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Abstract:  The reaction of qninones with in situ generated acyl- or carboxamido radicals provides a direct route to the 

synthesis•facylhydr•quin•nesn•taccessiblebytheph•t••hemicalreacti•n•fquin•neswithald•hydes. O 1998 Elsevier Science Ltd. 

All rights reserved. 

The synthesis of acylhydroquinones via the photochemically mediated reaction of quinones and 

aldehydes provides a direct and convenient synthetic method. 1 This method has the advantage of atom economy 

and is an environmentally benign alternative to the use of Friedel-Crafts reactions. 2 Although this method works 

well with aromatic and aliphatic aldehydes, it could not be extended to the synthesis of the analogous 

carboxamides 1 by use of substituted formamides. In the context of our interest in developing flexible routes to 

the pyrrolobenzodiazepine skeleton 2, 3 we recently explored the reactions of monoamides of oxalic acid as 

precursors to acyl radicals. 
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In contrast to the conventional methods for acyl radical generation such as the reaction of 

phenylselenoesters with organotin reagents 4 and the carbonylation of alkyl radicals, 5 the 

synthesis of acyl radicals from acids via the persulfate oxidation is a comparatively unexplored 

area. The formation of alkyl radicals from simple carboxylic acids using ammonium persulfate 

has good precedent. 6 Minisci had previously reported that simple monoamides of oxalic acid react 

with protonated heterocyclic systems in methylene chloride to afford heterocyclic carboxamides. 7 

Sakamoto reported that pyruvic acid reacted with substituted pyrimidines. 8 Unfortunately, the 

application of these conditions to the reaction of pyruvic acid with benzoquinone led to a low yield 

of the desired acylhydroquinone. The persulfate reaction parameters which were varied included 

solvent, reaction time, equivalents of acid relative to equivalents of quinone and the amount of 

silver catalyst used. Minisci used an excess of the carboxylic acid component in his reactions 

with heterocyclic systems. In our reactions with benzoquinone, the best yields were obtained 

with 2-5 equivalents of quinone per equivalent of acid. Both acetonitrile and methylene chloride 

were tried as cosolvents for this reaction. The use of the homogeneous solvent system 

(acetonitrile-water) led to better yields. The results of the reactions with pyruvic acid and other 
a-keto acids and a-carboxamido acids are illustrated below in Table 1. These reactions were 

conducted on a 1-10 millimole scale. 

Table i - The Synthesis of Acylhydroquinones by Persulfate Oxidation 
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The modest yield in the reaction of phenylpyruvic acid (entry 5) is probably due to 
competing decarbonylation of the resulting acyl radical to a benzyl radical. The dramatic 
difference between entries 6 and 7 may reflect the influence of steric hindrance on a reversible 
reaction. A similar observation was made by Minisci. 7 The failure of the reaction involving the 
monoester of oxalic acid is likely due to a competing decarboxylation reaction. Interestingly, 

Torssell and coworkers reported the successful addition of a carboalkoxy radical to 2- 
benzylnaphthoquinone. 9 

With the reactions conditions now well defined, our approach to the pyrrolobenzodiazepine 

system began with the preparation of amide acid 11. Amide acid 11 was readily synthesized from 
the methyl ester of proline in nearly 95% overall yield by the reaction with Bn02CCOC110 and 
triethylamine in methylene chloride followed by removal of the benzyl ester using catalytic 
hydrogenation (H2, Pd/C in EtOAc, 2 h).l 1 The reaction of acid 11 with 5 equivalents of 

benzoquinone using 1.2 equivalents of ammonium persulfate and a catalytic amount of silver 
nitrate afforded quinone carboxamide 12 in 62% isolated yield. 12 The reduction of quinone 12 

using catalytic hydrogenation (Pd/C, H2, EtOAc) followed by treatment of the resulting 
hydroquinone with ammonia in methanol at ambient temperature provided amide 13 in 77% 
yield. This compound cyclized to a bis-lactam upon treatment with silver oxide in ether. 
Dehydration (TFAA, Et3N) and reduction (H2, Pd/C) afforded compound 14.13 
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The convergent synthesis of tricyclic compound 14 is made possible by the efficient 
reaction of the amide acid 11 with benzoquinone. This radical reaction has the advantages of 

inexpensive reagents and convenient reaction conditions. The success of this key step will permit 
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considerable variation of substituenta on the aromatic ring subunit. The selective reduction of 

one of the lactams to the carbinol amine has already been described. 14 This method for the 

synthesis of acylhydroquinones compares favorably with the photochemical method and is more 

environmentally benign than the corresponding Friedel-Crafts reaction. 
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