STUDIES ON THE ASYMMETRIC TOTAL SYNTHESIS OF TRICHOTHECENES. STEREOSELECTIVE CONSTRUCTION OF THE C-RING FRAGMENT
 Duy H. Hua* and S. Venkataraman
 Department of Chemistry, Kansas State University
 Manhattan, Kansas 66506

Summary: A stereoselective construction of the C-ring fragment of trichothecenes from readily available 4 -cumyloxy-2-cyclopentenol in 12 steps (24% overall yield) is described.

We have recently described an asymmetric synthesis based on the reaction of enones with chiral sulfinylallyl anions. The utilization of this Michael-type addition reaction in the asymmetric synthesis of trichothecene mycotoxins ${ }^{2}$ is being developed. In this communication we describe a stereoselective construction of the C-ring fragment (1) ${ }^{3,4}$ of trichothecenes from the readily available 4-cumyloxy-2-cyclopenten-1-ol (2) . ${ }_{\sim}^{5}$

Oxidation of alcohol $\underset{\sim}{2}$ with 1.5 equiv. of pyridinium chlorochromate ${ }^{6}$ and 3 molecular sieves in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at r.t. for 1 h provided enone 3 in 95% yield. Treatment of enone 3 with 1.1 equiv. of $\mathrm{CH}_{3} \mathrm{Li}$ in THF ($40 \mathrm{~mL} / \mathrm{g}$ of 3) at $-30^{\circ} \mathrm{C}$ for 1 h gave alcohol $\underline{4}^{7}$ in 86% yield and isomer 5^{8} in 6% yield. In this 1,2 addition reaction, methyllithium attacks the carbonyl group predominantly from the side trans to the cumyloxyl group. Epoxidation of 4 with 1.1 equiv. of m-chloroperbenzoic acid (MCPBA) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at r.t. for 20 h produced epoxide $\underset{\sim}{6},{ }^{9}$ isolated in 85\% yield after column chromatographic separation. The peracid apparently approaches the double bond from the side trans to the cumyloxyl group despite the proximity of the allylic hydroxyl. The stereochemistry of $\underset{6}{6}$ is supported by the selective hydrolysis of the c-2 benzoate group of 11 to alcohol 12 and the formation of 16 from 12 (vide infra). Hydrolysis of the cumyloxyl group and regioselective epoxide opening with 1.5 equiv. of $\mathrm{Tl}\left(\mathrm{ONO}_{2}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}^{10}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} / \mathrm{g})$ at r.t. for 2.5 h provided the nitrate triol (7). ${ }^{11}$ Benzoylation of ? with 2.5 equiv. of benzoyl cyanide and 5 equiv. of $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{3} \mathrm{CN}$ at r.t. for 2 h furnished dibenzoate 8 in 60% overall yield from epoxide $\underset{\sim}{6}$. During the study of this oxirane-ring

Trichothecenes

1

2

3

4

5

6

$7: R^{1}=H, R^{2}=\mathrm{NO}_{2}$
$8: \mathbf{R}^{\mathbf{1}}=\mathrm{COPh}, \mathrm{R}^{\mathbf{2}}=\mathrm{NO}_{\mathbf{2}}$
$10: R^{1}=C O P h, R^{2}=H$
$11: R^{\prime}=\mathbf{C O P h}, R^{2}=t-\mathrm{BuMe}_{2} \mathrm{Si}$

9

$12: R^{1}=H, R^{3}=\mathrm{COPh}$
$13: R^{1}=t-\mathrm{BuMe}_{2} \mathrm{Si}, \mathrm{R}^{3}=\mathrm{COPh}$
$14: R^{1}=\mathrm{t}-\mathrm{BuMe}_{2} \mathrm{Si}, \mathrm{R}^{3}=\mathrm{H}$

15

16

17
cleavage reaction, we found that 6 could be treated with 2 equiv. of TiCl_{4} in $\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}$ (50:1; bo mL/g) at r.t. for 20 min to give chloride g^{12} in 85% yield. ${ }^{13}$ The regioselective attack at $C-3$ of $\underset{\sim}{5}$ by chloride ion was proven by using the ${ }^{1} H$ NMR decoupling experiments on 9 and its $\mathrm{C}-2, \mathrm{C}-4$ diacetate derivative. Similarly, the stereochemistry of I was established by the decoupling experiment on it and its derivatives (i.e., 8, 10~14). It is assumed that hydrolysis of the cumyl group was followed by oxiranering cleavage. Silylether 1^{14} was obtained from $\underline{8}$ by the two-step sequence: (i) reduction with $\mathrm{Zn}-\mathrm{AcOH}$ at r.t. for 1 h ; 92% yield and (ii) silylation with 1.2 equiv. of $t-\mathrm{BuMe}_{2} \mathrm{SiCl}, 2$ equiv. of imidazole and 0.2 equiv. of p-dimethylaminopyridine (DMAP) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at r.t. for 6 h ; 98% yield. Selective debenzoylation of 11 (i.e., $\mathrm{C}-2$ benzoate) with 0.15 equiv. of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH ($10 \mathrm{~mL} / \mathrm{g}$) at $0^{\circ} \mathrm{C}$ for 12 h provided 85% yield of 12 . Transformation of diol 12 to enone 1^{15} was accomplished by the sequence: (i) silylation with 1.5 equiv. of $t-\mathrm{BuMe}_{2} \mathrm{SiCl}, 2.0$ equiv. of imidazole and 0.3 equiv. of DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $\mathrm{r} . \mathrm{t}$. for 15 n ; 90% yield, (ii) debenzoylation with 1 equiv. of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH at r.t.; 98% yield, (iii) oxidation of $\mathrm{C}-4$ hydroxy group with pyridinium chlorochromate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at r.t. for 4 n ; 90% yield and (iv) dehydration with 1.5 equiv. of methanesulfonyl chloride and 3.0 equiv. of $E t{ }_{3} N$ in ether at $0^{\circ} \mathrm{C}$; 95% yield.

The stereochemistry at $C-3$ and $C-4$ of nitrate 7 was proven by converting intermediate $\underset{\sim}{12}$ to cyclic carbonate $\underset{\sim}{6}$ by the sequence: (i) carbamoylation of $\underset{\sim}{2} \underset{\sim}{2}$ with $\mathrm{PhN}=\mathrm{C}=0$ and DMAP in
pyridine at $60^{\circ} \mathrm{C}$ for 10 h ; (ii) debenzoylation with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH at r.t. and (iii) desilylation with HF in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ at r.t. followed by methyl chloroformate $-\mathrm{Et}_{3} \mathrm{~N}$.

Finally disilylether 1 was deprotected to trans-4,5-dihydroxy-3-methyl-2-cyclopentenone (17), the acid hydrolyzed cleavage product $Z i$ of moenomycin, ${ }^{16}$ by treatment with $\underline{n}^{-B u_{4}} \mathrm{NF}$ in THF at r.t. in 90% yield. The above synthesis provides a general route for the stereoselective construction of highly oxygenated cyclopentanes.

Acknowledgement. We thank the NSF and Kansas State University for a grant for the purchase of the Bruker $W M-400$ NMR spectrometer. Acknowledgement is made to the Donors of the Petroleum Research Fund, administered by the American Chemical Society and Research Corporation for generous financial support.

References and Notes

1. Hua, D. H.; Sinai-Zingde, G.; Venkataraman, S. J. Am. Chem. Soc. 1985, 107, 0000. The conjugate addition reaction of sulfinylallyl anions has also been reported recently: a) Binns, M. R.; Haynes, R. K.; Katsifis, A. A.; Schober, P. A.; Vonwiller, S. C. Tetrahedron Lett. 1985, 1565. b) Binns, M. R.; Chai, O. L.; Haynes, R. K.; Katsifis, A. A.; Schober, P. A.; Vonwiller, S. C. Tetrahedron Lett. 1985, 1569.
2. The history, structure, biological significance and anticancer activity of naturally occurring trichothecenes have been reviewed: a) Doyle, T. W.; Bradner, W. T. "Anticancer Agents based on Natural Product Models," a series of monographs of medicinal chemistry, vol. 16, edited by Cassady, J. M.; Douros, J. D.; Academic Press: New York, 1980, p. 4372. b) Jarvis, B. B.; Mazzola, E. P. Acc. Chem. Res. 1982, 15, 388-395. c) Tamm, Ch. "Chemistry and Biotechnology of Biologically Active Natural Products"; Szantay, Cs. Ed.: Elsevier Science Pub., New York, 1984; pp. 59-77 and references therein.
3. A general scheme for assembling the trichothecene skeleton involving the addition of an A-ring unit to a c-ring unit followed by an intramolecular cyclization providing the Bring has been described: a) Brooks, D. W.; Grothaus, P. G.; Palmer, J. T. Tetrahedron Lett. 1982, 4187-4190. b) Brooks, D. W.; Grothaus, P. G.; Mazdiyasni, H. j. Am. Chem. Soc. 1983, 105, 4473-4474 and references therein.
4. The asymmetric total synthesis of trichothecenes will be discussed at a later date.
5. Alcohol 2 was prepared from cyclopentadiene and cumyl hydroperoxide: Stork, G.; Isobe, M. J. Am. Chem. Soc. 1975, 97, 6260-6261.
6. Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 2647-2650.
7. All new compounds displayed satisfactory ${ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}$ NMR (100 MHz), UV, IR and low-resolution mass spectra and satisfactory elemental analysis or chemical ionization MS. 4: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.5 \sim 7.2(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 5.81[\mathrm{dd}, \mathrm{J}=5.5, \mathrm{~J}=1.2,1 \mathrm{H}$, $=\mathrm{CHC}(\mathrm{OH}) \mathrm{CH}_{3} \mathrm{~J}, 5.71(\mathrm{dd}, \mathrm{J}=6, \mathrm{~J}=2,1 \mathrm{H},=\mathrm{CH}), 4.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 2.25(\mathrm{dd}, \mathrm{J}=14, \mathrm{~J}=$ $\left.7,1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.88\left(\mathrm{dd}, \mathrm{J}=14, \mathrm{~J}=4,1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.57(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CMe} \mathrm{Ph})$, $1.55(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CMePh}), 1.24[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{OH}) \mathrm{Me}] .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 146.8(\mathrm{~s}, \mathrm{Ph}), 140.5(\mathrm{~d}$, $=\mathrm{CHCOH}), 134(\mathrm{~d},=\mathrm{CH}), 128.2(\mathrm{~d}, \mathrm{o}-\mathrm{Ph}), 127(\mathrm{~d}, \mathrm{p}-\mathrm{Ph}), 126(\mathrm{~d}, \mathrm{~m}-\mathrm{Ph}), 80.9(\mathrm{~s}, \mathrm{C}-\mathrm{Ph})$, $7 \overline{7} .7(\mathrm{~s}, \mathrm{CMeOH}), 76.5(\mathrm{~d}, \mathrm{C}-0), 50.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 29.8(\mathrm{q}, \mathrm{CMePh}), 28.6(\mathrm{q}, \mathrm{CMePh}), 27(\mathrm{q}$, Me).
8. Isomer 5: ${ }^{1}{ }_{\mathrm{H}}$ NMR $7.5 \sim 7.2(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 5.78(\mathrm{~s}, 2 \mathrm{H}, \mathrm{HC}=\mathrm{CH}), 4.50(\mathrm{dd}, \mathrm{J}=6.5, \mathrm{~J}=5.2$, $1 \mathrm{H}, \mathrm{CH}-\mathrm{O}), 2.20\left(\mathrm{dd}, \mathrm{J}=14, \mathrm{~J}=7,1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.87\left(\mathrm{dd}, \mathrm{J}=14, \mathrm{~J}=5,1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.60(\mathrm{~s}$,
$1 \mathrm{H}, \mathrm{OH}), 1.55\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CMe}_{2} \mathrm{Ph}\right), 1.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}_{\mathrm{C}} \mathrm{NMR} 146.8(\mathrm{~s}, \mathrm{Ph}), 139.3(\mathrm{~d}$, $=\mathrm{CHCOH}), 136.2(\mathrm{~d},=\mathrm{CH}), 128.2(\mathrm{~d}, \mathrm{o}-\mathrm{Ph}), 127.0(\mathrm{~d}, \mathrm{p}-\mathrm{Ph}), 126.0(\mathrm{~d}, \mathrm{~m}-\mathrm{Ph}), 81.8(\mathrm{~s}$, $\mathrm{C}=\mathrm{Ph}), 77.8\left(\mathrm{~d}, \mathrm{C}-0-\mathrm{CMe}_{2} \mathrm{Ph}\right), 77.6(\mathrm{~s}, \mathrm{COHMe}), 49.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 29.6,28.7(\mathrm{q}, \mathrm{CMe} 2), 28.5$ (q, Me).
9. Epoxide 6: ${ }^{1}{ }_{\mathrm{H}}$ NMR $7.5-7.2(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 3.55\left(\mathrm{t}, \mathrm{d}, \mathrm{J}=8, \mathrm{~J}=1.3,1 \mathrm{H}, \mathrm{CHOCMe}{ }_{2} \mathrm{Ph}\right)$, $3.32(\mathrm{dd}, \mathrm{J}=2.2, \mathrm{~J}=1.3,1 \mathrm{H}, \mathrm{C}-3 \mathrm{H}), 3.16(\mathrm{~d}, \mathrm{~J}=2.2,1 \mathrm{H}, \mathrm{C}-2 \mathrm{H}), 2.5(\mathrm{broad} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{OH}), 1.80\left(\mathrm{dd}, \mathrm{J}=13, \mathrm{~J}=7.5,1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.55\left(1 \mathrm{H}, \mathrm{CH}_{2}\right.$, overlap with $\left.\mathrm{CH}_{3}\right), 1.61$ ($\mathrm{s}, 3 \mathrm{H}$, CMePh), $1.55(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CMePh}), 1.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{CNMR} 146.3$ ($\left.\mathrm{s}, \mathrm{Ph}\right), 128.2$ (d, o-Ph), 127.2 (d, $\left.\underline{p}^{-} \mathrm{Ph}\right), 125.9\left(\mathrm{~d}, \mathrm{~m}^{-} \mathrm{Ph}\right), 77.6\left(\mathrm{~s}, \mathrm{CMe}_{2} \mathrm{Ph}\right), 75.0(\mathrm{~s}, \underline{\mathrm{CMeOH}}), 71.7$ (d, \underline{C}^{-} $\mathrm{OCMe}_{2} \mathrm{Ph}$) , $60.8(\mathrm{~d}, \mathrm{C}-2), 58.3(\mathrm{~d}, \mathrm{c}-3), 41.6\left(\mathrm{t}, \mathrm{CH}_{2}\right), 29.5$ ($\mathrm{q}, \mathrm{CMePh}$), 28.6 ($\mathrm{q}, \mathrm{CMe} \mathrm{Ph}$), $23.7\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
10. Mincione, E.; Lanciano, F. Tetrahedron Lett. 1980, 21, 1149-1150.
 $[\mathrm{d}, \mathrm{J}=5.4,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})], 2.70(\operatorname{broad} \mathrm{~s}, 3 \mathrm{H}, \mathrm{OH}), 2.08\left(\mathrm{dd}, \mathrm{J}=15, \mathrm{~J}=1.5,1 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.01\left(\mathrm{dd}, \mathrm{J}=15, \mathrm{~J}=6,1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR} 96.7\left(\mathrm{~d}, \mathrm{C}-\mathrm{ONO}_{2}\right), 80.3[\mathrm{~d}$, $\mathrm{CH}(\mathrm{OH}) \mathrm{CMeOH}, 78.8(\mathrm{~s}, \underline{\mathrm{CMeOH}}), 73.6(\mathrm{~d}, \mathrm{C}-\mathrm{OH}), 43.1\left(\mathrm{t}, \mathrm{CH}_{2}\right), 24.2\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
11. Chloride 9: 1_{H} NMR $4.17\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}\right], 4.04(\mathrm{dd}, \mathrm{J}=7, \mathrm{~J}=4,1 \mathrm{H}, \mathrm{CHCl}), 3.76[\mathrm{~d}$, $\mathrm{J}=7,1 \mathrm{H}, \mathrm{CH}(\mathrm{OH}) \mathrm{CMe}], 3.03(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 2.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.21(\mathrm{dd}, \mathrm{J}=15, \mathrm{~J}=7,1 \mathrm{H}$, CH_{2}), $1.98\left(\mathrm{dd}, \mathrm{J}=15, \mathrm{~J}=3,1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.34(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3) .{ }^{13} \mathrm{C} \mathrm{NMR} 84.5[\mathrm{~d}$, $\underline{\mathrm{CH}}(\mathrm{OH}) \mathrm{CMeOH}], 77.50(\mathrm{~s}, \underline{\mathrm{CMeOH}}), 77.13(\mathrm{~d}, \mathrm{C}-\mathrm{OH}), 70.61(\mathrm{~d}, \mathrm{C}-\mathrm{Cl}), 43.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 25.6(\mathrm{q}$, CH_{3}).
12. As far as we are aware, this is the first example of an oxirane ring-opening reaction with TiCl_{4}. A full study with various epoxides will be reported in due course.
 $J=7.4,1 H, C-2 H), 5.17(d d d, J=8, J=5.3, J=4,1 H, C-4 H), 4.79(d d, J=7.4, \mathrm{~J}=$ 5.3, $1 \mathrm{H}, \mathrm{CHOSi}), 2.56\left(\mathrm{dd}, \mathrm{J}=15, \mathrm{~J}=8,1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.02\left(\mathrm{dd}, \mathrm{J}=15, \mathrm{~J}=4,1 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.78(\mathrm{~s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{Bu}), 0.03(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}), 0.00(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{SiCH} 3$). ${ }^{13} \mathrm{C}_{\mathrm{C}}$ NMR $166.1(\mathrm{~s}, \mathrm{C}=0$), $165.8(\mathrm{~s}, \mathrm{C}=0$), $133.4,133.1$ (ss, quarternary C of $\mathrm{Ph}), 130.0,129.9(\mathrm{~d}, \mathrm{p}-\mathrm{Ph}), 129.8,129.7(\mathrm{~d}, \mathrm{o}-\mathrm{Ph}), 128.5,128.4(\mathrm{~d}, \mathrm{~m}-\mathrm{Ph}), 82.7(\mathrm{~d}, \mathrm{c}-$ 4), $79.4(\mathrm{~d}, \mathrm{C}-2), 77.8(\mathrm{~s}, \mathrm{C}-\mathrm{OH}), 75.9(\mathrm{~d}, \mathrm{COOSi}), 42.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 26.8(\mathrm{q}, \mathrm{CMeOH}), 2 b .5$ ($\mathrm{q}, 3 \mathrm{C}, \mathrm{CMe}_{3}$), $18.5\left(\mathrm{~s}, \mathrm{SiCMe}_{3}\right),-4.7,-4.8\left(\mathrm{qq}, \mathrm{SiMe}_{2}\right)$.
13. Enone 1: ${ }^{1} \mathrm{H}$ NMR $5.9(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 4.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{C}-\mathrm{CHOSi}), 4.15(\mathrm{~d}, \mathrm{~J}=2.7,1 \mathrm{H}, 0=\mathrm{C}-$ CHOSi), 2.06 ($\mathrm{dd}, \mathrm{J}=1.1, \mathrm{C}=\mathrm{C}-\mathrm{Me}$), $0.94\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right.$), 0.93 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{CMe}_{3}$), 0.19, 0.18, $0.17,0.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $201.7(\mathrm{~s}, \mathrm{C}=0), 172.8(\mathrm{~s},=\mathrm{C}-\mathrm{Me}), 128.4(\mathrm{~d},=\mathrm{CH})$, $82.9(\mathrm{~d}, \mathrm{C}=\mathrm{C}-\mathrm{COSi}), 80.3(\mathrm{~d}, \mathrm{C}-\mathrm{OSi}), 26.0,25.8\left(\mathrm{q}, \mathrm{CMe}_{3}\right), 18.4,18.0\left(\mathrm{~s}, \mathrm{CMe}_{3}\right), 16.5(\mathrm{q}$, CH_{3}), $-3.7,-4.0,-4.5,-4.6$ ($\mathrm{q}, \mathrm{SiMe}_{2}$).
14. Langenfeld, N.; Welzel, P. Tetrahedron Lett. 1978, 1833-1836, and references cited therein.
(Received in USA 13 May 1985)
