Novel Enantioselective Synthesis of Both Enantiomers of Furan-2-yl Amines and Amino Acids
 by Ayhan S. Demir* and Özge Sesenoglu
 Department of Chemistry, Middle East Technical University, TR-06531 Ankara (e-mail: asdemir@metu.edu.tr)
 and
 Dinçer Ülkiu ${ }^{1}$) and Cengiz Arıcı ${ }^{1}$)
 Department of Engineering Physics, Hacettepe University, Beytepe, TR-06532 Ankara

Abstract

A new enantioselective synthesis of furan-2-yl amines and amino acids is described, in which the key step is the oxazaborolidine-catalyzed enantioselective reduction of O-benzyl (E) - and (Z)-furan-2-yl ketone oximes to the corresponding chiral amines. The chirality of the furan-2-yl amines is fully controlled by the appropriate choice of the geometrical isomer of the O-benzyl oxime. Oxidation of the furan ring furnished amino acids in high yields.

Introduction. - Optically active furan-2-yl amines are important synthetic building blocks for various biologically important molecules [1]. Oxidative cleavage of a furan ring under mild conditions can yield amino acids [2]. By employment of the azaAchmatowicz reaction, furan can be converted to piperidines, and, in particular, to aza sugars [3]. There are a few methods for the synthesis of optically active furan-2-yl amines; the kinetic resolution of racemic amines [4], the addition of organometallics to furfural imines [5], and the asymmetric aminohydroxylation of vinylfuran afford optically active furyl amines [6]. Adducts from diastereoselective Mannich-type reactions of aldehydes, (furan-2-yl) boronic acid and the chiral amine template have been used in the synthesis of a series of chiral furan-2-yl amines [7]. Development of an enantioselective procedure capable of producing both enantiomers of furan-2-yl amines can give rise to many interesting compounds. In this work, we describe the selective formation of (E) - and (Z)-oximino derivatives of some representative furan-$2-y l$ ketones and their enantioselective reduction, which gives access to both enantiomers of furan-2-yl amines, followed by an oxidative cleavage of the furan ring to yield amino acids in high enantiomeric excess. Some preliminary results in the asymmetric synthesis of furan-2-yl amines, α-amino acids, cyclopropaneaminocarboxylic acids, and aminophosphonic acids were reported previously [8].

Results and Discussion. - Ketones $\mathbf{1 a - 1 g}$, required for the preparation of O-benzyl oximes $\mathbf{3 a}-\mathbf{3 g}$, were prepared from the corresponding acid chloride and furan in good yields according to published methods [9] (Scheme 1).

Ketones $\mathbf{1 a - 1 g}$ were converted selectively to the (E) - and (Z)-oximes $\mathbf{2 a - 2 g}$ in good yields under following conditions (Table 1). Reactions of ketones with $\mathrm{H}_{2} \mathrm{NOH}$.

[^0]
a) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{NaOH}$. b) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{AcONa}, \mathrm{EtOH}$. c) NaH , BnBr , DMF. d) $\mathrm{BH}_{3} \cdot$ THF, cat. e) BzCl , Pyridine. f) $\mathrm{O}_{3}, \mathrm{MeOH}$ or $\left.\mathrm{RuO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{NaIO}_{4}, \mathrm{MeCN}, \mathrm{CCl}_{4} . \mathrm{g}\right) \mathrm{Et}_{2} \mathrm{O}, \mathrm{HCl}(\mathrm{g})$.
$\mathrm{HCl} / \mathrm{NaOH}$ gave (E)-oximes (Method $A ; 71-86 \%$), whereas reactions with $\mathrm{H}_{2} \mathrm{NOH}$ $\mathrm{HCl} / \mathrm{AcONa} / \mathrm{EtOH}$ yielded (Z)-oximes (Method B; 69-77\%). From both methods, the opposite isomers were isolated as minor products. Additional purification was achieved by recrystallization. Alternatively, (E)-oximes were converted to corresponding (Z)-oximes with HCl gas in $\mathrm{Et}_{2} \mathrm{O}$ at 0° (Method C). The ethereal suspension of (E) oxime gave a clear solution with HCl gas, in which the subsequent precipitate formed was regarded as (Z)-oxime. Additional recrystallization gave (Z)-oxime in $68-78 \%$ yields. (E)- and (Z)-Isomers were identified by their ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra. For example, (E)-2a displays a doublet for the $\mathrm{H}-\mathrm{C}(3)$ of the furan ring at 6.54 ppm , whereas (Z)-2a displays a multiplet for the same H -atom at 7.42 ppm , which is probably the result of the anisotropy effect of the oxime O -atom. In addition, the ${ }^{13} \mathrm{C}$-NMR shift for $\mathrm{C}(3)$ of the (E)-isomer is 111.6 ppm , whereas for the (Z)-isomer the shift is 118.1 ppm . The purity of (E) - and (Z)-isomers was apparent by GLC analysis of the corresponding O-benzyl derivatives of oximes. Both methods gave the same results regarding the ratio and purity of the isomers for all synthesized oximes. The formation of (Z)-oxime in acidic medium could be explained by the use of the resonance structures of protonated imine, as shown in Scheme 2. The oxime anion A, which can form during the conversion of ketone to oxime in alkali medium, could be responsible for the selective formation of (E)-oxime.

Oximes are converted to O-benzyl oximes in high yields ($83-94 \%$) with NaH and BnBr . No isomerization was observed during this conversion. All of the O-benzyl oximes are viscous oils and are purified by flash column chromatography. O-Benzyl oximes are also synthesized from ketones and O-benzylhydroxylamine hydrochloride. This procedure gave mixtures of isomers. The separation of isomers by flash column

Table 1. Synthesis of Oximes and O-Benzyl Oximes

Furan-2-yl ketone		Oximes 2					O-Benzyl oximes 3		
	R		Method	Config.	Yield [\%]	M.p. [${ }^{\circ}$] (Lit.)		Config.	Yield [\%]
1a	Me	2a	A	(E)	82	$\begin{aligned} & 104-105 \\ & ([9 a]: 104) \end{aligned}$	3 a	(E)	83
			B	(Z)	77	$\begin{aligned} & 76 \\ & ([9 \mathrm{a}]: 74) \end{aligned}$		(Z)	84
			C	(Z)	78	76			
1b	Et	2b	A	(E)	73	$\begin{aligned} & 74 \\ & ([9 \mathrm{a}]: 73) \end{aligned}$	3b	(E)	92
			B	(Z)	69	$\begin{aligned} & 77 \\ & \text { ([9a]: 77-78) } \end{aligned}$		(Z)	89
			C	(Z)	68	77			
1c	i-Pr	2 c	A	(E)	71	96	3 c	(E)	93
			B	(Z)	73	70		(Z)	91
1d	t-Bu	2d	B	(Z)	76	92	3d	(Z)	91
1e	Bn	2e	A	(E)	77	127	3 e	(E)	91
1 f	Ph	2 f	A	(E)	81	$\begin{aligned} & 160-162 \\ & \text { ([9a]: 161) } \end{aligned}$	3 f	(E)	93
			B	(Z)	69	$\begin{aligned} & 150-151 \\ & \text { ([9a]: 149) } \end{aligned}$		(Z)	91
1 g	3,4-Dimethoxyphenyl	2g	A	(E)	86	149-150	3g	(E)	94
			C	(Z)	78	112-113		(Z)	91

Scheme 2

chromatography afforded the O-benzyl (E) - and (Z)-oxime in yields of 28 and 36%, respectively.

The stereoselective reduction of the $\mathrm{C}=\mathrm{N}$ bond is widely used in the construction of saturated N -containing compounds. Nonracemic target chiral compounds can be obtained by homo- and heterogeneous hydrogenation, and hydrosilylation, as well as hydride reduction [10]. These synthetic techniques make the desired products available with high stereoisomeric ratios, and they open convenient routes to the preparation of various compounds. O-Substituted oximes are readily available compounds for the conversion of $\mathrm{C}=\mathrm{O}$ groups to amines. Some of the most important work in this area was reported by Itsuno et al. [11]. They showed that O-substituted acetophenone oxime can be converted to amines using BH_{3}-oxazaborolidine complexes in high enantiomeric excess.

For the reduction of furan-2-yl ketone O-benzyl oximes $\mathbf{3 a}-\mathbf{3 g}$, different reaction conditions are applied, as described below. First enantioselective reduction was carried out with BH_{3} in the presence of oxazaborolidine complexes [12] prepared from different chiral amino alcohols according to the following procedures.

Procedure A. A solution of $\mathrm{BH}_{3}(20 \mathrm{mmol})$ in THF (20 ml) was added under Ar dropwise to a solution of 10 mmol of (R, S)-norephedrine dissolved in 10 ml of THF at -20°. The resulting mixture was warmed to -5°, and stirring was continued at this temperature for 16 h , before 8 mmol of O-benzyl oxime $(E) \mathbf{- 3 a}$ in 10 ml of THF was added dropwise. The resulting solution was stirred at 30° for 48 h (monitored by TLC) and was decomposed by the slow addition of 2 m HCl . The product amine $4 \mathbf{a}$ was purified by bulb-to-bulb distillation.

The amine is characterized by NMR and IR spectroscopy. The enantiomeric excess (ee) of the product was found to be 96% and determined via Mosher amide by ${ }^{19} \mathrm{~F}$ NMR and (S)-acetyllactylamide by HPLC analysis. In addition to these methods, by applying a new synthetic method [13] to amines, we obtained excellent separation properties with a chiral HPLC column. We developed this method for the efficient preparation of 2-methyl-1H-pyrroles from 5-chloropent-3-en-2-one and amines without racemization. Enantiomeric excesses of the amines were determined by comparing their chiral 2-methyl-1 H-pyrrole derivatives with racemic mixtures by means of a chiral HPLC column (Chiralpak AD column, UV detection at 220 nm , isohexane/i-PrOH $9: 1$, flow rate $0.75 \mathrm{ml} \mathrm{min}^{-1}$) [13]. The absolute configuration of $\mathbf{4 a}$ was found to be (S) by comparing its α-value with known data [5b]. The same reaction was carried out with oxazaborolidines prepared from amino alcohols $\mathbf{8}-\mathbf{1 2}$, and $\mathbf{4 a}$ was obtained in $71-81 \%$ yields and $51-97 \%$ ee as shown in Table 2. The highest ee was found with amino alcohols 8, 11, and 12. Under similar conditions, O-benzyl (Z)-oxime (Z)-3a furnished the amine $\mathbf{4 a}$ in $71-80 \%$ yields and $53-96 \%$ ee, depending on the amino alcohol used (Table 2). Interestingly, O-benzyl (Z)-oxime furnished (R)-4a.

Table 2. Reduction of O-Benzyl Oxime $\mathbf{3}$ with Different Amino Alcohols (Procedure A)

O-Benzyl oxime	Furan-2-yl amine	Amino alcohols				
		 $(R, S)-\mathbf{8}$	$(S)-9$	(S)-10		(S)-12
(E)-3a	(S)-4a					
	Yield [\%]	77	81	78	71	74
	ee [\%]	96	51	53	94	97
(Z)-3a	(R)-4a					
	Yield [\%]	72	77	80	73	71
	ee [\%]	94	53	54	95	96

Reduction reactions were applied to different O-benzyl oximes with amino alcohols $\mathbf{8}, \mathbf{1 1}$, and 12, and the corresponding amines were obtained in $71-91 \%$ yields and $90-$ 97% ee (Table 3). The X-ray crystal structure of $(S)-\mathbf{4 g}$ is shown in Fig. 1.

Table 3. Oxazaborolidine-Catalyzed Reduction of O-Benzyl Oximes

O-Benzyl oxime	Amine	Procedure A		Procedure B		Procedure C	
		Yield [\%] (cat.)	ee [\%] (cat.)	$\begin{aligned} & \text { Yield [\%] } \\ & \text { (cat.) } \end{aligned}$	ee [\%] (cat.)	$\begin{aligned} & \text { Yield [\%] } \\ & \text { (cat.) } \end{aligned}$	ee [\%] (cat.)
(E)-3a	(S)-4a	$\begin{aligned} & 77(8), \\ & 71(11), \\ & 74(12) \end{aligned}$	$\begin{aligned} & 96(8), \\ & 94(11), \\ & 97(12) \end{aligned}$	$\begin{aligned} & 81(8), \\ & 78(11), \\ & 73(12) \end{aligned}$	$\begin{aligned} & 44(8), \\ & 51(11), \\ & 58(12) \end{aligned}$	$\begin{aligned} & 77(8), \\ & 74(11), \\ & 71(12) \end{aligned}$	$\begin{aligned} & 68(8), \\ & 78(11), \\ & 83(12) \end{aligned}$
(Z)-3a	(R)-4a	$\begin{aligned} & 72(8), \\ & 73(11), \\ & 71(12) \end{aligned}$	$\begin{aligned} & 94(8), \\ & 95(11), \\ & 96(12) \end{aligned}$	$\begin{aligned} & 83(8), \\ & 81(11), \\ & 77(12) \end{aligned}$	$\begin{aligned} & 41(8), \\ & 52(11), \\ & 56(12) \end{aligned}$	$\begin{aligned} & 76(8), \\ & 73(11), \\ & 72(12) \end{aligned}$	$\begin{aligned} & 61(8), \\ & 73(11), \\ & 81(12) \end{aligned}$
(E) -3b	$(S)-\mathbf{4 b}$	$\begin{aligned} & 81(8), \\ & 83(11), \\ & 80(12) \end{aligned}$	$\begin{aligned} & 96(8), \\ & 94(11), \\ & 96(12) \end{aligned}$	75(12)	61(12)	$\begin{aligned} & 76(8), \\ & 74(11), \\ & 72(12) \end{aligned}$	$\begin{aligned} & 69(8), \\ & 77(11), \\ & 88(12) \end{aligned}$
(Z)-3b	(R)-4b	$\begin{aligned} & 78(8), \\ & 81(11), \\ & 76(12) \end{aligned}$	$\begin{aligned} & 93(8), \\ & 91(11), \\ & 95(12) \end{aligned}$	75(12)	58(12)	$\begin{aligned} & 73(8), \\ & 73(11), \\ & 74(12) \end{aligned}$	$\begin{aligned} & 66(8), \\ & 71(11), \\ & 84(12) \end{aligned}$
(E)-3c	(S)-4c	$\begin{aligned} & 81(8), \\ & 78(11), \\ & 77(12) \end{aligned}$	$\begin{aligned} & 96(8), \\ & 96(11), \\ & 96(12) \end{aligned}$	78(12)	62(12)	$\begin{aligned} & 81(8), \\ & 80(11), \\ & 82(12) \end{aligned}$	$\begin{aligned} & 63(8), \\ & 71(11), \\ & 84(12) \end{aligned}$
(Z)-3c	(R)-4c	$\begin{aligned} & 83(8), \\ & 81(11), \\ & 76(12) \end{aligned}$	$\begin{aligned} & 95(8), \\ & 92(11), \\ & 96(12) \end{aligned}$	79(12)	64(12)	$\begin{aligned} & 78(8), \\ & 78(11), \\ & 82(12) \end{aligned}$	$\begin{aligned} & 61(8), \\ & 70(11), \\ & 83(12) \end{aligned}$
(Z)-3d	(R)-4d	$\begin{aligned} & 76(8), \\ & 73(11), \\ & 78(12) \end{aligned}$	$\begin{aligned} & 90(8), \\ & 92(11), \\ & 92(12) \end{aligned}$	75(12)	41(12)	$\begin{aligned} & 77(8), \\ & 78(11), \\ & 73(12) \end{aligned}$	$\begin{aligned} & 57(8), \\ & 59(11), \\ & 58(12) \end{aligned}$
(E)-3e	(S)-4e	$\begin{aligned} & 88(8), \\ & 84(11), \\ & 81(12) \end{aligned}$	$\begin{aligned} & 92(8), \\ & 94(11), \\ & 96(12) \end{aligned}$	79(12)	47(12)	$\begin{aligned} & 79(8), \\ & 80(11), \\ & 77(12) \end{aligned}$	$\begin{aligned} & 63(8), \\ & 68(11), \\ & 73(12) \end{aligned}$
(E)-3f	(S-4f	$\begin{aligned} & 87(8), \\ & 84(11), \\ & 83(12) \end{aligned}$	$\begin{aligned} & 95(8), \\ & 96(11), \\ & 97(12) \end{aligned}$	87(12)	46(12)	$\begin{aligned} & 88(8), \\ & 87(11), \\ & 88(12) \end{aligned}$	$\begin{aligned} & 61(8), \\ & 71(11), \\ & 77(12) \end{aligned}$
(Z)-3f	(R)-4f	91(8), 81(11), 84(12)	$\begin{aligned} & 91(8), \\ & 93(11), \\ & 92(12) \end{aligned}$	85(12)	43(12)	$\begin{aligned} & 83(8), \\ & 81(11), \\ & 81(12) \end{aligned}$	$\begin{aligned} & 58(8), \\ & 70(11), \\ & 75(12) \end{aligned}$
(E) $\mathbf{- 3 g}$	(S)-4g	88(12)	93(12)	82(12)	57(12)	86(12)	73(12)
(Z)-3g	(R)-4g	84(12)	87(12)	81(12)	41(12)	78(12)	61(12)

Amino alcohols, used for the preparation of oxazaborolidines, are recovered as their HCl salts in $87-95 \%$ yield during the workup procedure.

The reduction of O-benzyl oxime (E)-3a under similar conditions with catalytic amounts of oxazaborolidine complexes prepared with amino alcohols $(S)-\mathbf{8}$ and $(S)-\mathbf{1 2}$ ($0.1-0.2$ equiv.) afforded $22-31 \%$ enantiomeric excess.

Procedure B. To a solution of amino alcohol $(R, S)-\mathbf{8}(0.1 \mathrm{mmol})$ in THF was added 10 equiv. of $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$ complex at room temperature, and the resulting mixture was stirred at this temperature for 12 h . To this mixture was added a solution of the O benzyl oxime (E) - $\mathbf{3 a}(5 \mathrm{mmol})$ in THF over 1 h . This was followed by stirring at 35°, until the starting material disappeared (TLC), and then under reflux for 48 h . After workup, the reaction gave the amine in 81% yield and 44% ee. Under similar conditions, amino alcohol $(S) \mathbf{- 1 1}$ furnished (S)-4a in 51% ee and $(R)-\mathbf{4 a}$ in 52% ee, while amino alcohol (S)-12 furnished (S)-4a in 58% ee and (R)-4a in 56% ee, starting

Fig. 1. X-Ray structure of (S)-4g
from the corresponding O-benzyl oxime. Application of this method to different O benzyl oximes with (S) - $\mathbf{1 2}$ furnished the amines in $75-87 \%$ yields and $41-64 \%$ ee as summarized in Table 3. Amino alcohol (S)-12 gave a higher ee value than (R, S)-8 and (S) $\mathbf{- 1 1}$.

Procedure C. As described in Procedure B, with 0.5 equiv. of trimethyl borate and $(S)-\mathbf{8}$, and adding O-benzyl oxime solution over 2 h furnished $(S)-\mathbf{4 a}$ in 77% yield and 68% ee. The same reaction was applied to different O-benzyl oximes with $\mathbf{8}, \mathbf{1 1}$, and $\mathbf{1 2}$, and the corresponding amines were obtained in $71-88 \%$ yields and $57-88 \%$ ee (Table 3). In all cases, the O-benzyl (Z)-oximes gave the (R)-enantiomer.

The effect of the O-protecting group on the reduction of ketone O-benzyl oximes 3a was also investigated. The reductions described in Procedure A were carried out with (E)-O-methyloxime, and the determination of the enantiomeric excesses of product amines showed low selectivity (52% ee).

As we reported earlier [8a][12a ${ }^{2}$), compounds $\mathbf{9}, \mathbf{1 0}$, and $\mathbf{1 1}$ can readily be synthesized in three steps from (S)-proline, and their enantiomers are also synthesized starting from (R)-proline by the same procedure. In Scheme 3, gram-scale synthesis of amino alcohols is illustrated by the synthesis of (S)-11. The reaction of (S)-proline with ethyl chloroformate in MeOH with $\mathrm{K}_{2} \mathrm{CO}_{3}$ gave N - and O-protected proline $\mathbf{1 4}$ in a one-pot operation [8a]. The Grignard reaction of protected proline with 1,2bis(chloromethyl)benzene afforded hydroxy derivative 15. Deprotection of the N carbamate was carried out by alkaline hydrolysis.

By the mechanism of the alkaline hydrolysis of carbamate, first we observed the formation of intermediate 16 (monitored by TLC), which we isolated and fully characterized by X-ray analysis (Fig. 2).

[^1]
Scheme 3

a) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{ClCOOEt}, \mathrm{MeOH}$. b) 1,2 -bis(chloromethyl)benzene, Mg, THF. c) $\mathrm{KOH}, \mathrm{MeOH}, 1 \mathrm{~h}$ reflux. d) KOH , $\mathrm{MeOH}, 4 \mathrm{~h}$ reflux.

Fig. 2. X-Ray structure of (S)-16

Additional reflux of $\mathbf{1 6}$ with KOH gave proline derivative $\mathbf{1 1}$ in good yield. By the same procedure, both enantiomers of $\mathbf{9}, \mathbf{1 0}$, and $\mathbf{1 1}$ were also synthesized via their N ethoxycarbonyl derivatives in good yield.

The crystals are composed of discrete molecules as shown in Figs. 1 and 2. As can be detected from crystallographic data (Table 4), the structural indicators have good values. No unusual values exist concerning the bond lengths, bond angles, and displacement parameters.

In the compound $(S) \mathbf{- 1 6}$, if one considers the two moieties of the molecule on both sides of the central $C(9)$-atom, these moieties are fairly planar within themselves and

Table 4. Crystallographic Data of (S)-16 and (S)-4g ${ }^{\text {a }}$)

	(S)-16	(S)-4g
Crystallized from	$\mathrm{Et}_{2} \mathrm{O} /$ hexane	$\mathrm{Et}_{2} \mathrm{O} /$ hexane
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{NO}_{2}$	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}$
Formula weight [$\mathrm{g} \cdot \mathrm{mol}^{-1}$]	224.23	247.24
Crystal size [mm]	$0.25 \times 0.30 \times 0.35$	$0.10 \times 0.25 \times 0.30$
Unit-cell dimensions a [\AA]	8.4920 (12)	$8.9233(11)$
b [\AA]	10.0448(11)	7.7431(12)
$c[\AA]$	13.8248(13)	16.3528(13)
$\alpha\left[{ }^{\circ}\right]$	90	90.00
β [${ }^{\circ}$]	90	93.977(3)
$\gamma\left[{ }^{\circ}\right]$	90	90.00
Cell volume $\left[\AA^{3}\right]$	1179.3(2)	1127.2(2)
Crystal system	Orthorhombic	Monoclinic
Space group	P212121	P21/a
Cell formula units Z	4	4
Calc. density $D_{\mathrm{x}}\left[\mathrm{g} \cdot \mathrm{cm}^{-3}\right]$	1.263	1.457
$\mu\left(\mathrm{Mo}_{a}\right)\left[\mathrm{mm}^{-1}\right]$	0.088	0.109
Scan type	$\omega / 2 \theta$	$\omega / 2 \theta$
$\theta_{\text {max }}\left[{ }^{\circ}\right]$	26.29	26.30
Absorption correction	none	ψ scan
Total reflections measured	2137	2447
Symmetry-independent refl.	1431	2288
Reflections used [$I \geq 2 \sigma(I)$]	1234	1744
Parameters refined	155	155
Final R	0.051	0.056
$w R$	0.144	0.169
$\Delta \rho(\max ; \min)\left[\mathrm{e}^{\circ}{ }^{-3}\right]$	0.289; - 0.231	0.375; -0.509

${ }^{\text {a }}$) Crystallographic data (excluding structure factors) for structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as deposition No. CCDC 185707 for (S)-16 and CCDC 185708 for $(S)-\mathbf{4 g}$. Copies of the data can be obtained, free of charge, on application to the CCDC, 12 Union Road, Cambridge CB2 IEZ UK (fax: $+44(1223) 36033$; e-mail: deposit@ccdc.com.ac.uk).
have a dihedral angle of $67.16(2)^{\circ}$. The bond angles around $\mathrm{C}(9)$ change from $103.2(2)^{\circ}(\mathrm{O}(2)-\mathrm{C}(9)-\mathrm{C}(10))$ to $117.4(3)^{\circ}(\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{C}(10))$. That the maximum deviation from the ideal tetrahedral angle is observed between $\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{C}(10)$ could be explained with the steric hindrances in the molecule. In the compound $(S)-\mathbf{4 g}$, the sum of the bond angles around $\mathrm{C}(5)$ is 360° within experimental error. The two planar ring moieties are twisted with respect to each other $c a .22^{\circ}$ as the torsion angles indicate.

As shown in Scheme 1, furan-2-yl amines $\mathbf{4 a}-\mathbf{4 g}$ were converted to N-benzoyl derivatives with PhCOCl in pyridine, and $\mathbf{5 a - 5 g}$ were obtained in $86-93 \%$ yield after purification of the crude products by column chromatography. Oxidation of the furan ring by ozonolysis or by $\mathrm{RuO}_{2} / \mathrm{NaIO}_{4}$ periodate [14] furnished (S)- and (R)- N benzoylamino acids in $83-91 \%$ yields. The oxidation of amines to amino acids without benzoylation was also carried out by ozonolysis. As a representative example, amines $\mathbf{4 a}$ and $\mathbf{4 f}$ were converted to amino acids 7a and 7b, respectively, in $78-84 \%$ yields.

The suggested mechanism outlined in Fig. 3 shows that the formation of low-energy cis-pentalane is favored because β-binding of $\mathrm{BH}_{3} \cdot$ THF to oxazaborolidine forms very
strained trans-pentalane, which is disfavored. As shown in Table 3, the geometry of oxime becomes a dominant factor in the stereoselectivity by the formation of amines, and the substitution pattern has a minor effect on the stereoselectivity. It appears that the prochiral N moiety is responsible for the high selectivity, not the prochiral C .

(Z)

(E)

Fig. 3. Suggested mechanism for the reduction of O-benzyl oxime
In summary, furan-2-yl ketones can be converted to (E) - and (Z)-oximes selectively in good yield, and the enantioselective reduction of the corresponding O-substituted derivatives affords both enantiomers of the furan-2-yl amines in three steps, in $35-41 \%$ overall yields from readily available starting materials. The geometry of the O substituted oximes is a dominant factor for the absolute configuration of product amines. This method represents a simple, selective, and flexible synthesis of both enantiomers of the furan-2-yl amines and amino acids. With catalytic amounts of oxazaborolidines, the increase in time for the addition of the O-substituted oximes increases the ee values slightly, but the addition of trimethylborate affords good ee values. The chirality of furan-2-yl amines is fully controlled by an appropriate choice of geometric isomer of the O-substituted oximes, and the substitution pattern had a minor effect on the stereoselectivity.

Experimental Part

General. Optical rotations: Bellingham \& Stanley P20 polarimeter or Autopol IV automatic polarimeter. Column chromatography (CC): silica gel 60 (mesh size $40-63 \mu \mathrm{~m}$). NMR Spectra: Bruker DPX-400. GC/MS: Phenomenex Zebron $Z B-5$ cap. column (5\% phenylmethylsiloxane). Enantiomeric excesses (ee) were determined by HPLC analysis with a Thermo Quest (TSP) LC/MS equipped with an appropriate optically active column. X-Ray diffraction data were collected with a CAD-4 diffractometer with graphite monochromated $\operatorname{Mo} K_{\alpha}$ radiation $(\lambda=0.71073 \AA)$. Lorentz polarization and extinction corrections were applied. The structures were determined by direct methods and refined by full-matrix least-squares techniques to a conventional R value of 0.051 for the compound $(S) \mathbf{- 1 6}$, and 0.056 for the compound $(S) \mathbf{- 4 g}$. All non-H-atoms were refined with anisotropic displacement parameters. The H -atoms were placed geometrically 0.95 to $0.99 \AA$ from their parent C-atoms, and a riding model was used with $U_{\text {iso }}(\mathrm{H})=1.3 U_{\text {eq }}(\mathrm{C})$. Scattering factors were taken from International Tables for X-Ray crystallography. For data collection and cell parameters CAD-4 EXPRESS [15], for structure solution and refinement SHELXL package [16], for molecular graphics PLATON 2000 [17] computer programs were utilized (more details in Table 4).

General Procedure for Oximes. Method A. Ketone 1a-1g (5 mmol), $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(6 \mathrm{mmol})$, and NaOH $(6 \mathrm{mmol})$ were mixed in abs. $\mathrm{EtOH}(15 \mathrm{ml})$ and stirred under reflux for 12 h . The reaction was monitored by TLC. After 12 h , the hot soln. was filtered, and EtOH was evaporated. The remaining solid was dissolved in $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The $\mathrm{Et}_{2} \mathrm{O}$ layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent afforded crude product, which was purified either by CC or crystallization to give (E)-oximes in 71 86% yields.

Method B. Ketone $\mathbf{1 a}-\mathbf{1 g}(5 \mathrm{mmol}), \mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(6 \mathrm{mmol})$, and $\mathrm{AcONa}(6 \mathrm{mmol})$ were mixed in abs. $\mathrm{EtOH}(15 \mathrm{ml})$ and stirred under reflux for 12 h . The reaction was monitored by TLC. After 12 h , the hot soln. was filtered, and EtOH was evaporated. The remaining solid was dissolved in $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The $\mathrm{Et}_{2} \mathrm{O}$ layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent afforded crude product, which was purified either by CC or crystallization to give (Z)-oximes in $69-77 \%$ yields.

Method C: Isomerization of Oximes. Oxime $\mathbf{2 a}-\mathbf{2 g}(1 \mathrm{mmol})((E) /(Z)$-mixture or (E)-oxime $))$ was suspended in dry $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{ml})$, and HCl gas was bubbled through the soln. at 0°. Initially, a clear soln. was obtained, and then a white precipitate formed. Evaporation of the solvent afforded crude products that were purified either by CC or crystallization to give (Z)-oximes in $68-78 \%$ yields.
(E)-1-(Furan-2-yl)ethanone Oxime $((E)-2 \mathbf{a}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.14(s, 3 \mathrm{H}) ; 6.34$ (dd, $J=1.7$, $3.3,1 \mathrm{H}) ; 6.54(d, J=3.3,1 \mathrm{H}) ; 7.39(s, 1 \mathrm{H}) ; 9.95$ (br. $s, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 11.5 ; 110.1 ; 111.6$; 143.8; 147.5; 150.6. Anal. calc. for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}_{2}$: C 57.59, H 5.64, N 11.19 ; found: C 57.31, H 5.82, N 11.36.
(Z)-1-(Furan-2-yl)ethanone Oxime ((Z)-2a). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.24(s, 3 \mathrm{H}) ; 6.48(d d, J=1.1$, $3.3,1 \mathrm{H}$); $7.42-7.46(m, 2 \mathrm{H}) ; 8.71$ (br. $s, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 11.7 ; 111.3 ; 118.1 ; 144.3 ; 148.0$; 152.4. Anal. calc. for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}_{2}$: C 57.59, H 5.64, N 11.19; found: C 57.51, H 5.44, N 11.36.
(E)-1-(Furan-2-yl)propan-1-one Oxime ((E)-2b). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.14(t, J=7.6,3 \mathrm{H}) ; 2.64$ $(q, J=7.6,2 \mathrm{H}) ; 6.36(d d, J=1.7,3.4,1 \mathrm{H}) ; 6.55(d, J=3.4,1 \mathrm{H}) ; 7.4(s, 1 \mathrm{H}) ; 9.62($ br. $s, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 11.5 ; 19.6 ; 110.5 ; 111.8 ; 144.1 ; 150.1 ; 152.8$. Anal. calc. for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{2}: \mathrm{C} 60.42, \mathrm{H} 6.52, \mathrm{~N}$ 10.07; found: C 60.12 , H 6.31 , N 10.32 .
(Z)-1-(Furan-2-yl)propan-1-one Oxime ((Z)-2b). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.15(t, J=7.6,3 \mathrm{H}) ; 2.64$ $(q, J=7.6,2 \mathrm{H}) ; 6.47(d d, J=1.9,3.2,1 \mathrm{H}) ; 7.42($ br. $s, 2 \mathrm{H}) ; 8.61($ br. $s, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 12.4$; $25.4 ; 110.4 ; 118.8 ; 144.2 ; 148.9 ; 152.9$. Anal. calc. for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{2}$: C 60.42 , H 6.52, N 10.07; found: C 60.11, H 6.23, N 10.33 .
(E)-1-(Furan-2-yl)-2-methylpropan-1-one Oxime ((E)-2c). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.23$ (d,J=7.4, $6 \mathrm{H}) ; 3.01-3.41(m, 1 \mathrm{H}) ; 6.34-6.45(m, 1 \mathrm{H}) ; 6.54-6.66(m, 1 \mathrm{H}) ; 7.37-7.49(m, 1 \mathrm{H}) ; 9.86$ (br. $s, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $12.3 ; 12.4 ; 30.1 ; 110.2 ; 111.5 ; 143.5 ; 147.1 ; 150.7$. Anal. calc. for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{2}: \mathrm{C} 62.73$, H 7.24, N 9.14; found: C 62.45, H 7.38, N 9.33.
(Z)-1-(Furan-2-yl)-2-methylpropan-1-one Oxime ((Z)-2c). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.26(d, J=7.4$, $6 \mathrm{H}) ; 3.06-3.43(\mathrm{~m}, 1 \mathrm{H}) ; 6.46-6.55(\mathrm{~m}, 1 \mathrm{H}) ; 7.36-7.53(\mathrm{~m}, 2 \mathrm{H}) ; 10.06$ (br. $s, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): 12.1; $12.3 ; 30.5 ; 110.1 ; 111.3 ; 143.2 ; 147.1 ; 150.5$. Anal. calc. for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{2}$: C 62.73, H 7.24, N 9.14 ; found: C 62.68, H 7.21, N 9.36 .
(Z)-1-(Furan-2-yl)-2,2-dimethylpropan-1-one Oxime ((Z)-2d). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.29(s, 9 \mathrm{H})$; $6.44(d d, J=1.7,3.4,1 \mathrm{H}) ; 7.35(d, J=3.4,1 \mathrm{H}) ; 7.42(s, 1 \mathrm{H}) ; 9.51$ (br. $s, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 29.1; 38.2; 111.7; 119.2; 142.3; 145.7; 154.1. Anal. calc. for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{2}$: C $64.65, \mathrm{H} 7.84, \mathrm{~N} 8.38$; found: C $64.43, \mathrm{H}$ 7.62, N 8.58 .
(E)-1-(Furan-2-yl)-2-phenylethanone Oxime ((E)-2e). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.87(s, 2 \mathrm{H}) ; 6.42$ $(d d, J=1.6,3.3,1 \mathrm{H}) ; 6.50(d, J=3.4,1 \mathrm{H}) ; 7.10-7.31(m, 6 \mathrm{H}) ; 8.92(s, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $37.8 ; 111.4 ; 112.7 ; 128.9 ; 129.1 ; 129.4 ; 143.2 ; 146.9 ; 149.8 ; 149.9$. Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}: \mathrm{C} 71.63$, H $5.51, \mathrm{~N}$ 6.96; found: C 71.78, H 5.32, N 6.68.
(E)-(Furan-2-yl)phenylmethanone Oxime ((E)-2f). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.22-6.46(m, 2 \mathrm{H})$; $7.16-7.60(m, 6 \mathrm{H}) ; 9.22$ (br. $s, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 111.2; 119.6; 128.2; 129.5; 132.5; 142.1; 147.2; 154.2. Anal. calc. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}$: C 70.58, H 4.85, N 7.48; found: C 70.52, H 4.95, N 7.41.
(Z)-(Furan-2-yl)phenylmethanone Oxime ((Z)-2f). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.46-6.63(m, 1 \mathrm{H})$; $7.31-7.66(m, 7 \mathrm{H}) ; 9.83$ (br. $s, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 111.1 ; 119.4 ; 128.6 ; 129.7 ; 132.3 ; 142.3 ; 146.2$; 146.5; 154.4. Anal. calc. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}:$ C 70.58, H 4.85, N 7.48; found: C 70.33, H 4.88, N 7.21.
(E)-(3,4-Dimethoxyphenyl) (furan-2-yl)methanone Oxime $((E)-\mathbf{2 g}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.86$ $(s, 3 \mathrm{H}) ; 3.90(s, 3 \mathrm{H}) ; 6.25-6.46(m, 2 \mathrm{H}) ; 6.83-7.53(m, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 56.3 ; 56.4 ; 110.5$; $115.3 ; 115.6 ; 122.4 ; 124.7 ; 143.1 ; 143.4 ; 147.9 ; 147.9 ; 150.1 ; 155.3$. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}$: C $63.15, \mathrm{H} 5.30, \mathrm{~N}$ 5.67; found: C 63.31, H 5.21, N 5.87.
(Z)-(3,4-Dimethoxyphenyl)(furan-2-yl)methanone Oxime ((Z)-2g). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 3.91 $(s, 3 \mathrm{H}) ; 4.11(s, 3 \mathrm{H}) ; 6.60(d d, J=1.6,3.4,1 \mathrm{H}) ; 6.90(d, J=8.3,1 \mathrm{H}) ; 7.25(d, J=3.5,1 \mathrm{H}) ; 7.60(d, J=1.8$, $1 \mathrm{H}) ; 7.72$ (br. $s, 1 \mathrm{H}) ; 7.75(d d, J=1.8,8.3,1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 56.4 ; 56.5 ; 110.4 ; 112.3 ; 112.5$; $120.1 ; 124.6 ; 130.3 ; 146.9 ; 149.4 ; 152.9 ; 153.5 ; 181.6$. Anal calc. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}$: C $63.15, \mathrm{H} 5.30, \mathrm{~N} 5.67$; found: C 63.11, H 5.42, N 5.74.

General Procedure for O-Benzyloximes. To a suspension of 50 mmol of NaH in 60 ml of dry DMF at 0° was added 40 mmol of oxime dissolved in 50 ml of DMF. The mixture was stirred ($1 \mathrm{~h}, 0^{\circ}$), and 50 mmol BnBr was added. After stirring for 2 h at r.t., the mixture was hydrolyzed with $\mathrm{H}_{2} \mathrm{O}$, extracted with AcOEt, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Further purification was done by CC to yield O-benzyloximes as viscous oils.
(E)-1-(Furan-2-yl)ethanone O-Benzyloxime ((E)-3a). IR: 3140, 2885, 1600, 1490, 1450. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.15(s, 3 \mathrm{H}) ; 5.23(s, 2 \mathrm{H}) ; 6.40(d d, J=1.6,3.1,1 \mathrm{H}) ; 6.58(d, J=3.4,1 \mathrm{H}) ; 7.25-7.40$ $(m, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 12.5 ; 76.9 ; 110.6 ; 111.7 ; 128.4 ; 128.6 ; 128.9 ; 138.1 ; 143.9 ; 147.8 ; 150.6$. MS: $215\left(M^{+}\right), 198,185,158,91,77,65$. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2}: \mathrm{C} 72.54, \mathrm{H} 6.09, \mathrm{~N} 6.51$; found: C 72.77, H 6.21, N 6.71.
(Z)-1-(Furan-2-yl)ethanone O-Benzyloxime ((Z)-3a). IR: 3170, 2890, 1600, 1565, 1480, 1450, 1430. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.23(\mathrm{~s}, 3 \mathrm{H}) ; 5.20(\mathrm{~s}, 2 \mathrm{H}) ; 6.43-6.50(\mathrm{~m}, 1 \mathrm{H}) ; 7.10-7.45(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 12.5 ; 76.8 ; 110.5 ; 119.6 ; 128.2 ; 128.5 ; 128.7 ; 138.2 ; 144.5 ; 147.8 ; 151.9$. MS: $215\left(M^{+}\right), 198$, 185, 158, 91 (100), 77, 65. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2}$: C 72.54, H 6.09, N 6.51 ; found: C 72.68, H 6.32, N 6.11 .
(E)-1-(Furan-2-yl)propan-1-one O-Benzyloxime ((E)-3b). IR: 3140, 2880, 1600, 1490, 1450. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.15(t, J=7.0,3 \mathrm{H}) ; 2.65(q, J=7.0,2 \mathrm{H}) ; 5.23(s, 2 \mathrm{H}) ; 6.35-6.44(m, 1 \mathrm{H}) ; 6.55-6.65$ $(m, 1 \mathrm{H}) ; 7.21-7.50(m, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 12.0 ; 19.8 ; 76.8 ; 111.4 ; 128.3 ; 128.6 ; 128.9 ; 138.3$; 144.2; 147.1; 150.1. MS: $229\left(M^{+}\right), 212,189,158,91(100), 77,65$. Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}: \mathrm{C} 73.34, \mathrm{H} 6.59, \mathrm{~N}$ 6.11; found: C 73.63, H 6.41, N 6.38.
(Z)-1-(Furan-2-yl)propan-1-one O-Benzyloxime ((Z)-3b). IR: 3110, 2890, 1590, 1570, 1490, 1480, 1450. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.23(t, J=7.2,3 \mathrm{H}) ; 2.67(q, J=7.2,2 \mathrm{H}) ; 5.20(s, 2 \mathrm{H}) ; 6.43-6.53(m, 1 \mathrm{H}) ; 7.26-$ $7.50(m, 7 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 11.6 ; 19.6 ; 77.7 ; 111.3 ; 128.2 ; 128.5 ; 128.9 ; 138.3 ; 144.2 ; 147.2 ; 151.2$. MS: $229\left(M^{+}\right), 212,158,91,77,65$. Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}:$ C 73.34, H 6.59, N 6.11; found C 73.58, H 6.36, N 6.29 .
(E)-1-(Furan-2-yl)-2-methylpropan-1-one O-Benzyloxime $((E)-\mathbf{3 c}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.19$ $(d, J=7.4,6 \mathrm{H}) ; 2.98-3.36(m, 1 \mathrm{H}) ; 5.21(s, 2 \mathrm{H}) ; 6.32-6.45(m, 1 \mathrm{H}) ; 6.51-6.62(m, 1 \mathrm{H}) ; 6.54-6.83,7.31-$ $7.53(m, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 12.1 ; 12.3 ; 31.2 ; 76.4 ; 110.3 ; 111.5 ; 128.2 ; 128.5 ; 128.9 ; 139.4 ; 144.2$; 146.8; 152.2. Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$: C 74.05, H 7.04, N 5.76; found: C 74.25, H 7.24, N 5.61.
(Z)-1-(Furan-2-yl)-2-methylpropan-1-one O-Benzyloxime $((Z)-3 c) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.21$ $(d, J=7.2,6 \mathrm{H}) ; 3.03-3.46(m, 1 \mathrm{H}) ; 5.20(s, 2 \mathrm{H}) ; 6.36-6.50(m, 1 \mathrm{H}) ; 6.56-6.83(m, 7 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 12.1; 12.3; 30.2; 76.2; 110.2; 111.4; 128.2; 128.5; 128.8; 139.2; 144.5; 146.9; 150.3. Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$: C 74.05, H 7.04, N 5.76; found: C 74.31, H 7.14, N 5.61.
(Z)-1-(Furan-2-yl)-2,2-dimethylpropan-1-one O-Benzyloxime ((Z)-3d). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.31$ $(s, 9 \mathrm{H}) ; 5.18(s, 2 \mathrm{H}) ; 6.36-6.50(m, 1 \mathrm{H}) ; 7.16-7.50(m, 7 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 29.1 ; 38.4 ; 76.5$; $111.5 ; 119.3 ; 128.3 ; 128.5 ; 138.1 ; 143.9 ; 147.9 ; 150.5$. MS: $257\left(M^{+}\right), 240,198,158,136,91,77,65$. Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$: C 74.68, H 7.44, N 5.44; found C 74.71, H 7.31, N 5.63.
(E)-1-(Furan-2-yl)-2-phenylethanone O-Benzyloxime ((E)-3e). M.p. $56-58^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 4.01(s, 2 \mathrm{H}) ; 5.25(s, 2 \mathrm{H}) ; 6.36-6.50(m, 1 \mathrm{H}) ; 6.60-6.70(m, 1 \mathrm{H}) ; 7.13-7.50(m, 11 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$
(100 MHz, CDCl_{3}): 37.7; 76.2; 111.4; 112.5; 127.4; 128.5; 128.8; 128.9; 129.1; 129.5; 139.2; 143.3; 146.9; 149.6; 149.9. MS: $291\left(M^{+}\right), 274,201,183,158,91(100), 77,65$. Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{2}$: C 78.33, H 5.88, N 4.81; found: C 78.47, H 5.98, N 4.70.
(E)-(Furan-2-yl)(phenyl)methanone O-Benzyloxime ((E)-3f). IR: 3160, 2885, 1600, 1590, 1490, 1480, 1450, 1440. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.23(s, 2 \mathrm{H}) ; 6.23-6.48(m, 2 \mathrm{H}) ; 7.18-7.53(m, 11 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 76.2; 111.2; 119.3; 127.4; 127.5; 128.2; 128.8; 129.3; 133.1; 138.2; 142.8; 146.3; 149.9. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{2}$: C 77.96, H 5.45, N 5.05; found: C 77.81, H 5.66, N 4.82.
(Z)-(Furan-2-yl)(phenyl)methanone O-Benzyloxime ((Z)-3f). IR: 3150, 2880, 1580, 1560, 1490, 1460, 1450, 1430. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.21(s, 2 \mathrm{H}) ; 6.42(d d, J=1.8,3.3,1 \mathrm{H}) ; 7.25-7.50(m, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 77.8; 112.3; 119.4; 128.5; 128.6; 128.7; 128.9; 129.5; 129.6; 134.9; 137.9; 143.3; 145.4; 147.8. MS: $277\left(M^{+}\right), 260,158,128,102,91,77,65$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{2}:$ C $77.96, \mathrm{H} 5.45, \mathrm{~N} 5.05$; found: C 77.78, H 5.36, N 4.87.
(E)-(3,4-Dimethoxyphenyl)(furan-2-yl)methanone O-Benzyloxime ((E)-3g). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 3.88$ ($s, 3 \mathrm{H}$); $3.90(s, 3 \mathrm{H}) ; 5.33(s, 2 \mathrm{H}) ; 6.30-6.45(m, 1 \mathrm{H}) ; 6.48-6.56(m, 1 \mathrm{H}) ; 6.90-7.52$ $(m, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 56.3 ; 56.5 ; 76.4 ; 110.2 ; 110.4 ; 115.5 ; 115.8 ; 122.5 ; 124.3 ; 127.4 ; 128.7$; 140.8; 143.3; 143.4; 147.8; 150.2; 155.3. Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4}$: C 71.20, H 5.68, N 4.15; found: C 71.41, H 5.43, N 4.02.
(Z)-(3,4-Dimethoxyphenyl)(furan-2-yl)methanone O-Benzyloxime ((Z)-3g). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 3.89(s, 3 \mathrm{H}) ; 3.91(s, 3 \mathrm{H}) ; 5.21(s, 2 \mathrm{H}) ; 6.43-6.60(m, 1 \mathrm{H}) ; 6.81-6.94,7.13-7.73(m, 10 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 56.3 ; 56.5 ; 76.4 ; 109.2 ; 110.3 ; 115.7 ; 122.5 ; 124.2 ; 127.5 ; 128.7 ; 140.8 ; 143.1 ; 143.4$; 147.7; 149.9; 155.1. MS: 337, 320, 307, 246, 218, 216, 201, 155, 107, 91, 77. Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4}: \mathrm{C} 71.20, \mathrm{H}$ 5.68, N 4.15; found: C 71.36, H 5.77, N 4.33.

General Procedure for Reductions. Procedure A. A soln. of $\mathrm{BH}_{3}(20 \mathrm{mmol})$ in 20 ml of THF was added under Ar dropwise to a soln. of 10 mmol of amino alcohol ($\mathbf{8}, \mathbf{1 1}$, or $\mathbf{1 2}$) dissolved in 10 ml of THF at -20°. The resulting mixture was warmed to -5°, and stirring was continued at this temp. for 16 h , before 8 mmol of O benzyloxime in 10 ml of THF was added dropwise. The resulting soln. was stirred at 30° for 48 h (monitored by TLC) and was decomposed by the slow addition of 2 m HCl . Crude product was purified by bulb-to-bulb distillation to yield amines in $71-91 \%$ yields with $90-97 \%$ ee.

Procedure B. To a soln. of amino alcohol (0.1 mmol of $\mathbf{8}, \mathbf{1 1}$, or $\mathbf{1 2}$) in 20 ml of THF was added 1 mmol of $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$ complex at r.t., and the resulting mixture was stirred at this temp. for 12 h . To this mixture was added a soln. of the O-benzyloxime (5 mmol) in 10 ml of THF over 1 h . This was followed by stirring at 35° until the starting material disappeared on TLC, and then under reflux for 48 h . After the usual workup, amines were obtained in $73-87 \%$ yields with $41-64 \%$ ee.

Procedure C. To a soln. of amino alcohol (0.1 mmol of $\mathbf{8}, \mathbf{1 1}$, or $\mathbf{1 2}$) and trimethyl borate (0.5 mmol) in 20 ml THF was added $1 \mathrm{mmol} \mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$ complex at r.t., and the resulting mixture was stirred at this temp. for 12 h . To this mixture was added a soln. of the O-benzyloxime (5 mmol) in 10 ml of THF over 2 h . This was followed by stirring at 35°, until the starting material disappeared on TLC, and then under reflux for 48 h . After the usual workup, amines were obtained in $71-88 \%$ yields with $57-88 \%$ ee.
(S)-1-(Furan-2-yl)ethanamine ((S)-4a). B.p: 80-95 $/ 11$ Torr (bulb-to-bulb distillation). $[\alpha]_{\mathrm{D}}^{20}=-24.9(c=$ 1, EtOH) [5b]: $[\alpha]_{\mathrm{D}}^{20}=+22.7(c=1, \mathrm{EtOH})$ for 92% ee (R)-enantiomer). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.38$ $(d, J=7.5,3 \mathrm{H}) ; 1.63(s, 2 \mathrm{H}) ; 4.03(q, J=7.5,1 \mathrm{H}) ; 6.01-6.10(m, 1 \mathrm{H}) ; 6.26-6.33(m, 1 \mathrm{H}) ; 7.28-7.33$ ($m, 1 \mathrm{H}$).
(R)-1-(Furan-2-yl)ethanamine $((R)-4 a) \cdot[\alpha]_{\mathrm{D}}^{20}=+24.6(c=1, \mathrm{EtOH})$.
(S)-1-(Furan-2-yl)propanamine ((S)-4b). B.p: 85-100 $/ 12$ Torr (bulb-to-bulb distillation) [18]: 63-65\% 7 Torr). $[\alpha]_{\mathrm{D}}^{20}=-23.4\left(c=1, \mathrm{CHCl}_{3}\right)$. IR: 3380, $3110,2980,2875,1590,1500 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.39$ $(t, J=7.4,3 \mathrm{H}) ; 1.61(s, 2 \mathrm{H}) ; 1.46-1.90(m, 2 \mathrm{H}) ; 3.81(t, J=7.4,1 \mathrm{H}) ; 6.05-6.16(m, 1 \mathrm{H}) ; 6.23-6.33(m, 1 \mathrm{H})$; $7.26-7.36(m, 1 \mathrm{H})$. The spectroscopic data are in agreement with the data in [19].
(R)-1-(Furan-2-yl)propanamine $((R)-\mathbf{4 b}) \cdot[\alpha]_{\mathrm{D}}^{20}=+23.7(c=1$, EtOH).
(R)-1-(Furan-2-yl)-2-methylpropanamine ($(R)-4 \mathrm{c})$. B.p: 90-105 $/ 12$ Torr (bulb-to-bulb distillation) ([20]: $68-69^{\circ} / 9$ Torr $) .[\alpha]_{\mathrm{D}}^{20}=-9.2(c=1, \mathrm{EtOH})\left([5 \mathrm{~b}]:[\alpha]_{\mathrm{D}}^{20}=-7.8(c=1, \mathrm{EtOH})\right.$ for 92.5% ee $)$. IR: 3390, 3110 , 2990, 2885, 1600, 1510, 1470. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.91(d d, J=7.2,6 \mathrm{H}) ; 1.46(s, 2 \mathrm{H}) ; 1.76-2.21$ $(m, 1 \mathrm{H}) ; 3.53-3.78(m, 1 \mathrm{H}) ; 6.03-6.16(m, 1 \mathrm{H}) ; 6.23-6.34(m, 1 \mathrm{H}) ; 7.23-7.38(m, 1 \mathrm{H})$.
(S)-1-(Furan-2-yl)-2-methylpropanamine $((S)-4 \mathbf{c}) .[\alpha]_{\mathrm{D}}^{20}=+9.6(c=1, \mathrm{EtOH})$.
(R)-1-(Furan-2-yl)-2,2-dimethylpropanamine ((R)-4d). B.p: 95-110\%/12 Torr (bulb-to-bulb distillation). $[\alpha]_{\mathrm{D}}^{20}=+7.2\left(c=1, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.26(s, 9 \mathrm{H}) ; 1.50(s, 2 \mathrm{H}) ; 3.73(s, 1 \mathrm{H}) ; 6.06-6.16$
$(m, 1 \mathrm{H}) ; 6.26-6.41(m, 1 \mathrm{H}) ; 7.28-7.41(m, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 20.8 ; 36.9 ; 103.5 ; 109.3 ; 138.6$; 156.5. Combustion analysis of this compound was carried out with its N-benzoyl derivative.
(S)-1-(Furan-2-yl)-2-phenylethanamine ((S)-4e). B.p: 140-150\%/0.1 Torr (bulb-to-bulb distillation) ([21]: $167-168 \% .4$ Torr) $\cdot[\alpha]_{\mathrm{D}}^{20}=-18.8(c=0.1, \mathrm{EtOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.14(s, 2 \mathrm{H}) ; 2.73-3.28$ $(m, 2 \mathrm{H}) ; 4.03-4.31(m, 1 \mathrm{H}) ; 6.03-6.13(m, 1 \mathrm{H}) ; 6.25-6.36(m, 1 \mathrm{H}) ; 7.05-7.46(m, 6 \mathrm{H})$.
(S)-(Furan-2-yl)(phenyl)methanamine ((S)-4f). B.p: $125-135^{\circ} / 12$ Torr (bulb-to-bulb distillation). $[\alpha]_{\mathrm{D}}^{20}=$ $-23.2\left(c=1, \mathrm{CHCl}_{3}\right)\left([5 \mathrm{~b}][19]:[a]_{\mathrm{D}}^{20}=+18.3(c=1, \mathrm{EtOH})\right.$ for (R)-enantiomer). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 1.85 ($s, 2 \mathrm{H}$); 5.11 (br. $s, 1 \mathrm{H}$); 6.01-6.13 ($m, 1 \mathrm{H}$); 6.20-6.33 ($m, 1 \mathrm{H}$); 7.16-7.49 ($m, 6 \mathrm{H}$).
(R)-(Furan-2-yl)(phenyl)methanamine $((R)-4 f)$. Yield $91 \% .[\alpha]_{\mathrm{D}}^{20}=+22.1\left(c=1, \mathrm{CHCl}_{3}\right)$.
(S)-(3,4-Dimethoxyphenyl) (furan-2-yl)methanamine $((S)-\mathbf{4 g}) .[\alpha]_{\mathrm{D}}^{20}=+8.6 \quad\left(c=0.5, \mathrm{CHCl}_{3}\right)$. IR: 3380, $3105,3000,2820,1590,1510,1460 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.03(s, 2 \mathrm{H}) ; 3.83(s, 6 \mathrm{H}) ; 5.08(s, 1 \mathrm{H}) ; 6.02-$ $6.13(m, 1 \mathrm{H}) ; 6.21-6.36(m, 1 \mathrm{H}) ; 6.71-7.0(m, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 56.3 ; 56.5 ; 58.8 ; 104.3$; 110.2; 113.8; 114.9; 120.6; 135.8; 140.5; 145.7; 147.3; 157.7. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3}: \mathrm{C} 66.94, \mathrm{H} 6.48, \mathrm{~N} 6.00$; found: C 66.88, H 6.33, N 5.83.
(R)-(3,4-Dimethoxyphenyl)(furan-2-yl)methanamine $((R)-\mathbf{4 g}) \cdot[\alpha]_{\mathrm{D}}^{20}=-9.3\left(c=0.5, \mathrm{CHCl}_{3}\right)$.

General Procedure for N -Protection. The amine ($2.5 \mathrm{mmol} ; \mathbf{4 a - 4 g}$) was dissolved in 5 ml of pyridine, and to this soln. was added $\mathrm{PhCOCl}(0.35 \mathrm{ml})$ dropwise at 0°. The mixture was stirred at r.t. for 2 h , then $6 \mathrm{~N} \mathrm{HCl}(4 \mathrm{ml})$, $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{ml})$, and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ were added. The org. layer was separated, and washed with brine and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Crude product was purified by crystallization or CC.
(S)-N-[l-(Furan-2-yl) ethyl]benzamide ((S)-5a). Yield $93 \% .[\alpha]_{\mathrm{D}}^{20}=-51.6\left(c=1, \mathrm{CHCl}_{3}\right)$. IR (KBr): 3450, $3090,2910,1660,1510,1480 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $1.50(d, J=7.1,3 \mathrm{H}) ; 5.30-5.33(q, J=7.1,1 \mathrm{H}) ; 6.14$ $(d, J=2.9,1 \mathrm{H}) ; 6.23$ (br. $s, 1 \mathrm{H}) ; 6.41(d, J=7.0,1 \mathrm{H}) ; 7.25-7.75(m, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 20.1; 43.7; 106.2; 110.6; 127.4; 128.9; 131.9; 134.8; 142.3; 155.8; 166.9. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2}$: C 72.54, H 6.09, N 6.51; found: C 72.71, H 6.24, N 6.32 .
(R)-N-[1-(Furan-2-yl)ethyl]benzamide ((R)-5a). Yield 88\%. M.p: 109-111 $.[a]_{\mathrm{D}}^{20}=+52\left(c=1, \mathrm{CHCl}_{3}\right)$.
(S)-N-[1-(Furan-2-yl)-propyl]benzamide ((S)-5b). Yield 91\%. M.p: $52-53^{\circ} .[a]_{\mathrm{D}}^{20}=+84.3\left(c=1, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.96(t, J=7.1,3 \mathrm{H}) ; 1.78-2.13(m, 2 \mathrm{H}) ; 5.11-5.38(m, 1 \mathrm{H}) ; 6.16-6.36(m, 2 \mathrm{H})$; $6.42-6.71$ (br. s, 1 H); 7.28-7.58, 7.70-7.86 ($m, 6 \mathrm{H}$). Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}: \mathrm{C} 73.34, \mathrm{H} 6.59, \mathrm{~N} 6.11$; found C 73.56, H 6.71, N 6.23 .
(R)-N-[1-(Furan-2-yl)propyl]benzamide ((R)-5b). Yield $87 \% .[\alpha]_{\mathrm{D}}^{20}=-81.2\left(c=1, \mathrm{CHCl}_{3}\right)$.
(R)-N-[I-(Furan-2-yl)-2-methylpropyl]benzamide ((R)-5c). Yield 92%. M.p. $79-80^{\circ} .[\alpha]_{\mathrm{D}}^{20}=+81.8(c=1$, CHCl_{3}). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.85(d, J=6.7,3 \mathrm{H}) ; 0.95(d, J=6.7,3 \mathrm{H}) ; 2.10($ sept., $J=6.9,1 \mathrm{H}) ; 5.10$ $(t, J=7.7,1 \mathrm{H}) ; 6.11(d, J=2.5,1 \mathrm{H}) ; 6.21(t, J=2.8,1 \mathrm{H}) ; 6.40(d, J=8.0,1 \mathrm{H}) ; 7.10(s, 1 \mathrm{H}) ; 7.18-7.71$ ($m, 5 \mathrm{H}$). ${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 19.2; 19.6; 32.8; 53.6; 107.3; 110.5; 127.4; 128.9; 131.9; 134.9; 142.1; 153.9; 167.2. Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$: C 74.05, H 7.04, N 5.76 ; found: C 74.23, H 6.92, N 5.51.
(R)-N-[1-(Furan-2-yl)-2,2-dimethylpropyl]benzamide ((R)-5d). Yield 86\%. M.p. 108-109 $.[\alpha]_{\mathrm{D}}^{20}=+5.2$ $\left(c=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.00(s, 9 \mathrm{H}) ; 5.11(d, J=9.8,1 \mathrm{H}) ; 6.13(d, J=2.9,1 \mathrm{H}) ; 6.23$ $(d d, J=1.8,2.8,1 \mathrm{H}) ; 6.59(d, J=9.1,1 \mathrm{H}) ; 7.21(s, 1 \mathrm{H}) ; 7.22-7.60(m, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 27.1$; 36.4; 56.3; 108.7; 110.6; 127.8; 129.9; 130.5; 135.2; 141.8; 153.5; 172.2. MS: 257 (M^{+}), 242, 202, 200, 121, 106, 105 (100), 77, 69, 57, 51. Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$: C 74.68, H 7.44, N 5.44; found: C 74.61, H 7.32, N 5.26 .
(S)-N-[l-(Furan-2-yl)-2-phenylethyl]benzamide ((S)-5e). Yield 88\%. M.p. 112-113. $\cdot[\alpha]_{\mathrm{D}}^{20}=-4.7(c=0.4$, CHCl_{3}). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $3.16-3.25(m, 2 \mathrm{H}) ; 5.28-5.68(m, 1 \mathrm{H}) ; 6.01-6.13(m, 1 \mathrm{H}) ; 6.18-6.30$ $(m, 1 \mathrm{H}) ; 6.38-6.61(m, 1 \mathrm{H}) ; 6.96-7.83(m, 11 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 41.2 ; 53.8 ; 104.2 ; 101.7$; 125.7; 127.4; 128.6; 158.7; 130.7; 133.8; 137.7; 140.1; 154.4; 167.8. Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{2}$: C 78.33, H 5.88, N 4.81 ; found: C 78.51, H 5.78, N 4.98.
(S)-N- $/($ Furan-2-yl $)$ (phenyl)-methyl $]$ benzamide $((S)-5 f)$. Yield 87%. M.p. $136-137^{\circ} .[\alpha]_{\mathrm{D}}^{20}=-32.7$ ($c=$ $0.8, \mathrm{CHCl}_{3}$). IR: $3450,2910,3090,1660,1510,1480 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.21-6.23(m, 1 \mathrm{H}) ; 6.3-6.4$ $(m, 1 \mathrm{H}) ; 6.5(d, J=9,1 \mathrm{H}) ; 6.83-7.15$ (br. $s, 1 \mathrm{H}) ; 7.08-7.58(m, 11 \mathrm{H}) .{ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 55.1; 103.8; 109.4; 126.2; 127.2; 128.6; 131.5; 133.4; 136.6; 139.8; 156.8; 167.6. MS: 277 (M^{+}), 248, 172, 157, 156, 144, 128, 105 (100), 77, 51. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{2}$: C 77.96, H 5.45, N 5.05 ; found: C 78.12, H $5.67, \mathrm{~N} 5.37$.
(S)-N-[(3,4-Dimethoxyphenyl) (furan-2-yl)methyl]benzamide ((S)-5g). Yield 87\%. M.p. 150-152 $\cdot[\alpha]_{\mathrm{D}}^{20}=$ $-3.8\left(c=0.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.77(s, 3 \mathrm{H}) ; 3.79(s, 3 \mathrm{H}) ; 6.21(d, J=3.2,1 \mathrm{H}) ; 6.32$ $(d d, J=1.9,3.2,1 \mathrm{H}) ; 6.42(d, J=8.1,1 \mathrm{H}) ; 6.70-6.81(m, 4 \mathrm{H}) ; 7.31$ (br. $s, 1 \mathrm{H}) ; 7.40-7.72(m, 5 \mathrm{H}){ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 51.8; 56.3; 108.3; 110.8; 111.2; 111.6; 119.6; 127.5; 129.1; 132.2; 132.6; 134.5; 142.9; 149.1; 149.5; 153.9; 166.8. MS: $337\left(100, M^{+}\right), 308,232,217,216,204,201,188,173,164,105,94,77,51$. Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4}$: C 71.20, H 5.68, N 4.15 ; found: C 71.36, H 5.81, N 4.36 .

General Procedure for the Oxidation of the Furan Ring. Ozonolysis. The soln. of the amine (4a and $\mathbf{4 f}$) or N benzoylamine ($\mathbf{5 a}$ and $\mathbf{5 f}$) (3 mmol) in 25 ml of MeOH was cooled to -78°, and O_{3} was passed through this soln. for 15 min (blue color). Then, Ar was bubbled at -78° to remove excess O_{3}. The soln. was allowed to warm to r.t. and concentrated to give the crude oil, which was purified by crystallization or by CC.

Oxidation with $\mathrm{RuO}_{2} / \mathrm{NaIO}_{4}$. To the mixture of 29.8 mmol of $\mathrm{NaIO}_{4}, 13 \mathrm{ml}$ of $\mathrm{H}_{2} \mathrm{O}, 19 \mathrm{ml}$ of MeCN , and 13 ml of CCl_{4} was added $0.066 \mathrm{mmol} \mathrm{RuO}{ }_{2} \cdot \mathrm{H}_{2} \mathrm{O}$; this was followed by stirring for 30 min . Then, 1.8 mmol of amide was added, and the mixture was stirred for 2 h . The org. layer was separated, and the aq. phase was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{ml})$ and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was dissolved in AcOEt $(20 \mathrm{ml})$ and filtered through a small pad of Celite. After evaporation of the solvent, the product was purified by crystallization.
(S)-N-Benzoylalanine $\left((S)\right.$-6a). Yield $91 \%\left(\mathrm{O}_{3}\right), 88 \%\left(\mathrm{RuO}_{2}\right)$. M.p. $148-149^{\circ} .[\alpha]_{\mathrm{D}}^{20}=+33(c=1,0.73 \mathrm{M}$ $\mathrm{KOH})\left([4 \mathrm{c}]:[\alpha]_{\mathrm{D}}^{20}=+32.6\left(\mathrm{KOH}\right.\right.$ in $\left.\left.\mathrm{H}_{2} \mathrm{O}\right)\right)$.
(R)-N-Benzoyl(phenyl)glycine $\left((R)\right.$-6b). Yield $89 \%\left(\mathrm{O}_{3}\right), 83 \%\left(\mathrm{RuO}_{2}\right)$. M.p. $196-197^{\circ} \cdot[\alpha]_{\mathrm{D}}^{20}=-110(c=$ $0.7, \mathrm{EtOH})\left([5 \mathrm{a}][22]: 196-198^{\circ},[\alpha]_{\mathrm{D}}^{20}=-119.3(c=1.2, \mathrm{EtOH})\right)$.

The purities and chemical properties of (S)-alanine (S)-7a (82%), (R)-alanine $(R)-\mathbf{7 a}(81 \%),(S)$ phenylglycine (S)-7b (82%), and (R)-phenylglycine $(R)-7 \mathbf{b}$ (78%) were in agreement with those of commercially available products.

Synthesis of (S)-Proline-N-(Ethoxycarbonyl)proline Methyl Ester (S)-14. (S)-Proline ($5.75 \mathrm{~g}, 50 \mathrm{mmol}$) was dissolved in 80 ml of dry MeOH . Then, $6.6 \mathrm{~g}(50 \mathrm{mmol})$ of anh. $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added, followed by the addition of $12.5 \mathrm{~g}(110 \mathrm{mmol})$ of ClCOOEt (over 20 min at r.t.). The mixture was stirred for an additional 12 h at r.t., and, then, MeOH was evaporated, 25 ml of $\mathrm{H}_{2} \mathrm{O}$ was added and extracted with $\mathrm{CHCl}_{3}(3 \times 50 \mathrm{ml})$. The combined org. layers were washed with brine $(2 \times 25 \mathrm{ml})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. After evaporation of the solvent under reduced pressure, flash $\mathrm{CC}(\mathrm{AcOEt}$ /hexane $1: 5$ to $1: 3)$ was performed to obtain the desired compound as yellow viscous oil [12a].

Synthesis of Ethyl 2-(2,3-Dihydro-2-hydroxy-1H-inden-2-yl)pyrrolidine-1-carboxylate ((S)-15). To a suspension of Mg turnings ($1.44 \mathrm{~g}, 60 \mathrm{mmol}$) in dry THF (10 ml) was added dropwise, from a dropping funnel, a soln. of 1,2-bis(chloromethyl)benzene ($1.5 \mathrm{~g}, 8.57 \mathrm{mmol}$) in 125 ml of THF over a period of 4 h (at the beginning of this procedure, a small amount of I_{2} was added, and the mixture was heated gently from time to time during this $4-\mathrm{h}$ period). The mixture was stirred 3 h at r.t., and then $(S) \mathbf{- 1 4}(0.68 \mathrm{~g}, 3.43 \mathrm{mmol})$ in 50 ml of THF was added at r.t. and stirred for 12 h . Finally, sat. $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{ml})$ was added. After the separation of the phases, the $\mathrm{H}_{2} \mathrm{O}$ phase was extracted with $\mathrm{CHCl}_{3}(3 \times 40 \mathrm{ml})$. The combined org. extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Further purification was performed by flash CC (AcOEt/hexane 1:1) to give (S) -15.

Synthesis of (S)-2,3,3', 4', $5^{\prime}, 6^{\prime}, 7,7^{\prime}$ a-Octahydrospiro[1H-indene-2,1'[1H]pyrrolo[1.2-c][1.3]oxazol]-3'-one $((S)-\mathbf{1 6})$. Compound $(S) \mathbf{- 1 5}(425 \mathrm{mg}, 1.54 \mathrm{mmol})$ and $778 \mathrm{mg}(13.9 \mathrm{mmol})$ of KOH were mixed in MeOH $(15 \mathrm{ml})$ and refluxed for 1 h . After cooling the mixture, 15 ml of CHCl_{3} was added, followed by washing with 5% NaOH . The org. layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Flash CC (hexane/AcOEt $2: 1)$ was performed to afford 220 mg of $(S)-\mathbf{1 6}$, which was then recrystallized from hexane $/ \mathrm{Et}_{2} \mathrm{O} .[\alpha]_{\mathrm{D}}=-100.1$ $\left(c=0.4, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.40-1.51(m, 1 \mathrm{H}) ; 1.73-1.85(m, 2 \mathrm{H}) ; 1.99-2.07(m, 1 \mathrm{H})$; 3.15 (br. $s, 3 \mathrm{H}) ; 3.25(d, J=16.4,1 \mathrm{H}) ; 3.62(\mathrm{~m}, 2 \mathrm{H}) ; 3.68(d d, J=4.5,10.1,1 \mathrm{H}) ; 7.18(s, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 25.6 ; 28.2 ; 41.1 ; 46.5 ; 47.3 ; 68.4 ; 89.4 ; 124.8 ; 125.0 ; 127.5 ; 127.6 ; 139.6 ; 139.8 ; 161.4 . \mathrm{MS}: 70$ (100), 78, 104, 115, 128, $229\left(M^{+}\right), 230\left([M+1]^{+}\right)$.

Synthesis of (S)-2,3-Dihydro-2-pyrrolidin-2-yl-1H-indan-2-ol (S)-11. Compound (S)-16 (70 mg, 0.3 mmol) and $134.4 \mathrm{mg}(2.4 \mathrm{mmol})$ of KOH were mixed in $\mathrm{MeOH}(20 \mathrm{ml})$ and refluxed for 4 h . After cooling the mixture, 20 ml of CHCl_{3} was added, followed by washing with $5 \% \mathrm{HCl}$. The org. layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Flash CC (hexane/AcOEt $3: 1$) was performed to afford $48 \mathrm{mg}(79 \%)$ of (S)-11. Product. M.p. $71-73^{\circ} .[\alpha]_{\mathrm{D}}-63.4\left(c=0.3, \mathrm{CHCl}_{3}\right)$ [12a].

REFERENCES

[1] a) W. S. Zhou, Z. H. Lu, Y. M. Xu, L. Y. Liao, Z. M. Wang, Tetrahedron 1999, 55, 11959; b) M. Cinfolini, C. Y. W. Hermann, Q. Dong, T. Shimizu, S. Swaminathan, N. Yi, Synlett 1998, 105; c) W. P. Chen, S. M. Roberts, J. Chem. Soc. Perkin Trans. I 1999, 103.
[2] a) T. Shono, Y. Matsumura, J. Tsubata, Chem. Lett. 1981, 1121; b) D. Ben-I Shia, I. Satatu, Z. Bernstein, Tetrahedron Lett. 1976, 32, 1571; c) P. S. Bailey, 'Ozonation in Organic Chemistry', Academic Press, New York, 1982, Vol. 2, Chapt. 6; d) M. Kasai, H. Ziffer, J. Org. Chem. 1983, $48,2346$.
[3] a) N. Yi, M. A. Cinfolini, Tetrahedron Lett. 1995, 36, 6595; b) C. F. Yana, Y. M. Xu, L. X. Liao, W. S. Zhou, Tetrahedron Lett. 1998, 39, 9227; c) O. Achmatowicz, P. Bukowski, B. Szechnev, Z. Zwierzchowska, A. Zamojski, Tetrahedron 1971, 27, 1973; d) Y. Lefebvre, Tetrahedron Lett. 1972, 133.
[4] a) W. S. Zhou, Z. H. Lu, Z. M. Wang, Tetrahedron Lett. 1991, 32, 1467; b) W. S. Zhou, Z. H. Lu, Z. M. Wang, Tetrahedron 1993, 49, 2641; c) A. P. Terent'ev, R. A. Gracheva, L. F. Titova, Zh. Obshch. Khim. 1964, 34, 5136; d) D. G. Drneckhammer, C. F. Barbas III, K. Nozaki, C. H. Wang, C. Y. Wood, M. A. Cinfolini, J. Org. Chem. 1988, 53, 1607.
[5] a) G. Alvaro, G. Martelli, D. Savoia, A. Zuffoli, Synthesis 1998, 1773; b) L. Shikui, M. Aigiao, W. Lanjun, J. Yaozhong, Synth. Commun. 1993, 23, 2485; c) N. Irako, Y. Hamada, T. Shioiri, Tetrahedron 1995, 51, 46; d) G. L. Liu, W. H. Hu, J. G. Deng, A. Q. Mi, Y. Z. Jiang, Acta Chim. Sinica 1994, 52, 917; e) S. Kobayashi, H. Ishitani, Chem. Rev. 1999, 99, 1069.
[6] M. L. Bushey, M. H. Hankaas, G. A. O'Doherty, J. Org. Chem. 1999, 64, 2984.
[7] G. S. Currie, M. G. B. Drew, L. M. Harwood, D. J. Hughes, R. W. A. Luke, R. J. Vickers, J. Chem. Soc. Perkin Trans. 1 2000, 2982.
[8] a) A. S. Demir, Pure Appl. Chem. 1997, 69, 105; b) A. S. Demir, C. Tanyeli, A. Cagyr, N. M. Tahir, D. Ulku, Tetrahedron: Asymmetry 1998, 9, 1035; c) A. S. Demir, C. Tanyeli, O. Sesenoglu, S. Demic, Tetrahedron Lett. 1996, 37, 407; d) A. S. Demir, O. Sesenoglu, Z. Gerçek-Arkın, Tetrahedron: Asymmetry 2001, 12, 2309.
[9] a) G. Ocskay , L. Wargha, Tetrahedron 1958, 2, 140; b) W. Borsche, H. Leditschke, K. Lange, Chem. Ber. 1938, 5, 62; c) W. Gruber, Can. J. Chem. 1953, 31, 19; d) H. Gilman, N. O. Calloway, J. Am. Chem. Soc. 1933, 55, 4197.
[10] a) Q. C. Zhu, R. O. Hutchins, Org. Prep. Proced. Int. 1994, 26, 193; b) B. R. James, Chem. Ind. (Dekker) 1995, 62, 167; c) A. Johansson, Cont. Org. Syn. 1996, 393; d) M. A. Yurovskaya, A. V. Karchava, Tetrahedron: Asymmetry 1998, 9, 3331.
[11] a) S. Itsuno, Y. Sakurai, K. Ito, A. Hirao, S. Nakahama, Bull. Chem. Soc. Jpn. 1987, 395; b) S. Itsuno,Y. Sakurai, K. Shimizu, K. Ito, J. Chem. Soc., Perkin Trans. 1 1990, 1859; c) T. Sakito, Y. Yoneyoshi, G. Suzukamo, Tetrahedron Lett. 1988, 29, 223; d) A. K. Ghosh, S. P. McKee, W. M. Sanders, Tetrahedron Lett. 1991, 32, 711.
[12] a) A. S. Demir, C. Tanyeli, I. Mecitoglu, V. Gulbeyaz, Tetrahedron: Asymmetry 1996, 7, 3359; b) A. S. Demir, H. Hamamci, F. Doganel, E. Ozgul, J. Mol. Catal. B: Enzymatic 2000, 9, 157; c) A. S. Demir, H. Aksoy-Çam, N. Çamkerten, H. Hamamci, F. Doganel, Turkish J. Chem. 2000, 24, 141; d) E. J. Corey, C. J. Helal, Angew. Chem., Int. Ed. 1998, 37, 1986; e) E. J. Corey, R. K. Bakshi, S. Shibata, J. Am. Chem. Soc. 1987, 109, 5551; f) E. J. Corey, R. K. Bakshi, C. P. Chen, V. K. Singh, J. Am. Chem. Soc. 1987, 109, 7925; g) E. J. Corey, Pure Appl. Chem. 1990, 62, 1209.
[13] a) A. S. Demir, I. M. Akhmedov, C. Tanyeli, Z. Gerçek, R. A. Gadzhili, Tetrahedron: Asymmetry 1997, 8, $753 ;$ b) A. S. Demir, I. M. Akhmedov, O. Sesenoglu, O. Alpturk, S. Apaydyn, Z. Gerçek, N. Ibrahimzade, J. Chem. Soc., Perkin Trans. 1 2001, 1162.
[14] a) P. H. J. Carlsen, T. Katsuki, V. S. Martin, K. B. Sharpless, J. Org. Chem. 1981, 46, 3936; b) N. Xi, M. A. Ciufolini, Tetrahedron Lett. 1995, 36, 6595.
[15] Enraf-Nonius (1993) CAD-4 EXPRESS, Version 1.1, Enraf-Nonius Delft, The Netherlands.
[16] G. M. Sheldrick, SHELXL97 and SHELXS97, University of Göttingen, Germany, 1997.
[17] A. L. Spek, PLATON, University of Utrecht, The Netherlands, 2000.
[18] B. L. Emling, J. E. Beatty, J. R. Stevens J. Am. Chem. Soc. 1949, 71, 703.
[19] Y-H. Kuo, K-S. Shih, Chem. Pharm. Bull. 1991, 39, 183.
[20] A. P. Terent'ev, R. A. Gracheva, Zh. Obshch. Khim. 1964, 34, 1513.
[21] J. M. Grisar, G. P. Claxton, N. L. Wiech, J. Med. Chem. 1976, 19, 365.
[22] K. Harda, Y. Nakajima, Bull. Chem. Soc. Jpn. 1974, 47, 2911.

[^0]: ${ }^{1}$) Authors responsible for the X-ray crystal-structure analysis.

[^1]: ${ }^{2}$) The synthesis and application of the amino alcohols $\mathbf{9 - 1 1}$ in assymmetric syntheses was reported for the first time at the 35th IUPAC Congress, Istanbul, Turkey, August 14-19, 1995.

