Insect Growth Regulators. XVI ${ }^{1}$ Syntheses of Juvenoids with the 3,3-Dimethylcyclohexane System

Czeslaw Wawrzeńczyk and Stanislaw Lochyński
Institute of Organic and Physical Chemistry, Technical University, PL-50-370 Wrocław, Poland

(Received 14 June 1983. Revised 6 February 1984. Accepted 27 February 1984)

New cyclic juvenoids containing the 3,3-dimethylcyclohexane (esters 16, 18, 22, 26, and ethers $28 \mathbf{a}, \mathbf{b}$) or the 5,5-dimethyl-2-cyclohexene system (esters 15, 17, 21, 25, and ethers $27 \mathrm{a}, \mathrm{b}$) have been obtained by a several-step synthesis starting from dimedone (1). The compounds obtained exhibited morphogenetic activity against larvae of Dysdercus cingulatus and they were inactive on pupae of Tenebrio molitor.
(Keywords: Claisen rearrangement; gem-Dimethylcyclohexane derivatives; Juvenoids)

Insekten-Wachstumsregulatoren. XVI ${ }^{1}$. Synthesen von Juvenoiden mit dem 3,3-Dimethylcyclohexan-System
Ausgehend von Dimedon (1) wurden in mehrstufigen Synthesen neue, cyclische Juvenoide hergestellt, die das 3,3-Dimethylcyclohexan- (Ester 16, 18, 22, 26 und Ether 28 a, b) oder 5,5-Dimethyl-2-cyclohexen-System (Ester 15, 17, 21, 25 und Ether $27 a, b)$ enthalten. Die erhaltenen Verbindungen zeigen morphogenetische Aktivität gegenüber Larven von Dysdercus cingulatus und sind inaktiv gegenüber Puppen von Tenebrio molitor.

Introduction

One of the most important aims in studies on the effect of structural changes in analogs of insect juvenile hormones on their biological activities is to establish the "biologically active" conformation of juvenoids and thereby to estimate the shape of their biological receptor. It seems that comparative studies of biological activities of aliphatic juvenoids and their cyclic analogs could be very helpful for the solution of this problem. The activities of the latter compounds can be, in fact, ascribed only to
these conformations of aliphatic juvenoids which are forced by the presence of the cyclic system in the isoprenoid chain. Carrying out comparative studies of this type, we have synthesized cyclic juvenoids containing the cyclopentane ${ }^{2,3}$ or cyclohexane ${ }^{4}$ ring.

In this work we present the syntheses of further juvenoids with the cyclohexane system representing the cyclic analogs of the aliphatic juvenoids described earlier ${ }^{5,6}$ or synthesized by us ${ }^{7}$. Comparing the structures of both classes of juvenoids (Scheme 1), one can see that they differ in the structure of the terminal isoprenoid segment and that this segment in the cyclic structure is "rolled" in the cyclohexane or cyclohexene ring by junction of the carbon atoms $\mathrm{C}-11$ and C -14 in esters or $\mathrm{C}-7$ and $\mathrm{C}-10$ in ethers. This junction limits the flexibility of the isoprenoid chain and fixes the geometry of the $\mathrm{C}_{8}-\mathrm{C}_{9}, \mathrm{C}_{9}-\mathrm{C}_{10}$, and $\mathrm{C}_{10}-\mathrm{C}_{11}$ (in esters) or $\mathrm{C}_{4}-\mathrm{C}_{5}, \mathrm{C}_{5}-\mathrm{C}_{6}$, and $\mathrm{C}_{6}-\mathrm{C}_{7}$ bonds (in ethers) as s-cis, and the $\mathrm{C}_{7}{ }^{-}$ C_{8} (in esters) or $\mathrm{C}_{3}-\mathrm{C}_{4}$ bonds (in ethers) as s-trans.

Scheme 1

Results and Discussion
Starting materials for the direct synthesis of the juvenoid alcohols 7 and $\mathbf{8}$ were obtained from dimedone (1), the reaction sequence being shown in Scheme 2.

The α, β-unsaturated ketone $\mathbf{3}$ was prepared by the method of Frank and Hall ${ }^{8}$. Dimedone (1) was first converted into ethoxyketone 2 which was then reduced with LiAlH_{4} to give ketone 3 in 91% yield. Ketone $\mathbf{3}$ was reduced $\left(\mathrm{LiAlH}_{4}\right)$ to the allylic alcohol $\mathbf{4}$ which after Claisen rearrangement by the orthoacetate method ${ }^{9}$ (with ethyl orthoacetate) afforded the γ, δ-unsaturated ester 5. This compound was hydrogenated over Pd / C yielding the saturated ester 6 . Alcohols 7 and $\mathbf{8}$ were obtained by the reduction $\left(\mathrm{LiAlH}_{4}\right)$ of esters 5 and $\mathbf{6}$, respectively.

The first and the most numerous group of juvenoids, namely the esters 15-18, were obtained by the Wadsworth-Emmons reaction ${ }^{10}$ of ketones 13 or $\mathbf{1 4}$ (esters $\mathbf{1 5}$ and $\mathbf{1 7}$ from 13, or $\mathbf{1 6}$ and 18 from 14) with appropriate alkyl (diethylphosphono)acetates (s. Scheme 3).

Ketone $\mathbf{1 3}$ was obtained from alcohol 7 via tosylate 9 and bromide 11 which was used for alkylation of ethyl acetoacetate. Alkaline hydrolysis

Scheme 2

and subsequent decarboxylation of the intermediate keto ester afforded ketone 13 in 77% yield. Ketone 14 was obtained from alcohol $\mathbf{8}$ by the following reaction sequence: alcohol 8 was oxidized with pyridinium chlorochromate ${ }^{11}$ to aldehyde 20 which was subjected to the Wittig reaction with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOCH}_{3}$ to give the α, β-unsaturated ketone 12 (92%); the (E)-configuration of the double bond formed in 12 was confirmed by the IR $\left(970 \mathrm{~cm}^{-1}\right)$ and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra ($J=16 \mathrm{~Hz}$ for olefinic protons); ketone $\mathbf{1 2}$ was hydrogenated over Raney-nickel to ketone 14.
α, β-Unsaturated esters $\mathbf{1 5 - 1 8}$ were obtained as isomeric (E, Z) mixtures. Pure isomers were isolated by means of column chromatography. The (Z)-configuration was assigned to isomers for which the doublet from the methyl group at $\mathrm{C}-3$ was at higher field ($\delta=2.17 \mathrm{ppm}$) in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, and the (E)-configuration for those at lower field (2.42 ppm , deshielding effect of the ester group cis-oriented in relation to
the methyl group). The dienoic esters 21 and 22 [mixtures of isomers $(2 Z, 4 E)$ and $(2 E, 4 E)]$ were obtained from the reaction of aldehydes 19 or 20 with isopropyl 4-(diethylphosphono)-3-methyl-2-butenoate [mixture $(Z):(E)=48: 52$]. Pure isomers of these esters were isolated by

Scheme 3

$21 a, b$ a:2z 23,24
22a,b b: 2 E
12

$27 a, b$
$28 a, b$
$a: R^{1}=C l$
b: $R^{1}=$
确 $=$ t \quad a: $2 z$ 17,18: $R^{1}=i P r \quad$ b: 2 E 1

$25 \mathrm{a}, \mathrm{b} \quad \mathrm{a}: R^{1}=M e$ $26 \mathrm{a}, \mathrm{b} \quad \mathrm{b}: R^{1}=E t$

14

means of preparative column chromatography and the corresponding configurations were assigned based on the position of signals from the methyl group at C-3 and the olefinic proton $\mathrm{H}-4$ in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra. The signal of the methyl group for isomers $(2 Z, 4 E)$ occurred at 2.13 ppm and the multiplet of proton $\mathrm{H}-4$ at 7.84 ppm (deshielding effect of the ester group), whereas for isomers ($2 E, 4 E$) the corresponding signals were at 2.52 and $6.22-6.38 \mathrm{ppm}$.

The γ, δ-unsaturated esters $\mathbf{2 5 a} \mathbf{a}, \mathbf{b}$ and $\mathbf{2 6 a} \mathbf{a}, \mathbf{b}$ were also obtained from aldehydes 19 and 20 by the Grignard reaction with 1-propenylmagnesium
bromide [above 95% of the (E)-isomer] and subsequent Claisen rearrangement of alcohols $\mathbf{2 3}$ or $\mathbf{2 4}$ formed with methyl or ethyl orthoacetate.

Compounds 23-26 possess two chiral carbon atoms, each of them should occur as a pair of racemic diastereoisomers. Gas-chromatographic analysis (column 3 m length, 15% Carbowax 1000 on Chromosorb P, $130^{\circ} \mathrm{C}$) of alcohols $\mathbf{2 3}$ and 24 showed that these compounds are indeed the equimolar mixtures of diastereoisomers. This fact was also confirmed by the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{2 3}$ and 24 with the use of shift reagent $\mathrm{Eu}(T F C)_{3}$ applied for determination of enantiomeric purity. Changes of positions of signals from the gem-methyl groups were observed in these spectra. In the case of alcohol 24, whose "normal" (100 MHz) ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum exhibited only one six-proton singlet derived from these groups, the spectrum with $\mathrm{Eu}(T F C)_{3}$ (dose ca. 120 mg in 5% solution of 24 in CCl_{4}, $T M S$ as external standard) showed the presence of two pairs of singlets ($J=15 \mathrm{~Hz}$) indicating that four enantiomers, forming a pair of diastereoisomeric racemic mixtures, are involved. Alcohol 23, exhibiting two singlets from the gem-methyl groups in the 100 MHz NMR spectrum, showed two groups ($J=17 \mathrm{~Hz}$) four singlets each in the spectrum with the use of $\mathrm{Eu}(T M C)_{3}$.

Unfortunately, in the case of esters $25 \mathrm{a}, \mathrm{b}$ and $26 \mathrm{a}, \mathrm{b}$, neither gas chromatography nor application of $\mathrm{Eu}(T F C)_{3}$ for measurement of the ${ }^{1} \mathrm{H}$ NMR spectra $(100 \mathrm{MHz})$ afforded any data about the composition of mixtures of diastereoisomers. However, since starting compounds for the Claisen reaction, alcohols 23 and 24, are the mixtures of diastereoisomers, the products of this rearrangement are most certainly also such mixtures ${ }^{12,13}$.

The last group of juvenoids, the alkyl aryl ethers $27 \mathbf{a}, \mathbf{b}$ and $28 \mathbf{a}, \mathbf{b}$, were obtained by alkylation of potassium p-chloro- or p-ethylphenolates with tosylates $\mathbf{9}$ or $\mathbf{1 0}$.

The biological activity of the juvenoids obtained was tested on larvae of Dysdercus cingulatus and pupae of Tenebrio molitor. The results of tests showed that these compounds are moderately active on Dysdercus c. and inactive on Tenebrio m. Comparison of doses of aliphatic juvenoids and their cyclic analogs at which metamorphosis of insects is disturbed, indicates that the former compounds are about ten times more active than the latter ones.

More detailed results of biological investigations and conclusions therefrom will be the subject of a separate paper.

Experimental

The course of all reactions and the purity of products were controlled by means of thin-layer (TLC) and gas-liquid (GLC) chromatography. TLC was carried out on silica gel G (Merck). Chromatograms were developed with mixtures
of petroleum ether, ethyl ether and acetone in various ratios and detected with 20% ethanolic $\mathrm{H}_{2} \mathrm{SO}_{4}$. Preparative column chromatography was carried out on silica gel ($100-200$ mesh, Marchery-Nagel), the eluent being a petroleum etherethyl ether-acetone mixture (various ratios). GLC was performed on a Chromatron GCHF-18.3.4 apparatus using columns with 2 and 3 m length coated with 10% XE- 60 on Chromosorb G.

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded for $10 \% \mathrm{CCl}_{4}$ solutions on a 100 MHz Tesla BS-497 apparatus with HMDS as external standard. The IR spectra were taken for the same solutions on a Perkin-Elmer 621 spectrophotometer.

The starting material was commercial dimedone (1, 5,5-dimethyl-1,3cyclohexanedione) from POCh, m.p. $147-148^{\circ} \mathrm{C}$.

The experimental C, H values agree with the molecular formulas given.

3-Ethoxy-5,5-dimethyl-2-cyclohexen-1-one (2)

A mixture of dimedone ($1,50 \mathrm{~g}, 0.36 \mathrm{~mol}$), absolute ethanol ($68 \mathrm{ml}, 1.16 \mathrm{~mol}$), and p-toluenesulfonic acid (1.3 g) in benzene (400 ml) was heated with azeotropic removal of water until 1 reacted completely. A residue after evaporation of benzene was distilled in vacuo to afford $2(49.5 \mathrm{~g}, 82.5 \%)$, b.p. $86^{\circ} \mathrm{C}\left(1.33 \cdot 10^{2} \mathrm{~Pa}\right)$ Lit. ${ }^{8}$: b.p. $98^{\circ} \mathrm{C}\left(1.33 \cdot 10^{2} \mathrm{~Pa}\right)$, m.p. $57-58^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.34[\mathrm{~s}, 6 \mathrm{H}$, $\left.-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 1.65\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.34,2.49[2 \mathrm{~s}, 4 \mathrm{H}$, $\left.-\mathrm{CH}_{2}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}_{2}-\right], 4.18\left(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.46(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH}-$); $\operatorname{IR}\left(\mathrm{cm}^{-1}\right): 1660(\mathrm{~s}), 1610(\mathrm{~s})$.

5,5-Dimethyl-2-cyclohexen-1-one (3)

Ethoxyketone $2(49.5 \mathrm{~g}, 0.295 \mathrm{~mol})$ was reduced with $\mathrm{LiAlH}_{4}(3.6 \mathrm{~g}$, $0.095 \mathrm{~mol}) .10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ solution was used for hydrolysis. After normal working up and distillation, ketone $3\left(33.3 \mathrm{~g}, 91 \%\right.$), b.p. $70^{\circ} \mathrm{C} / 16 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4733$ (Lit. ${ }^{8}$: b.p. $75^{\circ} \mathrm{C} / 20 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4710$), was obtained. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.32[\mathrm{~s}, 6 \mathrm{H}$, $-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\mathrm{]}, 2.44-2.58\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CO}-,-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\right), 6.18(\mathrm{~d}$, $J=10 \mathrm{~Hz}, \quad$ split in $\mathrm{t}, \quad J=2 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad \mathrm{CH}=\mathrm{CH}-\mathrm{CO}-$), 7.04 (d, $J=10 \mathrm{~Hz}$, split in $\mathrm{t}, J=4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-\mathrm{CO}-)$ IR $\left(\mathrm{cm}^{-1}\right): 3050(\mathrm{~m})$, 1685 (s), 1610 (s).

5,5-Dimethyl-2-cyclohexen-1-ol (4)

Ketone $3(12.4 \mathrm{~g}, 0.1 \mathrm{~mol})$ was reduced with $\mathrm{LiAlH}_{4}(1.9 \mathrm{~g}, 0.05 \mathrm{~mol})$ in a standard manner. Alcohol 4 ($11.5 \mathrm{~g}, 91 \%$), b.p. $93^{\circ} \mathrm{C} / 26.67 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4745$, was obtained. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.21,1.28\left[2 \mathrm{~s}, 6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 4.38[\mathrm{~s}, 1 \mathrm{H}$, $-\mathrm{CH}(\mathrm{OH})-], 4.44[\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}(\mathrm{OH})], 4.91(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-) ;$ IR $\left(\mathrm{cm}^{-1}\right): 3330(\mathrm{~s}, \mathrm{~b}), 3040(\mathrm{~m}), 1650(\mathrm{~m}), 1280(\mathrm{~s}), 1050(\mathrm{~s}) . \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}$ (126.19).

Ethyl (5,5-dimethyl-2-cyclohexen-1-yl) acetate (5)
A mixture of alcohol $4(10.3 \mathrm{~g}, 0.08 \mathrm{~mol})$, ethyl orthoacetate $(65.0 \mathrm{~g}, 0.4 \mathrm{~mol})$, and propionic acid $(0.1 \mathrm{ml})$ was heated at $138^{\circ} \mathrm{C}$ with simultaneous distilling off ethanol for 36 h . Pure ester $5(13.2 \mathrm{~g}, 81 \%)$, b.p. $76^{\circ} \mathrm{C} / 1.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4578$, was obtained. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.18,1.21\left[2 \mathrm{~s}, 6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 1.50(\mathrm{t}$, $\left.J=7 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.33\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.70-5.88(\mathrm{~m}$, $2 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-$) $;$ IR $\left(\mathrm{cm}^{-1}\right): 3040(\mathrm{w}), 1730(\mathrm{~s}), 1650(\mathrm{~m}), 710(\mathrm{~s}) . \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$ (196.28).

Ethyl (3,3-dimethylcyclohexyl)acetate (6)

Ester $5(9.8 \mathrm{~g}, 0.05 \mathrm{~mol})$ in absolute ethanol $(100 \mathrm{ml})$ was hydrogenated over $10 \% \mathrm{Pd} / \mathrm{C}(2.0 \mathrm{~g})$. Ester $6(9.3 \mathrm{~g}, 95 \%)$, b.p. $102.5^{\circ} \mathrm{C} / 13.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4479$, was obtained. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.22,1.24\left[2 \mathrm{~s}, 6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 1.54(\mathrm{t}$, $\left.J=7 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.36\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; IR $\left(\mathrm{cm}^{-1}\right):$ 1730 (s). $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2}$ (198.30).

2-(5,5-Dimethyl-2-cyclohexen-1-yl)-ethanol (7)
2-(3,3-dimethylcyclohexyl)-ethanol (8)
Alcohols $\mathbf{7}$ and $\mathbf{8}$ were quantitatively obtained by reduction of esters $\mathbf{5}$ and $\mathbf{6}$, respectively, with LiAlH_{4}.

7: b.p. $90^{\circ} \mathrm{C} / 8 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4674 .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.17,1.22[2 \mathrm{~s}, 6 \mathrm{H}$, $\left.-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 3.88\left(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{OH}\right), 4.72-4.85(\mathrm{~m}, 2 \mathrm{H}$,
$\mathbf{C H}=\mathbf{C H}-) ; \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 3350(\mathrm{~s}), 1650(\mathrm{~m}), 1370(\mathrm{~s}), 1050(\mathrm{~s}), 690(\mathrm{~s}) . \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$ (154.24).
8. b.p. $99.5^{\circ} \mathrm{C} / 13.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4651$. $^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.20[\mathrm{~s}, 6 \mathrm{H}$, $\left.-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 3.76\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{OH}\right), 3.82\left(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{OH}\right)$; IR (cm^{-1}): 3350 (s), 1365 (s), 1050 (s). $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$ (156.26).

Tosylate of 2-(5,5-dimethyl-2-cyclohexen-1-yl)-ethanol (9)

Tosylate of 2-(3,3-dimethylcyclohexyl)-ethanol (10)
Tosyl chloride ($4.3 \mathrm{~g}, 0.022 \mathrm{~mol}$) was added to a cooled (ice and water) solution of alcohol $7(2.8 \mathrm{~g}, 0.018 \mathrm{~mol})$ in anhydrous pyridine (30 ml) and the mixture was stirred until 7 reacted completely (TLC). Then the mixture was pured into ice with the calculated amount of concentrated hydrochloric acid. The product was extracted with ethyl ether and the extracts were washed with water and dried over MgSO_{4}. A residue after evaporation of the solvent was purified by column chromatography (petroleum ether-acetone $19: 1$). Pure tosylate 9 ($4 \mathrm{~g}, 74 \%$), $n_{\mathrm{D}}^{20}=1.5094$, was obtained. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.12,1.18\left[2 \mathrm{~s}, 6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right]$, $2.74\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{3}\right), 4.31\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{O}-\right), 5.56-5.86(\mathrm{~m}, 2 \mathrm{H}$, $-\mathrm{CH}=\mathrm{CH}-), 7.58,8.0\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime},-\mathrm{C}_{6} \mathbf{H}_{4}-\right) ; \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 3040(\mathrm{w}), 1650$ (w), 1600 (m), 1500 (w), 1470 (s), 690 (s). $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S}(308.42)$.

Tosylate 10 was obtained analogously from alcohol 8 in 81% yield; $n_{\mathrm{D}}^{20}=1.5159 .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.14\left[\mathrm{~s}, 6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 2.73(\mathrm{~s}, 3 \mathrm{H},-$ $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{3}\right), 4.25\left(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{O}-\right), 7.55,7.98\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime},-\right.$ $\mathrm{C}_{6} \mathrm{H}_{4}-$); IR (cm ${ }^{-1}$): $1600(\mathrm{~m}), 1500(\mathrm{w}) . \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~S}$ (310.44).

1-Bromo-2-(5,5-dimethyl-2-cyclohexen-1-yl)~ethane (11)

Tosylate $9(2.8 \mathrm{~g}, 0.09 \mathrm{~mol})$ was added to lithium bromide ($2.35 \mathrm{~g}, 0.027 \mathrm{~mol}$) in anhydrous acetone $(30 \mathrm{ml})$ and the mixture was refluxed for 1 h and then stirred at room temp. for 24 h . When the tosylate has reacted completely (TLC), the mixture was diluted with water and the product was extracted with ethyl ether. The extracts were washed with water and dried over anhydrous CaCl_{2}. After evaporation of the solvent the crude product was subjected to column chromatography (petroleum etherethyl ether $19: 1$) and then distilled. Pure bromide 11 $(1.65 \mathrm{~g}, 86 \%)$, b.p. $90-91^{\circ} \mathrm{C} / 30.67 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4945$, was obtained. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $(\delta, \mathrm{ppm}): 1.20,1.26\left[2 \mathrm{~s}, 6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 3.7\left(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{Br}\right)$, $5.64-5.9(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-) ; \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 3040(\mathrm{w}), 1650(\mathrm{~m}), 680(\mathrm{~s}), 650(\mathrm{~s})$. $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{Br}$ (217.15).

5-(5,5-Dimethyl-2-cyclohexen-1-yl)-2-pentanone (13)

Bromide $11(1.6 \mathrm{~g}, 0.0073 \mathrm{~mol})$ in $D M F(10 \mathrm{ml})$ was added to the sodium derivative of ethyl acetoacetate formed from ester ($1.45 \mathrm{~g}, 0.011 \mathrm{~mol}$) and NaH $(0.26 \mathrm{~g}, 0.011 \mathrm{~mol})$ in $D M F(20 \mathrm{ml})$. The mixture was heated on a water bath for 16 h , then it was poured into water and the intermediate keto ester was extracted with petroleum ether. To a residue after evaporation of the solvent, $5 \% \mathrm{NaOH}$ solution (30 ml) was added and the mixture was heated on a water bath for 24 h . The cooled mixture was diluted with water and extracted with petroleum ether. The combined extracts were washed with saturated NaCl solution and dried $\left(\mathrm{MgSO}_{4}\right)$. The crude product after evaporation of the solvent was distilled in vacuo to afford ketone $13(1.1 \mathrm{~g}, 77 \%)$, b.p. $96^{\circ} \mathrm{C} / 5.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4668 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $(\delta, \mathrm{ppm}): 1.16,1.22\left[2 \mathrm{~s}, 6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 2.32\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CO}-\mathrm{CH}_{3}\right), 5.70-5.86$ $(\mathrm{m}, 2 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-) ;$ IR $\left(\mathrm{cm}^{-1}\right): 3040(\mathrm{w}), 1725(\mathrm{~s}) . \mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}$ (194.31).

(5,5-Dimethyl~2-cyclohexen-1-yl)-acetaldehyde (19)

(3,3-Dimethylcyclohexyl)-acetaldehyde (20)
Alcohol $8(4.0 \mathrm{~g}, 0.026 \mathrm{~mol})$ was added in one portion to a slurry of pyridinium chlorochromate $(11.2 \mathrm{~g}, 0.052 \mathrm{~mol})$ and anhydrous sodium acetate $(0.7 \mathrm{~g}$, $0.008 \mathrm{~mol})$ in anhydrous methylene chloride (100 ml) and the mixture was stirred for 2 h . Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled off and the residue was extracted with petroleum ether. The ethereal solution was filtered through "Florisil" and evaporated. The crude product was chromatographed on a column (petroleum ether-ethyl ether $19: 1)$ and distilled in vacuo. Pure aldehyde $20(3.0 \mathrm{~g}, 76 \%)$ was obtained. Pure aldehyde 19 (yield 51%) was obtained analogously from alcohol 7.

19: b.p. $97-98^{\circ} \mathrm{C} / 29.67 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4762$. ${ }^{\mathrm{Y}} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.21,1.23$ $\left[2 \mathrm{~s}, 6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 5.65-5.9(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-), 10.0(\mathrm{t}, J=2 \mathrm{~Hz}, 1 \mathrm{H}$, - CHO); IR (cm^{-1}): $3030(\mathrm{~m}), 2720(\mathrm{~m}), 1725$ (s), 1650 (w). $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$ (152.23).

20: b.p. $93-93.5^{\circ} \mathrm{C} / 24 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4592$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.20,1.22[2 \mathrm{~s}$, $6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\mathrm{]}, 9.92(\mathrm{t}, J=2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHO}) ; \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 2720(\mathrm{~s}), 1720(\mathrm{~s})$. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}(154.24)$.

5-(3,3-Dimethylcyclohexyl)-3-penten-2-one (12)

A mixture of aldehyde $20(1.0 \mathrm{~g}, 0.0065 \mathrm{~mol})$ and $P h_{3} \mathrm{P}=\mathrm{CHCOCH}_{3}(4.1 \mathrm{~g}$, 0.013 mol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ was refluxed for 6 h . After the whole aldehyde had reacted, the solvent was distilled off and petroleum ether was added to the residue. Triphenylphosphine oxide was filtered off and the filtrate was evaporated. The crude product was purified by means of column chromatography (petroleum ether-ethyl ether $19: 1$). Pure ketone 12 ($1.15 \mathrm{~g}, 92 \%$), b.p. 72$72.5^{\circ} \mathrm{C} / 1.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4783$, was obtained. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.2[\mathrm{~s}, 6 \mathrm{H}$, $\left.-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 2.42\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CO}-\mathrm{CH}_{3}\right), 6.22(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-$ $\mathrm{CO}-), 6.94(\mathrm{~d}, J=16 \mathrm{~Hz}$ split in $\mathrm{t}, J=7 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-\mathrm{CO}-)$; IR (cm^{-1}): 3050 (w), 1675 (s), 1630 (s), 970 (s). $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}$ (194.31).

5-(3,3-Dimethylcyclohexyl)-2-pentanone (14)

Ketone $\mathbf{1 4}$ was obtained in 94% yield by hydrogenation of ketone $\mathbf{1 2}$ over Raney-nickel; b.p. $112-113^{\circ} \mathrm{C} / 5.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4590 .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.20$ $\left[\mathrm{s}, 6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 2.34\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CO}-\mathrm{CH}_{3}\right), 2.6\left(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right.$ $\mathrm{CO}-$); IR (cm^{-1}): 1720 (s). $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}(196.32)$.

Ethyl (2Z)- and (2E)-6-(5,5-dimethyl-2-cyclohexen-1-yl)-3-methyl-2hexenoate (15 a and 15 b)
Ketone $\mathbf{1 3}(0.5 \mathrm{~g}, 0.0025 \mathrm{~mol})$ in anhydrous $D M F(5 \mathrm{ml})$ was added to the sodium derivative formed from ethyl (diethylphosphono)-acetate (0.65 g , $0.0029 \mathrm{~mol})$ and $\mathrm{NaH}(0.14 \mathrm{~g}$ of 50% reagent, 0.0029 mol$)$. The mixture was stirred for 12 h at room temp. and then was heated on a water bath for further 8 h . The cooled mixture was diluted with water and extracted with petroleum ether. The extracts were washed with saturated NaCl solution and dried over MgSO_{4}. A mixture of esters $15[0.4 \mathrm{~g}, 60 \%, 75 \%$ of ($2 E$)- and 25% of ($2 Z$)-isomer] was obtained.

Analogously, the mixture of esters $17 \mathrm{a}(24 \%)$ and $17 \mathrm{~b}(76 \%)$ was obtained in 56% yield by the reaction of ketone 13 with isopropyl (diethylphosphono)acetate. Ketone 14 was reacted with ethyl (diethylphosphono) acetate to give in 68% yield a mixture of esters 16a (25%) and 16b (75\%) and with isopropyl (diethylphosphono)acetateesters 18 a (24%) and 18 b (76%) (yield 71\%).

Pure isomers of these esters were isolated by means of column chromatography (petroleum ether-ethyl ether $485: 15$).

15a: b.p. $109-110^{\circ} \mathrm{C} / 0.67 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4838 .^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.18,1.22$ $\left[2 \mathrm{~s}, 6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 1.54\left(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.17[\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $\left.3 \mathrm{H},-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right], 4.36\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.7-5.88[\mathrm{~m}, 3 \mathrm{H}$, $\left.-\mathrm{CH}=\mathrm{CH}-,-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right] ;$ IR ($\mathrm{cm}^{-1}: 3040(\mathrm{~m}), 1720$ (s), 1650 (s). $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2}$ (264.39).

15b: b.p. $116-117^{\circ} \mathrm{C} / 0.67 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4865 .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 2.42[\mathrm{~d}$, $\left.J=1.5 \mathrm{~Hz}, \quad 3 \mathrm{H},-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right], \quad 5.72-5.88 \quad[\mathrm{~m}, 3 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-$, $\left.-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right]$; IR $\left(\mathrm{cm}^{-1}\right): 3030(\mathrm{~m}), 1715(\mathrm{~s}), 1650(\mathrm{~s}) . \mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2}$ (264.39).

17 a: b.p. $110-111^{\circ} \mathrm{C} / 0.67 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4801 .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.19,1.25$ $\left[2 \mathrm{~s}, 6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 1.53\left[\mathrm{~d}, J=7 \mathrm{~Hz}, 6 \mathrm{H},-\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.17[\mathrm{~d}$, $\left.J=1.5 \mathrm{~Hz}, 3 \mathrm{H},-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right], 5.23\left[\operatorname{sep}, J=7 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $\left.5.73-5.85\left[\mathrm{~m}, 3 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-,-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}\right]\right] ; \mathrm{TR}\left(\mathrm{cm}^{-1}\right): 3040(\mathrm{~m}), 1720$ (s), 1650 (s). $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2}$ (278.42).
$17 \mathrm{~b}: \quad$ b.p. $\quad 118-119^{\circ} \mathrm{C} / 0.67 \cdot 10^{2} \mathrm{~Pa}, \quad n_{\mathrm{D}}^{20}=1.4821 . \quad{ }^{1} \mathrm{H}-\mathrm{NMR} \quad(\delta$, $\mathrm{ppm}): 2.42\left[\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H},-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right], 5.73-5.85[\mathrm{~m}, 3 \mathrm{H},-\mathrm{CH}$ $\left.=\mathrm{CH}-,-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right] ;$ IR $\left(\mathrm{cm}^{-1}\right): 3030(\mathrm{~m}), 1715(\mathrm{~s}), 1650(\mathrm{~s}) . \mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2}$ (278.42).

16a: b.p. $111-112{ }^{\circ} \mathrm{C} / 1.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4758$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.2[\mathrm{~s}$, $\left.6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 1.55\left(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.17[\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right], 4.37\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.82[\mathrm{~m}, 1 \mathrm{H}$, $\left.-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right] ;$ IR $\left(\mathrm{cm}^{-1}\right): 1715$ (s), 1645 (s). $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{2}$ (266.41).

16 b: b.p. $115-116^{\circ} \mathrm{C} / 1.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4786$. $^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 2.42[\mathrm{~d}$, $\left.J=1.5 \mathrm{~Hz}, 3 \mathrm{H},-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right], 5.83\left[\mathrm{~m}, 1 \mathrm{H},-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right] ;$ IR $\left(\mathrm{cm}^{-1}\right): 1715(\mathrm{~s}), 1650(\mathrm{~s}) . \mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{2}$ (266.41).

18 a: b.p. $120-121^{\circ} \mathrm{C} / 1.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4720 .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.2[\mathrm{~s}$, $\left.6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 1.52\left[\mathrm{~d}, J=7 \mathrm{~Hz}, 6 \mathrm{H},-\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.17[\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $\left.3 \mathrm{H},-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right], 5.22\left[\mathrm{sep}, J=7 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right], 5.8[\mathrm{~m}, 1 \mathrm{H}$, $\left.-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right]$; IR $\left(\mathrm{cm}^{-1}\right): 1710$ (s), 1645 (s). $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{2}(280.44)$.

18 b: b.p. $123-124^{\circ} \mathrm{C} / 1.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4751 \mathrm{I}^{1} \mathrm{H}-\mathrm{NMR}^{2}(\delta, \mathrm{ppm}): 2.42[\mathrm{~d}$, $\left.J=1.5 \mathrm{~Hz}, 3 \mathrm{H},-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right], 5.82\left[\mathrm{~m}, 1 \mathrm{H},-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right] ;$ IR $\left(\mathrm{cm}^{-1}\right): 1710$ (s), 1645 (s). $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{2}$ (280.44).

Isopropyl (2Z,4E) and (2E,4E)-6-(5,5-dimethyl-2-cyclohexen-1-yl)-3-methyl-2,4-hexadienoate (21 a and 21 b)
Aldehyde $19(0.75 \mathrm{~g}, 0.005 \mathrm{~mol})$ was added to the sodium derivative formed
from isopropyl 4-(diethylphosphono)-3-methyl-2-butenoate [1.65 g, 0.00625 mol , mixture of isomers $(E):(Z)=52: 48]$ and $\mathrm{NaH}(0.15 \mathrm{~g}, 0.00625 \mathrm{~mol})$ in anhydrous THF (30 ml) with a mixture of $D M F(1 \mathrm{ml})$. After stirring for 6 h at room temp. water was added and product was extracted with ethyl ether. The extracts were washed with water and dried $\left(\mathrm{MgSO}_{4}\right)$. After evaporation of ether the mixture of esters $21[0.8 \mathrm{~g}, 62 \%, 57 \%$ of the ($2 Z, 4 E$)- and 43% of the ($2 E, 4 E$)-isomer] was obtained.

Analogously, the mixture of esters $\mathbf{2 2} \mathbf{a}(58.6 \%)$ and $\mathbf{2 2 b}(41.4 \%)$ was obtained from aldehyde 20 in 77.5% yield.

Pure isomers were isolated by means of column chromatography (petroleum ether-ethyl ether 24:1).

21 a: b.p. $111.5-112^{\circ} \mathrm{C} / 1.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.5070 .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.20$, $1.26\left[2 \mathrm{~s}, 6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 1.52\left[\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H},-\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.13[\mathrm{~m}$, $\left.3 \mathrm{H},-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right], 5.24\left[\mathrm{sep}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right], 5.7-5.96[\mathrm{~m}$, $3 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-,-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\mathrm{]}, 6.26[\mathrm{~d}, J=16 \mathrm{~Hz}$ split in $\mathrm{t}, J=6.5 \mathrm{~Hz}$, $\left.1 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right], 7.84[\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-$ $\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-$]; IR (cm ${ }^{-1}$): 3030 (w), 1695 (s), 1635 (s), 970 (s). $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2}$ (276.40).

21 b: b.p. $118-119^{\circ} \mathrm{C} / 1.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.5103 .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 2.52[\mathrm{~m}$, $\left.3 \mathrm{H}, \quad-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right], \quad 5.73-5.94 \quad[\mathrm{~m}, \quad 3 \mathrm{H}, \quad-\mathrm{CH}=\mathrm{CH}-$, $\left.-\mathrm{CH}=\mathrm{CH}-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right], \quad 6.22-6.38 \quad\left[\mathrm{~m}, 2 \mathrm{H}, \quad-\mathrm{CH}=\mathrm{CH}-\left(\mathrm{CH}_{3}\right) \mathrm{C}\right.$ $=\mathrm{CH}-]$; IR $\left(\mathrm{cm}^{-1}\right): 3030(\mathrm{w}), 1705(\mathrm{~s}), 1635(\mathrm{~m}), 970(\mathrm{~s}) . \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2}$ (276.40).

22 a: b.p. $128-129^{\circ} \mathrm{C} / 1.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.5032 .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.20[\mathrm{~s}$, $\left.6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 1.52\left[\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H},-\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.13[\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $\left.3 \mathrm{H},-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right], 5.22\left[\mathrm{sep}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right], 5.74[\mathrm{~m}, 1 \mathrm{H}$, $\left.-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right], 6.26[\mathrm{~d}, J=16 \mathrm{~Hz}$ split in $\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}-\right], 7.82\left[\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}-\right] ;$ IR $\left(\mathrm{cm}^{-1}\right): 3060$ (w), 1700 (s), 1635 (s), 970 (s). $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2}$ (278.42).
$22 \mathrm{~b}:$ b.p. $125-126^{\circ} \mathrm{C} / 0.67 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.5064$. $^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 2.52[\mathrm{~m}$, $\left.3 \mathrm{H},-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right], 5.82\left[\mathrm{~m}, 1 \mathrm{H},-\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}-\right], 6.22-6.36[\mathrm{~m}, 2 \mathrm{H}$, $\left.-\mathrm{CH}=\mathrm{CH}-\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}-\right] ;$ IR $\left(\mathrm{cm}^{-1}\right): 3040(\mathrm{w}), 1705(\mathrm{~s}), 1635(\mathrm{~m}), 1610$ (s), 970 (s). $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2}$ (278.42).

5-(5,5-Dimethyl-2-cyclohexen-1-yl)-2-penten-3-ol (23)*

5-(3,3-Dimethylcyclohexyl)-2-penten-3-ol (24)*
Aldehyde $19(0.6 \mathrm{~g}, 0.004 \mathrm{~mol})$ was added to 1-propenylmagnesium bromide formed from 1-propenyl bromide ($0.75 \mathrm{~g}, 0.006 \mathrm{~mol}$) and magnesium (0.15 g , $0.006 \mathrm{~g}-\mathrm{at}$.$) in anhydrous THF (30 \mathrm{ml}$) and the mixture was stirred for 6 h . Then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the product was extracted with ethyl ether. The ethereal solution was washed with saturated NaCl solution and dried over MgSO_{4}. The crude product was purified by means of column chromatography (petroleum ether-acetone 9:1) and distilled in vacuo. Pure alcohol 23 $(0.5 \mathrm{~g}, 65.8 \%)$, b.p. $109-110^{\circ} \mathrm{C} / 5.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4880$, was obtained. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $(\delta, \mathrm{ppm}): 1.20,1.22$ [two broad $\left.\mathrm{s}, 6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 1.99(\mathrm{~m}, 3 \mathrm{H}$, $\left.-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right), 2.41[\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}(\mathrm{OH})], 4.7-4.9[\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}(\mathrm{OH})-]$, $5.6-5.86(\mathrm{~m}, 4 \mathrm{H},-\mathbf{C H}=\mathbf{C H}-) ; \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 3620(\mathrm{~m}), 3350(\mathrm{~m}, \mathrm{~b}), 3030(\mathrm{~m})$, 1650 (w), 1360 (s), 1050 (s), 960 (s). $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}$ (194.31).

[^0]Alcohol 24 was obtained similarly (yield 64.5%) from aldehyde 20; b.p. $84^{\circ} \mathrm{C} / 1.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4783$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.23\left[\mathrm{~s}, 6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right]$, $1.98\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right), 2.4[\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}(\mathrm{OH})-], 4.15-4.35$ $[\mathrm{m}, 1 \mathrm{H},-\mathrm{CH}(\mathrm{OH})-], 5.63-5.80(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-) ; \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 3360(\mathrm{~s})$, 1630 (w), 1350 (s), 1090 (s), 960 (s). $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}$ (196.32).

Ethyl (4E)-6-(5,5-dimethyl-2-cyclohexen-1-yl)-3-methyl-4-hexenoate (25b)*
A mixture of alcohol $23(0.3 \mathrm{~g}, 0.0015 \mathrm{~mol})$, ethyl orthoacetate $(1.65 \mathrm{~g}$, $0.011 \mathrm{~mol})$ and propionic acid $(0.001 \mathrm{ml})$ was heated at $138^{\circ} \mathrm{C}$ for 1 h . The residue after distilling off an excess of orthoacetate was distilled in vacuo to afford pure (GLC) ester $25 \mathrm{~b}(0.35 \mathrm{~g}, 86 \%)$.

Alcohol 24 yielded in an analogical reaction ester $\mathbf{2 6} \mathbf{b}$ in 88% yield. Alcohols 23 and 24 refluxed with methyl orthoacetate in the presence of catalytic amounts of propionic acid gave esters $\mathbf{2 5 a}$ (77%) and $\mathbf{2 6}$ a (72%), respectively.

Physical and spectral constants of esters $\mathbf{2 5} \mathbf{a}^{*}, \mathbf{b}^{*}$ and $\mathbf{2 6} \mathbf{a}^{*}, \mathbf{b}^{*}$ are as follows.
25 a * : b.p. $87-88^{\circ} \mathrm{C} / 1.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4681$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.16,1.23$ $\left[2 \mathrm{~s}, 6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 1.32\left[\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H},-\left(\mathrm{CH}_{3}\right) \mathrm{CH}-\right], 3.87(\mathrm{~s}, 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right), 5.6-5.87(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-)$) IR $\left(\mathrm{cm}^{-1}\right): 3030(\mathrm{w}), 1735(\mathrm{~s}), 970(\mathrm{~s})$. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2}$ (250.37).
$\mathbf{2 5} \mathbf{b}^{*}$: b.p. $91-92^{\circ} \mathrm{C} / 1.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4673$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.17,1.24$ $\left[2 \mathrm{~s}, 6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 1.33\left[\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H},-\left(\mathrm{CH}_{3}\right) \mathrm{CH}-\right], 1.52(\mathrm{t}, J=7 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \quad-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), \quad 4.34\left(\mathrm{q}, \quad J=7 \mathrm{~Hz}, \quad 2 \mathrm{H}, \quad-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), \quad 5.6-5.86$ $(\mathrm{m}, 4 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-) ; \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 3030(\mathrm{w}), 1735(\mathrm{~s}), 970(\mathrm{~s}) . \mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2}(264.39)$.

26 a $^{*}:$ b.p. $94-95^{\circ} \mathrm{C} / 1.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4671 .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.23$ [s, $\left.6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 1.34\left[\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H},-\left(\mathrm{CH}_{3}\right) \mathrm{CH}-\right], 3.94\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$, $5.52-5.75(\mathrm{~m}, 2 \mathrm{H},-\mathbf{C H}=\mathbf{C H}-) ; \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 1735(\mathrm{~s}), 970(\mathrm{~s}) . \mathrm{C}_{\mathrm{i6}} \mathrm{H}_{28} \mathrm{O}_{2}(252.38)$.
$26 \mathbf{b}^{*}:$ b.p. $99-100^{\circ} \mathrm{C} / 1.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.4662$. $^{1} \mathrm{H}-\mathrm{NMR}(\delta, \mathrm{ppm}): 1.25[\mathrm{~s}$, $\left.6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 1.34\left[\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H},-\left(\mathrm{CH}_{3}\right) \mathrm{CH}-\right], 1.57(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.37\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \quad \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.5-5.72(\mathrm{~m}, 2 \mathrm{H}$, $-\mathrm{CH}=\mathrm{CH}-$); IR $\left(\mathrm{cm}^{-1}\right): 1735(\mathrm{~s}), 970(\mathrm{~s}) . \mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{2}(266.41)$.

Alkyl aryl ethers ($27 \mathrm{a}, \mathrm{b}$ and $28 \mathrm{a}, \mathrm{b}$)
Tosylate 9 or $10(0.005 \mathrm{~mol})$ in $\operatorname{DMF}(5 \mathrm{ml})$ was added to the appropriate potassium phenolate (from 0.006 mol of phenol and 0.006 mol of powdered KOH) in $D M F(20 \mathrm{ml})$. The mixture was stirred until all tosylate reacted (TLC). Then the mixture was diluted with water and the product was extracted with petroleum ether. Extracts were washed with $5 \% \mathrm{KOH}$ solution, then with water, and dried over MgSO_{4}. The crude products were purified by means of column chromatography (petroleum ether--acetone $49: 1$) and distillation.

27 a: yield 76.9%, b.p. $153-154^{\circ} \mathrm{C} / 1.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.5283$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta$, $\mathrm{ppm}): 1.18,1.24\left[2 \mathrm{~s}, 6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 4.22\left(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{O}-\right), 5.77-$ $5.9(\mathrm{~m},-\mathrm{CH}=\mathrm{CH}-), 7.0,7.42\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime},-\mathrm{C}_{6} \mathrm{H}_{4}-\right)$) $\mathrm{IR}\left(\mathrm{cm}^{-1}\right): 3040$ (m), $1600(\mathrm{~s}), 1585(\mathrm{~m}), 1500(\mathrm{~s}), 1475$ (s). $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{OCl}$ (264.79).

27 b : yield 79.3%, b.p. $152-153{ }^{\circ} \mathrm{C} / 1.33 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.5172$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta$, ppm): $1.19,1.24\left[2 \mathrm{~s}, 6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 1.48\left(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{C}_{6} \mathrm{H}_{4}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.84\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.22(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.-\mathrm{CH}_{2} \mathrm{O}-\right), 5.78-5.88(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-), 6.96,7.24\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right.$, $-\mathrm{C}_{6} \mathbf{H}_{4}$-) ; IR (cm^{-1}): $3040(\mathrm{w}), 1610(\mathrm{~s}), 1585(\mathrm{~m}), 1510(\mathrm{~s}), 1480(\mathrm{~s}) . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}$ (258.39).

28 a: yield 77.2%, b.p. $122-123{ }^{\circ} \mathrm{C} / 0.67 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.5241 .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta$, $\mathrm{ppm}): 1.2\left[\mathrm{~s}, 6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 4.08-4.28\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{O}-\right), 7.0,7.4(\mathrm{~m}, 4 \mathrm{H}$,
$\mathrm{AA}^{\prime} \mathrm{BB}^{\prime},-\mathrm{C}_{6} \mathrm{H}_{4}-$); IR (cm $\left.{ }^{-1}\right): 1600(\mathrm{~m}), 1580(\mathrm{~m}), 1490(\mathrm{~s}), 1470(\mathrm{~s})$. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{OCl}(266.80)$.

28 b : yield 79.7%, b.p. $124-125^{\circ} \mathrm{C} / 0.67 \cdot 10^{2} \mathrm{~Pa}, n_{\mathrm{D}}^{20}=1.5122 .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta$, $\mathrm{ppm}): 1.2\left[\mathrm{~s}, 6 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\right], 1.48\left(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.82$ $\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.08-4.26\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{O}-\right), 6.96,7.24$ (m, 4H, AA $\mathrm{BB}^{\prime},-\mathrm{C}_{6} \mathrm{H}_{4}-$); $\mathrm{IR}^{2}\left(\mathrm{~cm}^{-1}\right): 3040(\mathrm{w}), 1610(\mathrm{~m}), 1580(\mathrm{w}), 1510(\mathrm{~s})$, 1470 (s). $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}(260.41)$.

Acknowledgement

This work was financially supported by the Polish Academy of Sciences (Project MR.I.12).

References

${ }^{1}$ Part XV: Wawrzeńczyk C., Pol. J. Chem., in press.
${ }^{2}$ Derdziński K., Wawrzeńczyk C., Zabża A., J. prakt. Chem., in press.
${ }^{3}$ Wawrzeńczyk C., Derdziński K., Zabża A., J. prakt. Chem., in press.
${ }^{4}$ Wawrzeñczyk C., Zabża A., Tetrahedron 36, 3091 (1980).
${ }^{5}$ Henrick C. A., Willy W. E., Staal G. B., J. Agric. Food Chem. 24, 207 (1976).
${ }^{6}$ Slama K., Romanuk M., Šorm F., Insect Hormones and Bioanalogues. WienNew York: Springer. 1974.
${ }^{7}$ Wawrzeńczyk C., Aliphatic juvenoids, derivatives of (Z)-3,7-dimethyl-4-octer-1-ol. (Unpublished work.)
${ }^{8}$ Frank R. L., Hall H. K., J. Amer. Chem. Soc. 72, 1645 (1950).
${ }^{9}$ Johnson W. S., Werthermann L., Bartlett W. R., Brocksom T. J., Li T. T., Faulkner D. J., Peterson M. R., J. Amer. Chem. Soc. 92, 741 (1970).
${ }^{10}$ Wadsworth W. S., Emmons W. D., J. Amer. Chem. Soc. 83, 1733 (1961).
${ }^{11}$ Corey E. J., Suggs J. W., Tetrahedron Lett. 1975, 2647.
${ }^{12}$ Chan K. K., Specian A. C., Saucy G., J. Org. Chem. 43, 3435 (1978).
${ }^{13}$ Wiersig J. R., Waespe-Sarcevic N., Djerassi C., J. Org. Chem. 44, 3374 (1979).

[^0]: * Note: These numbers denote a mixture of a pair of diastereomeric racemates: $(R R),(S S),(R S),(S R)$.

