions, formation of various side products arising due to hydrolysis of benzaldehyde oxime 4 a and N -benzylidene-1-phenylmethanamine $5 \mathbf{5}$ or by reaction of benzyl amine 1a with benzaldehyde oxime 4 a to give N -benzylidene-1-phenylmethanamine 5 a were greatly reduced which in turn resulted in high oxime selectivity.

Scheme 1. Plausible Mechanism for Oxime Formation

- CONCLUSIONS

In summary, we have developed a rapid and selective protocol for oxidation of various benzyl, alicyclic, and aliphatic amines to corresponding oximes using m-CPBA at room temperature. The oximes obtained from various benzyl amine derivatives selectively give E-isomer, whereas aliphatic amines give a mixture of E - and Z-isomers. The solvent used, ethyl acetate, was found to be most promising which offered easy separation of desired products from the reaction mixture.

- EXPERIMENTAL SECTION

Chemicals and Instruments. The m-CPBA used was "Synthesis Grade" m-CPBA. The ethyl acetate used was AR grade "DRY" Ethyl Acetate. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data were recorded on a 500 $\mathrm{MHz}, 400 \mathrm{MHz}$ spectrometer with CDCl_{3} and DMSO-d6 as solvent, and chemical shifts are expressed in $\delta \mathrm{ppm}$ using TMS as an internal standard. GC analysis were carried out using column-TR-1, $30 \mathrm{mX0} .25$ mm , IDX0.25um film, FID detector and sample size $0.11 \mu \mathrm{~L}$. All melting points are uncorrected and are presented in Celsius.

General Procedure for the Oxidation of Benzylamine. An oven-dried round-bottom flask was charged with 2 mL of ethyl acetate and $100 \mu \mathrm{~L}$ of benzylamine ($0.933 \mathrm{mmol}, 1$ equiv) at room temperature. The above mixture was stirred for 2 to 3 min . To this 320 mg of m-CPBA ($0.187 \mathrm{mmol}, 2$ equiv) was added under constant stirring. The reaction mass was further stirred at room temperature, and the progress of reaction was monitored by TLC. After completion, the reaction was quenched by adding 3 mL of saturated sodium bicarbonate solution. The product was extracted by adding an extra 5 mL of ethyl acetate and stirred for 15 min . The aqueous layer was further extracted in ethyl acetate $(3 \times 5 \mathrm{~mL})$. All organic layers were combined and washed with water until neutral pH , dried over anhydrous sodium sulfate, and concentrated to give crude product which was further purified by column chromatography using a hexane/ ethyl acetate system.

Spectral Data for the Representative Compounds. 1. (E)Benzaldehyde Oxime (4a). ${ }^{50,51}$ White solid; yield: $0.105 \mathrm{~g}, 93 \%$; mp: $32-33{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.78(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H})$, $7.61-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.43(\mathrm{~m}, 3 \mathrm{H})$; ESI-MS $m / z 121[\mathrm{M}]^{+}$.
2. (E)-2-Methoxybenzaldehyde Oxime (4b) ${ }^{52,53}$ White solid; yield: $0.101 \mathrm{~g}, 92 \%$; mp: 88-90 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO): $\delta 11.19$ $(\mathrm{s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.31(\mathrm{~m}$, $1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$; ESI-MS $m / z 151[M]^{+}$.
3. (E)-3-Methoxybenzaldehyde Oxime (4c). ${ }^{52,54}$ White solid; yield: $0.104 \mathrm{~g}, 94 \%$; mp: $39-40^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 11.16$ $(\mathrm{s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$; ESI-MS $m / z 151[\mathrm{M}]^{+}$.
4. (E)-4-Methoxybenzaldehyde Oxime (4d). ${ }^{50,55}$ White solid; yield: $0.10 \mathrm{~g}, 92 \%$; mp: $63-64{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO): $\delta 10.93$ $(\mathrm{s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 2H), 3.75 ($\mathrm{s}, 3 \mathrm{H}$); ESI-MS $m / z 151[\mathrm{M}]^{+}$.
5. (E)-4-(tert-Butyl)Benzaldehyde Oxime (4e). ${ }^{56}$ White solid; yield: $0.1 \mathrm{~g}, 92 \%$; mp $105-106{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~s}$, $1 \mathrm{H}), 7.72$ (s, broad, 1 H), $7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{dd}, J=8.3,1.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.34(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 9 \mathrm{H})$; ESI-MS $\mathrm{m} / \mathrm{z} 177[\mathrm{M}]^{+}$.
6. (E)-3,4-Dimethoxybenzaldehyde Oxime ($4 f$). ${ }^{57,58}$ White solid; yield: $0.102 \mathrm{~g}, 94 \%$; mp $91-92{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.08(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.91(\mathrm{~s}, 6 \mathrm{H})$; ESI-MS $m / z 181[\mathrm{M}]^{+}$.
7. (E)-4-Hydroxybenzaldehyde Oxime (4 g) ${ }^{50,59}$ White solid; yield: $0.102 \mathrm{~g}, 92 \%$; mp: $93-9{ }^{\circ}{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO): $\delta 10.824$ ($\mathrm{s}, 1$), $9.737(\mathrm{~s}, 1 \mathrm{H}), 7.986(\mathrm{~s}, 1 \mathrm{H}), 7.396-7.379(\mathrm{~d}, J=8.55,2 \mathrm{H})$, $6.765-6.748(\mathrm{~d}, J=8.55,2 \mathrm{H})$; ESI-MS $m / z 137[\mathrm{M}]^{+}$.
8. (E)-2-Nitrobenzaldehyde Oxime (4h). ${ }^{60}$ White solid; yield: 0.099 $\mathrm{g}, 91 \% ; \mathrm{mp}: 99-100{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.69(\mathrm{~s}, 1 \mathrm{H})$, $8.07(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H})$; ESI-MS $m / z 166[\mathrm{M}]^{+}$.
9. (E)-3-Nitrobenzaldehyde Oxime (4i). ${ }^{50,61}$ White solid; yield: $0.097 \mathrm{~g}, 89 \% ; \mathrm{mp}: 120-122{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $8.451-8.444(\mathrm{t}, J=2,1 \mathrm{H}), 8.256-8.233(\mathrm{dd}, J=8.5,2.5,1 \mathrm{H}), 8.215$ $(\mathrm{s}, 1 \mathrm{H}), 7.926-7.913(\mathrm{dd}, J=8.0,1.5,1 \mathrm{H}), 7.736(\mathrm{~s}, 1 \mathrm{H}), 7.603-$ $7.572(\mathrm{t}, J=8,7.5,1 \mathrm{H})$; ESI-MS $m / z 166[\mathrm{M}]^{+}$.
10. (E)-4-Nitrobenzaldehyde Oxime (4j). ${ }^{50,62}$ Light yellow solid; yield: $0.10 \mathrm{~g}, 92 \% ; \mathrm{mp}: 126-128^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO): δ $11.84(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.28-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.83(\mathrm{~m}, 2 \mathrm{H})$; ESI-MS $m / z 166[M]^{+}$.
11. (E)-4-Fluorobenzaldehyde Oxime (4k). ${ }^{50,63}$ White solid; yield: $0.098 \mathrm{~g}, 88 \%$; mp: $87-88^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.127$ $(\mathrm{s}, 1 \mathrm{H}), 7.856(\mathrm{~s}, 1 \mathrm{H}), 7.589-7.560(\mathrm{dd}, J=5.4,5.5,2 \mathrm{H}), 7.106-$ $7.072(\mathrm{t}, J=8.7,8.65,2 \mathrm{H})$; ESI-MS $m / z 139[\mathrm{M}]^{+}$.
12. (E)-4-Chlorobenzaldehyde Oxime (4I). ${ }^{50,54}$ White solid; yield: $0.10 \mathrm{~g}, 91 \% ; \mathrm{mp}: 108-110{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.12$ $(\mathrm{s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.534-7.525(\mathrm{~d}, J=8.4,2 \mathrm{H}), 7.385-7.359(\mathrm{~d}, J$ $=8.55,2 \mathrm{H})$; ESI-MS $m / z 155[\mathrm{M}]^{+}$.
13. (E)-Acetophenone Oxime (4m) ${ }^{64,65}$ White solid; yield: 0.103 g , 92%; mp: $58{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.984(\mathrm{~s}, 1 \mathrm{H})$, 7.650-7.630 (q, 2H); 7.408-7.393 (q, 3H), 2.319 (s, 3H); ESI-MS $m / z 135[\mathrm{M}]^{+}$.
14. (E)-1-Naphthaldehyde Oxime (4n)..50,66 White solid; yield: $0.096 \mathrm{~g}, 88 \% ; \mathrm{mp}: 94-96{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO): $\delta 11.51$ $(\mathrm{s}, 1 \mathrm{H}), 8.80(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=8.45 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{t}, J=7.5,7.65$ $\mathrm{Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.49(\mathrm{~m}, 3 \mathrm{H})$; ESI-MS m / z 171 [M] ${ }^{+}$.
15. (E)-Benzo[d][1,3]dioxole-5-carbaldehyde Oxime (4o). ${ }^{67}$ White solid; yield: $0.097 \mathrm{~g}, 89 \%$; mp: $104-105{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 2 \mathrm{H}$) ; ESI-MS $m / z 165[\mathrm{M}]^{+}$.
16. Cyclohexanone Oxime ($4 p$). ${ }^{42,68}$ White solid; yield: 0.103 g , 90%; mp: $106-108{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.546$ (s, $1 \mathrm{H}), 2.522-2.497(\mathrm{t}, 2 \mathrm{H}), 2.228-2.203(\mathrm{t}, J=6.0,2 \mathrm{H}), 1.699-1.584$ (m, $J=6.05,6 \mathrm{H}$); ESI-MS $m / z 113[\mathrm{M}]^{+}$.
17. Cyclopentanone Oxime (4q)..42,68 White solid; yield: 0.104 g , 89%; mp: $56-58{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62$ (s, broad, $1 \mathrm{H}), 2.46(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{dq}, J=$ 11.3, $6.4 \mathrm{~Hz}, 4 \mathrm{H}$); ESI-MS $m / z 99[\mathrm{M}]^{+}$.
18. 1-Butyraldehyde Oxime (4s). ${ }^{69}$ Pale yellow liquid; yield: 0.093 g, 78\%; bp:149-151 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.27(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.81(\mathrm{q}, 2 \mathrm{H}), 1.47-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H})$; ESI-MS $m / z 87$ [M] ${ }^{+}$.
19. 2-Butyraldehyde Oxime (4t). ${ }^{68}$ Yellow liquid; yield: 0.094 g , 79%; bp: $150-152{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.84(\mathrm{~s}, 1 \mathrm{H})$, 2.41-2.33(m, 2H), $1.97(\mathrm{~s}, 3 \mathrm{H}), 1.11-1.08(\mathrm{~m}, 3 \mathrm{H})$; ESI-MS $m / z 87$ [M] ${ }^{+}$.
20. 1-Octanal Oxime (4u). ${ }^{70}$ White solid; yield: $0.09 \mathrm{~g}, 81 \%$; mp: $58-60{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.26(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.87(\mathrm{dd}, J=14.4,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.42-1.22(\mathrm{~m}, 10 \mathrm{H}), 0.88(\mathrm{t}, J=6.2$ $\mathrm{Hz}, 3 \mathrm{H})$; ESI-MS $m / z 142[\mathrm{M}-\mathrm{H}]^{+}$.

- ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.5b01740.

Spectroscopic (Mass and ${ }^{1} \mathrm{H}$ NMR spectra) data of selected products in Tables 2 and 3 (PDF)

- AUTHOR INFORMATION

Corresponding Author

*Tel.: 91-22-33612708. Fax: 91-22-33611020. E-mail: gsshankarling@gmail.com, gs.shankarling@ictmumbai.edu.in (G.S.S.)

Notes

The authors declare no competing financial interest.

- ACKNOWLEDGMENTS

Authors are thankful to UGC-CAS and UGC-Green Tech, New Delhi for providing financial assistance.

- REFERENCES

(1) Zhou, X.-T.; Yuan, Q.-L.; Ji, H.-B. Tetrahedron Lett. 2010, 51, 613-617.
(2) Narsaiah, A. V.; Nagaiah, K. Synthesis 2003, 2003, 1881-1882.
(3) Vankar, P.; Rathore, R.; Chandrasekaran, S. J. Org. Chem. 1986, 51, 3063-3065.
(4) Ramón, R. S.; Bosson, J.; Díez-González, S.; Marion, N.; Nolan, S. P. J. Org. Chem. 2010, 75, 1197-1202.
(5) Fujiwara, H.; Ogasawara, Y.; Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2007, 46, 5202-5205.
(6) Li, F.; Qu, P.; Ma, J.; Zou, X.; Sun, C. ChemCatChem 2013, 5, 2178-2182.
(7) Kim, M.; Lee, J.; Lee, H.-Y.; Chang, S. Adv. Synth. Catal. 2009, 351, 1807-1812.
(8) Jawalekar, A. M.; Reubsaet, E.; Rutjes, F. P. J. T.; van Delft, F. L. Chem. Commun. 2011, 47, 3198-3200.
(9) Han, L.; Zhang, B.; Zhu, M.; Yan, J. Tetrahedron Lett. 2014, 55, 2308-2311.
(10) Moriya, O.; Nakamura, H.; Kageyama, T.; Urata, Y. Tetrahedron Lett. 1989, 30, 3987-3990.
(11) Yoshimura, A.; Zhu, C.; Middleton, K. R.; Todora, A. D.; Kastern, B. J.; Maskaev, A. V.; Zhdankin, V. V. Chem. Commun. 2013, 49, 4800-4802.
(12) Lemercier, B. C.; Pierce, J. G. J. Org. Chem. 2014, 79, 23212330.
(13) Kumar, V.; Kaushik, M. P. Tetrahedron Lett. 2006, 47, 14571460.
(14) Li, Y.-T.; Liao, B.-S.; Chen, H.-P.; Liu, S.-T. Synthesis 2011, 2011, 2639-2643.
(15) Shu, Z.; Ye, Y.; Deng, Y.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2013, 52, 10573-10576.
(16) De Luca, L.; Giacomelli, G.; Porcheddu, A. J. Org. Chem. 2002, 67, 6272-6274.
(17) Denton, R. M.; An, J.; Lindovska, P.; Lewis, W. Tetrahedron 2012, 68, 2899-2905.
(18) Miyabe, H.; Yoshida, K.; Reddy, V. K.; Matsumura, A.; Takemoto, Y. J. Org. Chem. 2005, 70, 5630-5635.
(19) Ballini, R.; Marcantoni, E.; Petrini, M. Tetrahedron Lett. 1992, 33, 4835-4838.
(20) Cardona, F.; Soldaini, G.; Goti, A. Synlett 2004, 2004, 15531556.
(21) Santosh Kumar, S. C.; Vijendra Kumar, N.; Srinivas, P.; Bettadaiah, B. K. Synthesis 2014, 46, 1847-1852.
(22) Puerto Galvis, C. E.; Kouznetsov, V. V. Org. Biomol. Chem. 2013, 11, 407-411.
(23) Park, S.; Choi, Y.; Han, H.; Ha Yang, S.; Chang, S. Chem. Соттии. 2003, 1936-1937.
(24) Yang, S. H.; Chang, S. Org. Lett. 2001, 3, 4209-4211.
(25) Yang, R.-H.; Chan, W.-H.; Lee, A. W. M.; Xia, P.-F.; Zhang, H.-
K. L. J. Am. Chem. Soc. 2003, 125, 2884-2885.
(26) Crandall, J. K.; Reix, T. J. Org. Chem. 1992, 57, 6759-6764.
(27) Camps, P.; Muñoz-Torrero, D.; Muñoz-Torrero, V. Tetrahedron Lett. 1995, 36, 1917-1920.
(28) Paradkar, V. M.; Latham, T. B.; Demko, D. M. Synlett 1995, 1995, 1059-1060.
(29) Zajac, W. W., Jr.; Darcy, M. G.; Subong, A. P.; Buzby, J. H. Tetrahedron Lett. 1989, 30, 6495-6496.
(30) Kluge, R.; Schulz, M.; Liebsch, S. Tetrahedron 1996, 52, 57735782.
(31) Kidwai, M.; Bhardwaj, S. Synth. Commun. 2011, 41, 2655-2662.
(32) Dewkar, G. K.; Nikalje, M. D.; Sayyed Ali, I.; Paraskar, A. S.;

Jagtap, H. S.; Sudalai, A. Angew. Chem., Int. Ed. 2001, 40, 405-408.
(33) Maiti, S. K.; Dinda, S.; Banerjee, S.; Mukherjee, A. K.; Bhattacharyya, R. Eur. J. Inorg. Chem. 2008, 2008, 2038-2051.
(34) Brzaszcz, M.; Kloc, K.; Mlochowski, J. Polym. J. Chem. 2003, 77, 1579-1586.
(35) Tollari, S.; Porta, F. J. Mol. Catal. 1993, 84, L137-L140.
(36) Tollari, S.; Bruni, S.; Bianchi, C. L.; Rainoni, M.; Porta, F. J. Mol. Catal. 1993, 83, 311-322.
(37) Suresh, S.; Joseph, R.; Jayachandran, B.; Pol, A. V.; Vinod, M. P.; Sudalai, A.; Sonawane, H. R.; Ravindranathan, T. Tetrahedron 1995, 51, 11305-11318.
(38) Joseph, R.; Ravindranathan, T.; Sudalai, A. Tetrahedron Lett. 1995, 36, 1903-1904.
(39) Jayachandran, B.; Sasidharan, M.; Sudalai, A.; Ravindranathan, T. J. Chem. Soc., Chem. Commun. 1995, 1523-1524.
(40) Klitgaard, S. K.; Egeblad, K.; Mentzel, U. V.; Popov, A. G.; Jensen, T.; Taarning, E.; Nielsen, I. S.; Christensen, C. H. Green Chem. 2008, 10, 419-423.
(41) Suzuki, K.; Watanabe, T.; Murahashi, S.-I. Angew. Chem., Int. Ed. 2008, 47, 2079-2081.
(42) Suzuki, K.; Watanabe, T.; Murahashi, S.-I. J. Org. Chem. 2013, 78, 2301-2310.
(43) Yu, J.; Cao, X.; Lu, M. Tetrahedron Lett. 2014, 55, 5751-5755.
(44) Patil, V. V.; Shankarling, G. S. Beilstein J. Org. Chem. 2014, 10, 921-928.
(45) Patil, V. V.; Shankarling, G. S. J. Org. Chem. 2015, 80, 78767883.
(46) Patil, V. V.; Gayakwad, E. M.; Shankarling, G. S. New J. Chem. 2015, 39, 6677-6682.
(47) Liu, J.; Zhu, X.-R.; Ren, J.; Chen, W.-D.; Zeng, B.-B. Synlett 2013, 24, 2740-2742.
(48) Durchschein, K.; Ferreira-da Silva, B.; Wallner, S.; Macheroux, P.; Kroutil, W.; Glueck, S. M.; Faber, K. Green Chem. 2010, 12, 616619.
(49) Gilbert, K. E.; Borden, W. T. J. Org. Chem. 1979, 44, 659-661.
(50) Yu, J.; Cao, X.; Lu, M. Tetrahedron Lett. 2014, 55, 5751-5755.
(51) Park, C.; Ha, M. W.; Kim, B.; Hong, S.; Kim, D.; Park, Y.; Kim, M.; Lee, J. K.; Lee, J.; Park, H. Adv. Synth. Catal. 2015, 357, 28412848.
(52) Kapuriya, N.; Kapuriya, K.; Dodia, N. M.; Lin, Y.-W.; Kakadiya, R.; Wu, C.-T.; Chen, C.-H.; Naliapara, Y.; Su, T.-L. Tetrahedron Lett. 2008, 49, 2886-2890.
(53) Reza Hajipour, A.; Mallakpour, S. E.; Imanzadeh, G. J. Chem. Res., Synop. 1999, 228-229.
(54) Chen, W.-G.; Wei-Guo, Y.; Hai-Bo, S.; Xiao-Yan, L. Chem. Pap. 2012, 66, 308.
(55) Owston, N. A.; Parker, A. J.; Williams, J. M. J. Org. Lett. 2007, 9, 73-75.
(56) Tambara, K.; Pantos, G. D. Org. Biomol. Chem. 2013, 11, 24662472.
(57) Vo, Q. V.; Trenerry, C.; Rochfort, S.; Wadeson, J.; Leyton, C.; Hughes, A. B. Bioorg. Med. Chem. 2013, 21, 5945-5954.
(58) Hoffmann, R. W.; Endesfelder, A. Liebigs Ann. der Chemie 1986, 1986, 1823-1836.
(59) Witkop, B.; Beiler, T. W. J. Am. Chem. Soc. 1954, 76, 55895597.
(60) Bamberger, E.; Demuth, E. Ber. Dtsch. Chem. Ges. 1901, 34, 4015-4028.
(61) Brady, O. L.; Goldstein, R. F. J. Chem. Soc. 1926, 129, 19181924.
(62) Mirjafari, A.; Mobarrez, N.; O’Brien, R. A.; Davis, J. H., Jr; Noei, J. C. R. Chim. 2011, 14, 1065-1070.
(63) Brady, O. L.; Jarrett, S. G. J. Chem. Soc. 1950, 1227-1232.
(64) Tran, T. D.; Pham, N. B.; Fechner, G.; Hooper, J. N. A.; Quinn, R. J. J. Nat. Prod. 2013, 76, 516-523.
(65) Chu, Y.; Shan, Z.; Liu, D.; Sun, N. J. Org. Chem. 2006, 71, 3998-4001.
(66) Dinia, M. N.; Hassikou, A.; Lattes, A. Bull. Soc. Chim. Belg. 1993, 102, 623-624.
(67) Younus Wani, M.; Athar, F.; Salauddin, A.; Mohan Agarwal, S.; Azam, A.; Choi, I.; Roouf Bhat, A. Eur. J. Med. Chem. 2011, 46, 47424752.
(68) Hwu, J. R.; Tseng, W. N.; Patel, H. V.; Wong, F. F.; Horng, D.N.; Liaw, B. R.; Lin, L. C. J. Org. Chem. 1999, 64, 2211-2218.
(69) Kahr, K.; Berther, C. Chem. Ber. 1960, 93, 132-136.
(70) Yukawa, Y.; Sakai, M.; Suzuki, S. Bull. Chem. Soc. Jpn. 1966, 39, 2266-2269.

[^0]: Received: July 27, 2015

