Accepted Manuscript

Design, synthesis and preliminary bioactivity evaluations of substituted quinoline hydroxamic acid derivatives as novel histone deacetylase (HDAC) inhibitors

Lei Wang, Xuben Hou, Huansheng Fu, Xiaole Pan, Wenfang Xu, Weiping Tang, Hao Fang

PII:

DOI:
Reference:
S0968-0896(15)00518-0
http://dx.doi.org/10.1016/j.bmc.2015.06.024
BMC 12380

Bioorganic \& Medicinal Chemistry
Received Date: 13 April 2015
Revised Date: 9 June 2015
Accepted Date: 10 June 2015

Please cite this article as: Wang, L., Hou, X., Fu, H., Pan, X., Xu, W., Tang, W., Fang, H., Design, synthesis and preliminary bioactivity evaluations of substituted quinoline hydroxamic acid derivatives as novel histone deacetylase (HDAC) inhibitors, Bioorganic \& Medicinal Chemistry (2015), doi: http://dx.doi.org/10.1016/j.bmc. 2015.06.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Design, synthesis and preliminary bioactivity evaluations of substituted quinoline hydroxamic acid derivatives as novel histone deacetylase (HDAC) inhibitors
 Lei Wang ${ }^{\text {a }}$, Xuben Hou ${ }^{\text {a }}$, Huansheng Fu ${ }^{\text {a }}$, Xiaole Pan ${ }^{\text {a }}$, Wenfang Xu ${ }^{\text {a }}$, Weiping Tang ${ }^{\text {b }}$, Hao Fang ${ }^{\text {a* }}$
 ${ }^{a}$ Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, Ji'nan, Shandong, 250012, P.R. China
 ${ }^{b}$ School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison 53705, USA

Abstract

: Inhibition of HDACs activity has become a promising therapeutic strategy in clinical practice to reverse the abnormal epigenetic states of cancer and other diseases. Therefore, HDAC inhibitors become a relatively new class of anti-cancer agent. In the present study, we reported the design and synthesis of a series of novel HDAC inhibitors using various substituted quinoline rings as the cap group. In vitro studies showed that some compounds have good inhibitory activities against HDACs and potent antiproliferative activities in some tumor cell lines. Especially, compound 9w $\left(\mathrm{IC}_{50}=85 \mathrm{nM}\right)$, exhibited better inhibitory effect compared with SAHA ($\mathrm{IC}_{50}=161$ $\mathrm{nM})$.

Keywords: quinoline; hydroxamic acid; HDAC; inhibitor; anti-proliferative

1. Introduction

The histone acetylation status plays an essential role in initiation and progression of tumor among the complex epigenetic regulations. ${ }^{[1,2]}$ The imbalance between histone acetylation and deacetylation in cells will lead to changes in cell cycle and metabolism profile, which in turn trigger the formation of tumors. ${ }^{[3]}$ Histone deacetylases (HDACs) are important enzymes regulating the balance of acetylation and deacetylation of histones and non-histone proteins, by catalyzing hydrolysis of ε-amide bond of lysine residues. The overexpression of HDACs suppresses gene transcription and leads to silencing of tumor suppressor genes. ${ }^{[4]}$ Thus, HDAC inhibitors (HDACi) have been recognized as a new class of anticancer agents. HDAC inhibitors have exhibited outstanding anti-tumor activity by enhancing the level of histone acetylation and inducing cell cycle arrest, differentiation and apoptosis. ${ }^{[5]}$

To date, three HDAC inhibitors (Vorinostat, Romidepsin and Belinostat) have approved for the clinical therapy of cutaneous T-cell lymphoma (CTCL) or peripheral T-cell lymphoma (PTCL) by FDA. Meanwhile, more than 20 promising HDAC inhibitors are in clinical or pre-clinical studies for the treatment of various cancers. ${ }^{[6]}$ Generally, the HDAC inhibitors have a common pharmacophore model including a zinc ion binding group (ZBG), linker and a cap group (Figure 1). The ZBG chelates zinc ion at the bottom of HDACs active site. The cap group enhances the affinity with the surface of HDACs and linker connects the ZBG and the cap group.

[^0]

Figure 1 HDAC inhibitor pharmacophore model and the quinoline-based hydroxamic acid derivative in current study.

Previously, we have used different heterocycles as the surface recognition cap group in the design of novel HDAC inhibitors, such as tetrahydroisoquinoline ${ }^{[7,8]}$, 1,3,4-thiadiazole ${ }^{[9,10]}$, 2-dihydrobenzo [d]isothiazol-3-one-1,1-dioxide ${ }^{[11]}$, indole ${ }^{[12,13]}$ and purine ${ }^{[14]}$. In particular, the tetrahydroisoquinoline-bearing hydroxamic acid analogues showed potent HDAC inhibitory activity in in-vitro biological evaluations and intriguing growth inhibition in multiple tumor cell lines. Structurally similar to tetrahydroisoquinoline, heterocycle quinolone could be used as surface recognition cap and recently Moffat ${ }^{[15]}$ reported one compound containing 6 -fluoro quinolone (CHR-3996) possessed potent HDAC inhibitory activity and antiproliferative activities. In order to study the further structure-activity relationship, we designed a series of novel HDAC inhibitors bearing various substituents in the quinoline ring (Figure 1), and evaluated their inhibitory activities against HDACs.

2. Chemical synthesis

The synthetic route of our novel HDACi is described in Schemes 1-2. Carboxylic acids 1a-b were coupled with various amines to obtain intermediates 2a-f. The methyl group of intermediates 2a-f and 3a-e were oxidized to afford 2-formylquinoline analogs 4a-k. Reduction of 4a-k yielded substituted 2-hydroxymethylquinolines, which were then reacted with PBr_{3} to form alkyl bromides 5a-k. Sequential treatment of $\mathbf{5 a - k}$ with NaN_{3} in DMF and Staudinger reaction gave $\mathbf{6 a - k}$. Compounds $\mathbf{6 a - k}$ were coupled with various acids to obtain intermediates 8a-y, which were converted to hydroxamic acids $\mathbf{9 a - y}$ by treating with hydroxylamine.

To gain more structure diversity, compounds 10a-b were prepared by Suzuki cross-coupling reaction. Compounds $\mathbf{1 0 a}-\mathbf{b}$ were then converted to hydroxamic acids 11a-b by the same method described above.

Scheme 1. Reagents and conditions: (a) EDCI, HOBT, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, substituted aniline, $0{ }^{\circ} \mathrm{C}$ to rt, overnight; (b) $\mathrm{SeO}_{2}, 1,4$-dixoane, reflux, 1 h ; (c) (i) $\mathrm{NaBH}_{4}, \mathrm{MeOH}$, rt, 15 min ; (ii) PBr_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, overnight; (d) (i) NaN_{3}, DMF, rt, overnight; (ii) PPh_{3}, THF, rt, 5 h ; (e) EDCI, HOBT, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to RT, overnight; or $\mathrm{SOCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, THF, $0^{\circ} \mathrm{C}$ to RT, overnight; (f) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$, $\mathrm{KOH}, \mathrm{MeOH}, \mathrm{rt}, 1 \mathrm{~h}$.

Scheme 2. Reagents and conditions: $(\mathrm{g}) \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}$, phenylboronic acid, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, toluene, reflux, overnight; (f) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{KOH}, \mathrm{MeOH}, \mathrm{rt}, 1 \mathrm{~h}$.

3. Results and discussion

HDAC enzymatic inhibitory activities of these quinoline hydroxamic acid derivatives were evaluated using the Color de Lys ${ }^{\text {TM }}$ assay (BML-AK501, Enzo ${ }^{\circledR}$ Life Sciences) including HDAC $1 \& 2$. The results were calculated and tabulated as IC_{50} values in Table 1.

According to the data in Table 1, we found that both the linker and the substituents in quinoline ring played a significant role in the inhibitory activities against HDACs. For example, the compounds with shorter linker ($n=3-4$, e.g. $\mathbf{9 a - 9 b}$, $\mathbf{9 q - 9 r}$) or longer linker ($\mathrm{n}=6-7$, e.g. $9 \mathbf{d - 9 e}, 9 \mathbf{m - 9 n}$) showed poor inhibition on HDACs. Compounds with the five methylene units linker showed similar or better enzyme inhibitory activity compared with SAHA, such as, $\mathbf{9 c}, \mathbf{9 f}, \mathbf{9 v}, \mathbf{9 w}$ etc. This
results may be explained by the fact that suitable length of the linker $(\mathrm{n}=5)$ is helpful for the ZBG to chelate with the Zn^{2+} ion located at the bottom of active site of HDACs.

In addition, the substituents on the C 4 and C 6 -position of quinoline ring also significantly impact the inhibitory activity. According to the data in Table 1, substituents on the C 4 -position of quinoline ring decreased the enzyme inhibitory activity. For example, compounds $\mathbf{9 c}, \mathbf{9 f}, \mathbf{9 h}$ and $\mathbf{9 j}\left(\mathrm{IC}_{50}=399,301,444,642 \mathrm{nM}\right.$, respectively) showed poorer inhibitory activity against HDAC than compound 9 s $\left(\mathrm{IC}_{50}=266 \mathrm{nM}\right)$ without C4-substituent. Moreover, the inhibitory activities of compounds 91,90 and $9 \mathbf{w}$ also confirmed this conclusion. Interestingly, introducing different substituent groups to the C6-position of quinoline ring enhanced the enzymatic inhibitory activity. For instance, compounds 91 and 90 ($\mathrm{IC}_{50}=343$ and 196 nM , respectively) showed better inhibitory activities compared with the corresponding compounds $9 \mathbf{c}$ and $9 \mathbf{9 f}\left(\mathrm{IC}_{50}=399\right.$ and 301 nM , respectively) without C6-substituent. The inhibitory activities of compounds $9 \mathbf{s}$ and $\mathbf{9 w}$ also proved this conclusion. This result demonstrated that the C6-substituent was also crucial to binding affinities. On the other hand, replacement of halogen substituents with a phenyl group (such as $\mathbf{9 w}$ and 11b) resulted in the decrease of enzymatic inhibitory activity, suggesting a preference for small group on the C6-position as a surface recognition cap group.

Notably, we could find the fact that only suitable length of the linker $(\mathrm{n}=5)$ is favor, which is helpful for the ZBG to chelate with the Zn^{2+} ion located at the bottom of active site of HDACs. Substituents on the C4-position of quinoline ring decreased the enzyme inhibitory activity obviously. Interestingly, introducing different substituent groups to the C6-position of quinoline ring enhanced the enzymatic inhibitory activity, except the bulky substituents. Therefore, we got a potent target compound $\mathbf{9 w}\left(\mathrm{IC}_{50}=85 \mathrm{nM}\right)$ which showed better activity than FDA approved drug SAHA $\left(\mathrm{IC}_{50}=161 \mathrm{nM}\right)$ (Figure 2).

Figure 2 Compounds SARs analysis

Table1 The chemical structures and HDACs inhibitory activities of quinoline hydroxamate derivatives

Compd	R_{1}	R_{2}	n	$\mathrm{IC}_{50}{ }^{a}$ of HDACs (nM)
9a	H	-CONHBn	3	>1000
9b	H	-CONHBn	4	>1000
9c	H	-CONHBn	5	399 ± 26
9d	H	-CONHBn	6	780 ± 285
9e	H	-CONHBn	7	>1000
9f	H	-CONHPh	5	301 ± 166
9g	H	-CONHPh	6	562 ± 177
9h	H	-CONHBu-n	5	444 ± 40
9i	H	-CONHBu-n	6	>1000
9j	H	-CONHMe	5	642 ± 237
9k	H	-CONHMe	6	>1000
91	Br	-CONHBn	5	343 ± 86
9m	Br	-CONHBn	6	>1000
9n	Br	-CONHBn	7	>1000
90	Br	-CONHPh	5	196 ± 43
9p	Br	-CONHPh	6	>1000
9q	H	H	3	>1000
9r	H	H	4	>1000
9s	H	H	5	266 ± 110
9t	H	H	6	678 ± 332
9u	F	H	5	155 ± 58
9y	Cl	H	5	120 ± 15
9w	Br	H	5	85 ± 32
9x	Br	H	6	146 ± 31
9y	I	H	5	132 ± 29
11a	Ph	-CONHBn	5	341 ± 46
11b	Ph	H	5	152 ± 43
SAHA				161 ± 51

${ }^{a}$ Values are the mean of three independent determinations and expressed with standard deviations.

For a better understanding of the interaction between these quinoline based derivatives and HDAC, the most active compound $9 \mathbf{w}$ was docked to the active site of
 suggested that compound $\mathbf{9 w}$ could bind to the active site of HDAC2 and there was a similar binding mode for compound $9 \mathbf{w}$ compared with co-crystallized SAHA, which all chelated Zn^{2+} ion by hydroxamic acid group. In addition, the amide bond of compound $9 \mathbf{w}$ and SAHA could form hydrogen bond with ASP104 in the active site of HDAC2.

Figure 3 The molecular binding mode of compound $\mathbf{9 w}$ (yellow) and SAHA (green) in the active site of HDAC2 using Surflex-dock ${ }^{[16,17]}$.

Structurally speaking, suitable length linker $(\mathrm{n}=5)$ is vital for compound $9 \mathbf{w}$ to chelate the Zn^{2+} at the active site and the cap group of the compound $\mathbf{9 w}$ chould interact with catalytic pocket comfortably. It is reported that the active site is highly conserved, the rim of the catalytic pocket differ greatly among different HDAC isozymes. Significantly, variation of amino acid residues region produces a significantly narrower catalytic pocket in the homology model of HDAC1. Compounds with a large and rigid cap group could not occupy catalytic region of HDAC1. ${ }^{[18,19]}$ Hence, compound $9 \mathbf{w}$ exhibited the most potent inhibitory effect.

To further ascertain the activities of these quinoline-based HDAC inhibitors at the cellular level, three compounds $\mathbf{9 v}, \mathbf{9 w}$ and $\mathbf{9 y}$ were selected to evaluate their antiproliferative activities in vitro using cancer cell lines of MDA-MB-231 (breast cancer cell), PC3 (prostatic cancer cell), K562 (chronic myelogenous leukemia cell) and A549 (lung cancer cell) by MTT assay. The IC_{50} values were summarized in Table 2. According to the inhibition data, all tested compounds showed obvious anti-proliferative activities compared with SAHA. Moreover, MDA-MB-231 was the most sensitive cell line to our quinoline-based HDAC inhibitors and 9w showed the better anti-proliferative activity than SAHA. In addition, $\mathbf{9 y}$ exhibited most potent anti-proliferative activities in PC-3, K562 and A549 cell lines.

Table 2 Anti-proliferative activities against MDA-MB231, PC3, K562 and A549 cell lines.

Compd.	$\mathrm{IC}_{50}(\mu \mathrm{M})^{a}$			
	MDA-MB-231	PC-3	K562	A549
$\mathbf{9 v}$	1.84 ± 0.11	9.13 ± 1.91	3.39 ± 0.38	2.71 ± 0.34
$\mathbf{9 w}$	0.90 ± 0.25	9.26 ± 0.50	4.86 ± 1.38	3.89 ± 0.72
$\mathbf{9 y}$	1.41 ± 0.37	8.48 ± 1.29	2.45 ± 0.59	2.58 ± 0.31
SAHA	2.02 ± 0.30	7.30 ± 0.20	3.94 ± 0.39	5.32 ± 1.64

${ }^{a}$ Values are the mean of three independent determinations and expressed with standard deviations.

4. Conclusions

In summary, we designed and synthesized a series of novel HDAC inhibitors with different length linkers and substituents in quinoline ring as the cap group. Among them, $\mathbf{9 v}, \mathbf{9 w}$ and $\mathbf{9 y}$ exhibited similar or higher inhibitory activities in both enzymatic inhibitory activity and cellular anti-proliferative activity assay compared with SAHA. These results suggest that compound $\mathbf{9 w}$ could be used as new lead compound to develop more potent HDAC inhibitors in the future.

5. Experimental section

5.1. Chemistry: general procedures

Unless mentioned, all start materials, reagents and solvents are analytical reagents without further purification. All reactions were monitored by thin-layer chromatography on 0.25 mm silica gel plates (60GF-254) and visualized with UV light, chloride ferric or iodine vapor. Melting points were determined by the RY-1 electrothermal melting point apparatus without correction. ESI-MS was determined on an Aglient-1100 series LC/MSD trap spectrometer. ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectra were obtained on a Brucker DRX spectrometer ($300 \mathrm{MHz}, 400 \mathrm{MHz}$). The chemical shifts are defined as δ values (parts per million) relative to TMS as internal standard. Significant ${ }^{1} \mathrm{H}$-NMR data are reported in the following order: multiplicity (s, singlet; d , doublet; t , triplet; m, multiplet) number of protons. HRMS spectrums were conducted on an Agilent 6510 Quadrupole Time-of-Flight LC/MS deliver.

5.1.1. N-benzyl-2-methylquinoline-4-carboxamide (2a)

To a solution of $\mathbf{1 a}(0.94 \mathrm{~g}, 5 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.3 \mathrm{~mL}, 10 \mathrm{mmol})$ in the anhydrous THF (150 mL) was added isobutyl chloroformate ($0.76 \mathrm{~mL}, 6 \mathrm{mmol}$) slowly under the ice baths. After 1 h , benzylamine ($0.82 \mathrm{~mL}, 7.5 \mathrm{mmol}$) was added. The mixture was stirred vigorously overnight at room temperature. The resultant solution was filtered. The filtrate was concentrated, dissolved in dichloromethane $(150 \mathrm{~mL})$, and washed with 10% citric acid ($3 \times 50 \mathrm{~mL}$), saturated $\mathrm{NaHCO}_{3}(3 \times 50$ mL) and brine ($3 \times 50 \mathrm{~mL}$), dried over with MgSO_{4}, and the solution was evaporated under vacuum. The crude product was purified by column chromatography to afford compound $2 \mathrm{a}(0.86 \mathrm{~g}, 62 \%)$ as a white solid. Mp: 184-186 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 9.30(\mathrm{t}, J=5.85 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.1 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.75(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}$, $4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS m/z: 277.3 $[\mathrm{M}+\mathrm{H}]^{+}$.
Compounds 2b-2d were synthesized by the same method described above.

5.1.2. N-phenyl-2-methylquinoline-4-carboxamide (2b)

Yield: 57%, mp: 177-179 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 10.74$ (s, 1H), 8.09 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.75(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.40$ (t, $J=7.95 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.35 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS m/z: 263.3 $[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.3. N -butyl-2-methylquinoline-4-carboxamide (2c)

Yield: 71%, mp: $106-108{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.69(\mathrm{t}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (t, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 3.36-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.52(\mathrm{~m}, 2 \mathrm{H})$, 1.43-1.36 (m, 2H), $0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. ESI-MS m/z: $243.5[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.4. $\mathrm{N}, \mathbf{2}$-dimethylquinoline-4-carboxamide (2d)

Yield: 66%, mp: 140-142 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO- d_{6}) $\delta 8.65-8.61(\mathrm{~m}, 1 \mathrm{H})$, $8.10\left(\mathrm{dd}, J_{l}=8.1 \mathrm{~Hz}, J_{2}=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=9 \mathrm{~Hz}$, 1 H), $7.56(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS m/z: $201.4[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.5. N -benzyl-6-bromo-2-methylquinoline-4-carboxamide (2e)

To a solution of $\mathbf{1 b}(2.66 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.6 \mathrm{~mL}, 20 \mathrm{mmol})$ in the anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ under the ice baths was added slowly $\mathrm{HOBT}(1.62 \mathrm{~g}, 12$ mmol), followed by EDCI ($2.30 \mathrm{~g}, 12 \mathrm{mmol}$). After 1 h , benzylamine ($2.18 \mathrm{~mL}, 20$ mmol) was added. After the night, the solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was washed with 10% citric acid $(3 \times 50 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(3 \times 50 \mathrm{~mL})$ and brine $(3 \times 50 \mathrm{~mL})$, dried over with MgSO_{4}, and the solvent was evaporated under vacuum. The crude product was purified by column chromatography to afford compound $\mathbf{2 e}(2.1 \mathrm{~g}, 59 \%)$ as a white solid. Mp: 198-200 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 9.37(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.29$ (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.26(\mathrm{~m}$, $1 \mathrm{H}), 4.56(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS m/z: $356.4[\mathrm{M}+\mathrm{H}]^{+}$.
Compound $2 f$ was synthesized by the same method described above.

5.1.6. N -phenyl-6-bromo-2-methylquinoline-4-carboxamide (2f)

Yield: 60%, mp: 210-212 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.79(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}$, $J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~s}$, $1 \mathrm{H}), 7.41$ (t, $J=8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17 (t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}), 2.73$ (s, 3H). ESI-MS m/z: 341.4 $[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.7. N-benzyl-2-formylquinoline-4-carboxamide (4a)

The compound 2a ($0.55 \mathrm{~g}, 2 \mathrm{mmol}$) was dissolved in 1,4-dioxane (50 mL), then
$\mathrm{SeO}_{2}(0.27 \mathrm{~g}, 2.4 \mathrm{mmol})$ was added. The mixed solution was refluxed for 1 h . Solvent was concentrated and dissolved in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$. The organic layer was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine, dried over anhydrous MgSO_{4}, and the solution was evaporated under vacuum. The residue was purified by chromatography on silica gel to give $\mathbf{4 a}(0.44 \mathrm{~g}, 76 \%)$ as a white solid. Mp: 169-171 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.16(\mathrm{~s}, 1 \mathrm{H}), 9.50(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{t}, J=8.85 \mathrm{~Hz}, 2 \mathrm{H})$, 8.00-7.95 (m, 2H), 7.86 (t, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 1 \mathrm{H})$, $4.60(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H})$. ESI-MS m/z: $291.3[\mathrm{M}+\mathrm{H}]^{+}$.
Compounds $\mathbf{4 b} \mathbf{- 4 k}$ were synthesized by the same method described above.

5.1.8. N-phenyl-2-formylquinoline-4-carboxamide (4b)

Yield: 72%, mp: 216-218 ${ }^{\circ} \mathrm{C}$, ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.88$ (s, 1H), 10.20 ($\mathrm{s}, 1 \mathrm{H}$), $8.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.95 \mathrm{~Hz}, 2 \mathrm{H})$, 7.18 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$. ESI-MS m/z: $277.3[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.9. N -butyl-2-formylquinoline-4-carboxamide (4c)

Yield: 49%, mp: $146-147{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.16(\mathrm{~s}, 1 \mathrm{H}), 8.89(\mathrm{t}$, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.35$ (m, 2H), 0.94 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ESI-MS m/z: $257.4[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.10. N-methyl-2-formylquinoline-4-carboxamide (4d)

Yield: 69%, mp: 170-172 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.16(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~d}$, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.00-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.90(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H})$. ESI-MS m/z: $215.5[\mathrm{M}+\mathrm{H}]^{+}$.
5.1.11. N-benzyl-6-bromo-2-formylquinoline-4-carboxamide (4e)

Yield: 76%, mp: $188-190{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.14$ (s, 1 H), 9.56 (s, $1 \mathrm{H}), 8.50(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 8.12-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.30(\mathrm{~m}$, $5 \mathrm{H}), 4.59(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H})$. ESI-MS m/z: $370.3[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.12. N-phenyl-6-bromo-2-formylquinoline-4-carboxamide (4f)

Yield: $53 \%, \mathrm{mp}:>250{ }^{\circ} \mathrm{C}$, ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.95(\mathrm{~s}, 1 \mathrm{H}), 10.19(\mathrm{~s}$, $1 \mathrm{H}), 8.50(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 8.15\left(\mathrm{dd}, J_{l}=8.8\right.$ $\left.\mathrm{Hz}, J_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.81(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=8 \mathrm{~Hz}$, 1H). ESI-MS m/z: $356.3[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.13. Quinoline-2-carbaldehyde (4g)

Yield: 72%, mp: $72-74{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.14$ (s, 1 H), 8.64 (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$. ESI-MS m/z: $158.1[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.14. 6-fluoroquinoline-2-carbaldehyde (4h)

Yield: $64 \%, \mathrm{mp}: 122-124{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.12(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.34-8.30(\mathrm{~m}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99\left(\mathrm{dd}, J_{l}=9.2 \mathrm{~Hz}, J_{2}\right.$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88\left(\mathrm{td}, J_{l}=10.4 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$. ESI-MS m/z: $176.2[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.15. 6-chloroquinoline-2-carbaldehyde (4i)

Yield: 77%, mp: $146-148{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.12$ (s, 1 H), 8.60 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.95\left(\mathrm{dd}, J_{I}=9.2 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$. ESI-MS m/z: $192.6[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.16. 6-bromoquinoline-2-carbaldehyde (4j)

Yield: 80%, mp: $162-164{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.12(\mathrm{~s}, 1 \mathrm{H}), 8.61$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-8.02(\mathrm{~m}, 2 \mathrm{H})$. ESI-MS m/z: $237.1[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.17. 6-iodoquinoline-2-carbaldehyde (4k)

Yield: 75%, mp: $180-182{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.21(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~s}$, $1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{t}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$; ESI-MS m/z: $284.1[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.18. N-benzyl-2-(bromomethyl)quinoline-4-carboxamide (5a)

$\mathrm{NaBH}_{4}(0.1 \mathrm{~g}, 2.5 \mathrm{mmol})$ was added partially to a solution of $4 \mathbf{a}(1.45 \mathrm{~g}, 5 \mathrm{mmol})$ in $\mathrm{MeOH}(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Then the mixture was stirred at room temperature for 15 min. Then MeOH was evaporated under vacuum to give the crude product N -benzyl-2-(hydroxymethyl)quinoline-4-carboxamide.
$\mathrm{PBr}_{3}(0.24 \mathrm{~mL}, 2.5 \mathrm{mmol})$ was added slowly dropwise to a solution of N -benzyl-2-(hydroxymethyl)quinoline-4-carboxamide ($0.73 \mathrm{~g}, 2.5 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.3 \mathrm{~mL}, 2.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ under ice-bath. Then the resulting mixture was stirred overnight at room temperature. The resulting reaction was washed with brine (50 mL), dried over anhydrous MgSO_{4}, and the solution was evaporated under vacuum to afford $5 \mathrm{5a}$ as a white solid. Yield: 40%, mp: $196-198{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{NMR}(400$ MHz, DMSO- d_{6}) $\delta 9.38(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.09-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{t}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 1 \mathrm{H}), 4.89$ $(\mathrm{s}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H})$. ESI-MS m/z: $356.2[\mathrm{M}+\mathrm{H}]^{+}$.
Compounds $\mathbf{5 b} \mathbf{- 5}$ k were synthesized by the same method described above.

5.1.19. N-phenyl-2-(bromomethyl)quinoline-4-carboxamide (5b)

Yield: 51%, mp: 212-214 ${ }^{\circ} \mathrm{C}$, ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.84(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.89-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.41$ (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H})$. ESI-MS m/z: 342.2 $[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.20. N-butyl-2-(bromomethyl)quinoline-4-carboxamide (5c)

Yield: 25%, mp: $139-141^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.80(\mathrm{t}, J=4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.09-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}$,
$2 \mathrm{H}), 3.38-3.32(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H})$. ESI-MS m/z: $322.2[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.21. N -methyl-2-(bromomethyl)quinoline-4-carboxamide (5d)

Yield: 60%, mp: $182-184^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.76(\mathrm{q}, J=4.2 \mathrm{~Hz}$, 1 H), 8.11-8.04 (m, 2H), 7.83 (t, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 2.88$ (d, $J=4.8 \mathrm{~Hz}, 3 \mathrm{H}$). ESI-MS m/z: $280.2[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.22. N-benzyl-6-bromo-2-(bromomethyl)quinoline-4-carboxamide (5e)

Yield: 67%, mp: $197-199^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 9.46(\mathrm{t}, J=5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.29(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.28(\mathrm{~m}, 5 \mathrm{H})$, 4.88 ($\mathrm{s}, 2 \mathrm{H}$), 4.57 (d, $J=6 \mathrm{~Hz}, 2 \mathrm{H})$. ESI-MS m/z: $435.1[\mathrm{M}+\mathrm{H}]^{+}$.
5.1.23. N-phenyl-6-bromo-2-(bromomethyl)quinoline-4-carboxamide (5f)

Yield: 70%, mp: $196-198{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.90(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~d}$, $J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02\left(\mathrm{dd}, J_{l}=8.8 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.96$ ($\mathrm{s}, 1 \mathrm{H}$), $7.80(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}$, 2H). ESI-MS m/z: $421.1[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.24. 2-(bromomethyl)quinoline ($\mathbf{5 g}$)

Yield: 45%, mp: $56-58{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $8.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80\left(\mathrm{dd}, J_{l}=8.0 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.74-7.70(\mathrm{~m}, 1 \mathrm{H})$, 7.57-7.52 (m, 2H), 4.71 (s, 2H); ESI-MS m/z: $223.1[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.25. 2-(bromomethyl)-6-fluoroquinoline (5 h)

Yield: 43%, mp: $75-77{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.38(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.04\left(\mathrm{dd}, J_{l}=9.2 \mathrm{~Hz}, J_{2}=5.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.80\left(\mathrm{dd}, J_{l}=9.2 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 7.74-7.68 (m, 1H), $7.66(\mathrm{~d}, ~ J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (s, 2H); ESI-MS m/z: 241.1 $[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.26. 2-(bromomethyl)-6-chloroquinoline (5i)

Yield: 60%, mp: $110-112{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.41$ (d, $J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.15(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.77-7.72 (m, 1H), $4.87(\mathrm{~s}, 2 \mathrm{H})$. ESI-MS m/z: $257.5[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.27. 6-bromo-2-(bromomethyl)quinoline (5j)

Yield: 48%, mp: $144-146^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.42(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.31(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}$, 2H). ESI-MS m/z: $302.0[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.28. 2-(bromomethyl)-6-iodoquinoline (5k)

Yield: 50%, mp: $156-158{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.42(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.31(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}$, 2H). ESI-MS m/z: $349.0[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.29. 2-(aminomethyl)- N-benzylquinoline-4-carboxamide (6a)

$\mathrm{NaN}_{3}(0.65 \mathrm{~g}, 10 \mathrm{mmol})$ was added carefully to a solution of $\mathbf{5 a}(1.78 \mathrm{~g}, 5 \mathrm{mmol})$ in DMF (10 mL). The reaction was stirred overnight at room temperature. The reaction mixture was extracted with $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}$. Then the organic layer was washed with brine, dried over anhydrous MgSO_{4}, and the solution was evaporated under vacuum to give the crude product 2 -(azidomethyl)- N -benzylquinoline-4carboxamide.
$\mathrm{PPh}_{3}(1.57 \mathrm{~g}, 6 \mathrm{mmol})$ was added to a solution of 2 -(azidomethyl)- N -benzylquinoline-4-carboxamide in $\mathrm{TFH} / \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL}, 9: 1)$. Five hours later, the solution was concentrated under vacuum and the residue was added to 1 MHCl (20 mL). The mixture was stirred for 30 min , then the mixture was filtered to get aqueous phase. The aqueous phase was basified to pH 10 by the NaHCO_{3}, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, and the solution was evaporated under vacuum to give target compound $\mathbf{6 a}$ without purification for next procedure.
Compounds $\mathbf{6 b}-6 \mathbf{k}$ were synthesized by the same method deseribed above.

The general synthesis method for $\mathbf{8 a - 8 y}$:

Method A:

To a solution of $7 \mathbf{a}(0.73 \mathrm{~g}, 5 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.3 \mathrm{~mL}, 10 \mathrm{mmol})$ in the anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was added HOBT ($0.81 \mathrm{~g}, 6 \mathrm{mmol}$), followed by EDCI ($1.15 \mathrm{~g}, 6$ mmol) at $0{ }^{\circ} \mathrm{C}$. After 1 h , compound $6 \mathbf{a}(2.19 \mathrm{~g}, 7.5 \mathrm{mmol})$ was added, and the mixture was stirred vigorously overnight at room temperature. The mixture was washed with 10% citric acid $(3 \times 80 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(3 \times 80 \mathrm{~mL})$ and brine ($3 \times 80 \mathrm{~mL}$), dried over with MgSO_{4}, and the solution was evaporated under vacuum to give the crude product. The crude product was depurated by column chromatography to afford compound $\mathbf{8 a}$ as a white solid.

Method B:
A solution of $7 \mathbf{a}(0.73 \mathrm{~g}, 5 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(4 \mathrm{~mL})$ was refluxed for 1.5 h . The removal of SOCl_{2} under reduced pressure yielded orange oil, which was dissolved in THF $(15 \mathrm{~mL})$. The resulting solution was added dropwise to a solution of $\mathbf{6 a}(2.19 \mathrm{~g}$, $7.5 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.3 \mathrm{~mL}, 10 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred overnight at room temperature. The resultant solution was filtered. The filtrate was concentrated, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$, and washed with 10% citric acid $(3 \times 50 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(3 \times 50 \mathrm{~mL})$ and brine ($3 \times 50 \mathrm{~mL}$), dried over with MgSO_{4}, and the solution was evaporated under vacuum. The crude product was purified by column chromatography to afford compound 8a as a white solid.

5.1.30. Methyl 5-(((4-(benzylcarbamoyl)quinolin-2-yl)methyl)amino)-5-oxo pentanoate (8a)

Yield: 62%, mp: $152-154{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 9.31(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H})$,
$8.55(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.57-4.55(\mathrm{~m}, 4 \mathrm{H})$, $3.59(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.80(\mathrm{~m}, 2 \mathrm{H})$. ESI-MS m/z: $420.5[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.31. Methyl 6-(((4-(benzylcarbamoyl)quinolin-2-yl)methyl)amino)-6-oxo hexanoate (8 b)

Yield: 49%, mp: $122-124{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 9.31(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.54(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H})$, $4.56(\mathrm{~d}, J=6 \mathrm{~Hz}, 4 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 1.58-1.52 (m, 4H). ESI-MS m/z: $434.6[\mathrm{M}+\mathrm{H}]^{+}$.
5.1.32. Methyl 7-(((4-(benzylcarbamoyl)quinolin-2-yl)methyl)amino)-7-oxo heptanoate (8c)
Yield: 37%, mp: $119-120^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 9.32(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.53(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H})$, $4.56(\mathrm{~d}, J=6 \mathrm{~Hz}, 4 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 1.58-1.49 (m, 4H), 1.32-1.30 (m, 2H). ESI-MS m/z: $448.5[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.33. Methyl 8-(((4-(benzylcarbamoyl)quinolin-2-yl)methyl)amino)-8-oxo octanoate (8d)

Yield: 63%, mp: $150-152{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 9.34(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.54(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.26(\mathrm{~m}$, $1 \mathrm{H}), 4.55(\mathrm{~d}, J=6 \mathrm{~Hz}, 4 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 H), 1.57-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.26(\mathrm{~m}, 4 \mathrm{H})$. ESI-MS m/z: $462.5[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.34. Methyl 9-(((4-(benzylcarbamoyl)quinolin-2-yl)methyl)amino)-9-oxo nonanoate (8e)

Yield: 56%, mp: $136-137{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 9.34(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.55(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.57-4.55(\mathrm{~m}$, $4 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 4 \mathrm{H})$, $1.26(\mathrm{~m}, 6 \mathrm{H})$. ESI-MS m/z: $476.6[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.35. Methyl 7-oxo-7-(((4-(phenylcarbamoyl)quinolin-2-yl)methyl)amino) heptanoate (8 ff)

Yield: 83%, mp: $120-122{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.80(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{t}$, $J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.65(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}$, $1 \mathrm{H}), 7.39(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{~s}$, 3H), 2.28-2.19 (m, 4H), 1.60-1.47 (m, 4H), 1.33-1.24 (m, 2H). ESI-MS m/z: 434.6 $[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.36. Methyl 8-oxo-8-(((4-(phenylcarbamoyl)quinolin-2-yl)methyl)amino) octanoate (8g)

Yield: 35%, mp: $128-130{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.80(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{t}$, $J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.65(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}$, $1 \mathrm{H}), 7.39$ (t, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.16 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61$ (d, $J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.57$ (s, $3 H), 2.31-2.16(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.25(\mathrm{~m}, 4 \mathrm{H})$. ESI-MS m/z: 448.5 $[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.37. Methyl 7-(((4-(butylcarbamoyl)quinolin-2-yl)methyl)amino)-7-oxo heptanoate (8h)

Yield: 40%, mp: $120-122{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.74(\mathrm{t}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.54(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.30(\mathrm{~m}, 2 \mathrm{H})$, $2.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 6 \mathrm{H}), 1.51-1.32(\mathrm{~m}$, $2 \mathrm{H}), 1.29-1.21(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. ESI-MS m/z: $414.5[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.38. Methyl 8-(((4-(butylcarbamoyl)quinolin-2-yl)methyl)amino)-8-oxo octanoate (8i)

Yield: 22%, mp: $116-118{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.73(\mathrm{t}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.52(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{t}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.30(\mathrm{~m}$, 2 H), $2.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.42-1.32$ $(\mathrm{m}, 2 \mathrm{H}), 1.29-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ESI-MS m/z: $428.6[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.39. Methyl 7-(((4-(methylcarbamoyl)quinolin-2-yl)methyl)amino)-7-oxo

 heptanoate ($\mathbf{8 j}$)Yield: 58%, mp: $156-158{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.70(\mathrm{q}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.53(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}$, $3 \mathrm{H}), 2.87(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 1.61-1.48 (m, 4H), 1.34-1.24 (m, 2H). ESI-MS m/z: $372.4[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.40. Methyl 8-(((4-(methylcarbamoyl)quinolin-2-yl)methyl)amino)-8-oxo octanoate (8k)

Yield: 47%, mp: $136-138^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.70(\mathrm{q}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.53(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}$, $3 \mathrm{H}), 2.86(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 1.57-1.47 (m, 4H), 1.33-1.25 (m, 4H). ESI-MS m/z: $386.6[\mathrm{M}+\mathrm{H}]^{+}$.
5.1.41. Methyl 7-(((4- (benzylcarbamoyl)-6-bromoquinolin-2-yl)methyl)amino)-7oxoheptanoate (81)
Yield: 75%, mp: $150-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 9.44(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H})$,
$8.55(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H})$, 7.42-7.31 (m, 4H), 7.30-7.27 (m, 1H), $4.57(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.23(\mathrm{~m}, 2 \mathrm{H})$. ESI-MS m/z: $527.4[\mathrm{M}+\mathrm{H}]^{+}$.
5.1.42. Methyl 8-(((4- (benzylcarbamoyl)-6-bromoquinolin-2-yl)methyl)amino)-8oxooctanoate (8 m)
Yield: 43%, mp: $146-148{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 9.43(\mathrm{t}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.55(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.98-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.30$ $(\mathrm{m}, 5 \mathrm{H}), 4.57(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{~m}, 4 \mathrm{H})$. ESI-MS m/z: $541.5[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.43. Methyl 9-(((4- (benzylcarbamoyl)-6-bromoquinolin-2-yl)methyl)amino)-9-

 oxononanoate (8n)Yield: 65%, mp: $156-158{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 9.43(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.55(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H})$, $7.41-7.30(\mathrm{~m}, 5 \mathrm{H}), 4.56(\mathrm{~d}, J=6 \mathrm{~Hz}, 4 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.20$ (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~m}, 6 \mathrm{H})$. ESI-MS m/z: $555.5[\mathrm{M}+\mathrm{H}]^{+}$.
5.1.44. Methyl 7-(((6-bromo-4- (phenylcarbamoyl)quinolin-2-yl)methyl)amino)-7oxoheptanoate (80)
Yield: 80%, mp: 162-164 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.87(\mathrm{~s}, 1 \mathrm{H}), 8.58(\mathrm{t}$, $J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.67(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.57(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 2 \mathrm{H})$. ESI-MS m/z: $513.4[\mathrm{M}+\mathrm{H}]^{+}$.
5.1.45. Methyl 8-(((6-bromo-4- (phenylcarbamoyl)quinolin-2-yl)methyl)amino)-8oxooctanoate (8 p)
Yield: 67%, mp: $168-170{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.87(\mathrm{~s}, 1 \mathrm{H}), 8.58(\mathrm{t}$, $J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.66(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.56(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.19(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.24(\mathrm{~m}, 4 \mathrm{H})$. ESI-MS m/z: $527.4[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.46. Methyl 5-oxo-5- ((quinolin-2-ylmethyl) amino)pentanoate (8q)

Yield: 45%, mp: 101-102 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 8.56$ (t, $J=5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.37$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.25(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.81$ (m, 2H). ESI-MS m/z: 287.3 $[\mathrm{M}+\mathrm{H}]^{+}$.
5.1.47. Methyl 6-oxo-6- ((quinolin-2-ylmethyl) amino) hexanoate (8r)

Yield: 15%, mp: $88-90^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO $-d_{6}$) $\delta 8.54(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$),
$8.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.78-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}$, $1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 2.22(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{~m}, 4 \mathrm{H})$. ESI-MS m/z: $301.5[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.48. Methyl 7-oxo-7- ((quinolin-2-ylmethyl) amino) heptanoate (8s)

Yield: 26%, mp: 88-89 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 8.52(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}$), $8.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.78-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}$, $1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.23(\mathrm{~m}, 2 \mathrm{H})$. ESI-MS m/z: $315.3[\mathrm{M}+\mathrm{H}]^{+}$.
5.1.49. Methyl 8-oxo-8- ((quinolin-2-ylmethyl) amino) octanoate (8t)

Yield: 61%, mp: 86-88 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.53(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}$), $8.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H})$, $7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{t}, J=7.35 \mathrm{~Hz}$, $2 \mathrm{H}), 2.20(\mathrm{t}, J=7.35 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 4 \mathrm{H})$. ESI-MS m/z: $329.5[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.50. Methyl 7- (((6-fluoroquinolin-2-yl)methyl)amino)-7-oxoheptanoate (8u)

Yield: 71%, mp: $72-74{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.54(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.34(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.79\left(\mathrm{dd}, J_{1}=9.6 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.69\left(\mathrm{td}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.50(\mathrm{~m}, 4 \mathrm{H})$, 1.32-1.29 (m, 2H). ESI-MS m/z: $333.4[\mathrm{M}+\mathrm{H}]^{+}$.
5.1.51. Methyl 7- (((6-chloroquinolin-2-yl)methyl)amino)-7-oxoheptanoate (8v) Yield: 92%, mp: $88-90^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.52(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.73$ $(\mathrm{m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.17(\mathrm{~m}, 2 \mathrm{H})$. ESI-MS m/z: $349.9[\mathrm{M}+\mathrm{H}]^{+}$

5.1.52. Methyl 7- (((6-bromoquinolin-2-yl)methyl)amino)-7-oxoheptanoate (8w)

Yield: $50 \%, \mathrm{mp}: 92-94^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.52(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$, 8.33 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.24(\mathrm{~m}, 2 \mathrm{H})$. ESI-MS m/z: $394.3[\mathrm{M}+\mathrm{H}]^{+}$.
5.1.53. Methyl 8- (((6-bromoquinolin-2-yl)methyl)amino)-8-oxooctanoate (8x)

Yield: 43%, mp: 104-106 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$-NMR (300 MHz, DMSO- d_{6}) $\delta 8.53(\mathrm{t}, J=5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.33$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.25$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.84$ (m, 2H), $7.50(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.30-1.26(\mathrm{~m}, 4 \mathrm{H})$. ESI-MS m/z: $408.3[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.54. Methyl 7- (((6-iodoquinolin-2-yl)methyl)amino)-7-oxoheptanoate (8y)

Yield: 86%, mp: 79-80 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.53(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.43(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00\left(\mathrm{dd}, J_{l}=9 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.75(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}$, $3 \mathrm{H}), 2.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.23$ (m, 2H). ESI-MS m/z: $441.4[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.55. $\quad N^{1}$-((4-(benzylcarbamoyl)quinolin-2-yl)methyl)- N^{5}-hydroxyglutaramide

 (9a)Preparation of hydroxylamine in methanol:
To a solution of hydroxylamine hydrochloride ($4.67 \mathrm{~g}, 67 \mathrm{mmol}$) in methanol (24 mL) at $0{ }^{\circ} \mathrm{C}$ was added slowly dropwise potassium hydroxide ($6.60 \mathrm{~g}, 100 \mathrm{mmol}$) in methanol (14 mL). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h and filtered to give a solution of hydroxylamine in methanol.

Compound 8a ($0.32 \mathrm{~g}, 0.77 \mathrm{mmol}$) was dissolved in the solution of hydroxylamine in methanol (8 mL), and then the reaction mixture was stirred at room temperature for 1 h . The mixture was acidified with 2 M HCl to pH 7 . The mixture was filtrated to give a residue and purified by chromatography on silica gel to give $9 \mathbf{a}$ $(0.15 \mathrm{~g}, 47 \%)$ as a white solid. Mp: 174-175 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ $10.34(\mathrm{~s}, 1 \mathrm{H}), 9.33(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-8.00$ $(\mathrm{m}, 2 \mathrm{H}), 7.80(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.32(\mathrm{~m}$, $4 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=6 \mathrm{~Hz}, 4 \mathrm{H}), 2.24(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.73(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right) \delta 172.1,168.8$, 166.7, 159.2, 147.2, 142.8, 139.1, 129.9, 128.8, 128.4, 127.3, 127.0, 126.8, 125.2, 123.2, 117.3, 44.7, 42.6, 34.7, 31.8, 21.4; HRMS (AP-ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 421.1870$, found: 421.1867.
Compounds $\mathbf{9 b} \mathbf{- 9} \mathbf{y}$ and 11a-11b were synthesized by the same method described above.

5.1.56. N^{1}-((4-(benzylcarbamoyl)quinolin-2-yl)methyl)- N^{6}-hydroxyadipamide($\mathbf{(9 b}$)

Yield: 73%, mp: $178-180{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.34(\mathrm{~s}, 1 \mathrm{H})$, $9.32(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{t}, J=9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.80(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 4 \mathrm{H})$, $7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=6 \mathrm{~Hz}, 4 \mathrm{H}), 2.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 2H), 1.60-1.45 (m, 4H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 172.4,169.0,166.8,159.2$, $147.2,142.8,139.1,129.9,128.9,128.4,127.3,126.9,126.8,125.2,123.2,117.3$, 44.7, 42.6, 35.1, 32.1, 24.9, 24.8; HRMS (AP-ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 435.2027, found: 435.2024.

5.1.57. N^{1}-((4- (benzylcarbamoyl)quinolin-2-yl)methyl)- N^{7}-hydroxy

heptanediamide (9c)

Yield: 83%, mp: $162-164{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.31(\mathrm{~s}, 1 \mathrm{H}), 9.33(\mathrm{t}$, $J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{t}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H})$,
$4.57(\mathrm{~d}, J=6 \mathrm{~Hz}, 4 \mathrm{H}), 2.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.45(\mathrm{~m}$, 4H), 1.31-1.21 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 172.5,169.1,166.7,159.3$, $147.2,142.8,139.1,129.9,128.8,128.4,127.3,126.9,126.8,125.2,123.2,117.3$, 44.7, 42.6, 35.2, 32.1, 28.3, 24.9, 24.9; HRMS (AP-ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 449.2183$, found: 449.2190 .

5.1.58. N^{1}-((4-(benzylcarbamoyl)quinolin-2-yl)methyl)- N^{8}-hydroxy octanediamide (9d)

Yield: $67 \%, \mathrm{mp}: 150-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 10.32$ (s, 1 H), 9.33 (t, $J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.79(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 4 \mathrm{H})$, $7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.57-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.26(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- d_{6}) δ $172.5,169.1,166.7$, 159.3, 147.1, 142.9, 139.1, 129.9, 128.8, 128.4, 127.3, 126.9, 126.8, 125.2, 123.2, 117.3, 44.6, 42.6, 35.3, 32.2, 28.4, 28.4, 25.2, 25.0; HRMS (AP-ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 463.2340$, found: 463.2344 .

5.1.59. N^{1}-((4-(benzylcarbamoyl)quinolin-2-yl)methyl)- N^{9}-hydroxy nonanediamide (9e)

Yield: $73 \%, \mathrm{mp}: 136-137{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.32(\mathrm{~s}, 1 \mathrm{H}), 9.34(\mathrm{t}$, $J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 5 \mathrm{H}), 4.56(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $4 \mathrm{H}), 2.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.29-1.22$ (m, 6H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 172.6,169.1,166.8,159.3,147.2,142.8$, $139.1,129.9,128.8,128.4,127.3,126.9,126.8,125.2,123.2,117.3,44.7,42.6,35.3$, 32.2, 28.6, 28.5, 28.5, 25.2, 25.1; HRMS (AP-ESI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 477.2496$, found: 477.2502 .

5.1.60. N^{1}-hydroxy- N^{7}-((4-(phenylcarbamoyl)quinolin-2-yl)methyl) heptanediamide (9f)

Yield: 49%, mp: $164-166{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.87(\mathrm{~s}, 1 \mathrm{H}), 10.32$ $(\mathrm{s}, 1 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.09-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.67-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, DMSO- d_{6}) $\delta 172.6,169.1,165.4,159.4,147.3,142.8,138.7,130.1,128.9,128.9$, 127.1, 125.1, 124.2, 123.0, 119.9, 117.4, 44.7, 35.2, 32.2, 28.3, 24.9, 24.9; HRMS (AP-ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 435.2027$, found: 435.2036.

5.1.61. N^{1}-hydroxy- N^{8}-((4- (phenylcarbamoyl)quinolin-2-yl)methyl)octanediamide (9g)

Yield: 40%, mp: $176-178{ }^{\circ}{ }^{\circ}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.79(\mathrm{~s}, 1 \mathrm{H}), 10.30$ $(\mathrm{s}, 1 \mathrm{H}), 8.63(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.76(\mathrm{~m}, 3 \mathrm{H})$, $7.67(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.61(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$,
1.57-1.41 (m, 4H), 1.25-1.24 (m, 4H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 172.6$, $169.1,165.4,159.4,147.2,142.8,138.7,130.1,128.9,128.8$, 127.1, 125.0, 124.1, 123.0, 119.9, 117.3, 44.7, 35.3, 32.2, 28.4, 28.4, 25.2, 24.9; HRMS (AP-ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 449.2183$, found: 449.2189.

5.1.62. N^{1}-((4- (butylcarbamoyl)quinolin-2-yl)methyl)- N^{7}-hydroxyheptanediamide

 (9h)Yield: 88%, mp: 170-172 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.31(\mathrm{~s}, 1 \mathrm{H}), 8.75$ (t, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{t}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.37-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.50(\mathrm{~m}$, $6 \mathrm{H}), 1.40-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ MHz, DMSO- d_{6}) $\delta 172.5,169.0,166.6,159.3,147.2,143.4,129.9,128.8,126.7$, $125.2,123.2,117.1,44.7,38.7,35.2,32.1,31.0,28.3,24.9,24.9,19.6,13.7$; HRMS (AP-ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 415.2340$, found: 415.2334 .
5.1.63. $\quad N^{1}$-((4-(butylcarbamoyl)quinolin-2-yl)methyl)- N^{8}-hydroxyoctanediamide (9i)
Yield: 56\%, mp: 158-160 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.32(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{t}$, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{t}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.36-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.50(\mathrm{~m}$, $6 \mathrm{H}), 1.40-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ MHz , DMSO- d_{6}) $\delta 172.5,169.1,166.6,159.3,147.2,143.3,129.9,128.8,126.7$, 125.2, 123.2, 117.1, 44.7, 38.7, 35.3, 32.2, 31.0, 28.4, 25.2, 24.9, 19.6, 13.7; HRMS (AP-ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 429.2496$, found: 429.2487.

5.1.64. N^{1}-hydroxy- N^{7}-((4- (methylcarbamoyl)quinolin-2-yl)methyl)

heptanediamide (9j)

Yield: $57 \%, \mathrm{mp}: 154-156{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.33(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{q}$, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.87(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 1.57-1.45 (m, 4H), 1.37-1.24 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 172.5$, 169.1, 167.1, 159.2, 147.2, 143.1, 129.9, 128.8, 126.7, 125.3, 123.2, 117.2, 44.7, 35.2, 32.2, 28.3, 26.0, 24.9, 24.9; HRMS (AP-ESI) m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 373.1870, found: 373.1867.

5.1.65. N^{1}-hydroxy- N^{8}-((4-(methylcarbamoyl)quinolin-2-yl)methyl) octanediamide (9k)

Yield: $50 \%, \mathrm{mp}: 160-162{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.32(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{q}$, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 4.56$ (d, $J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{t}, J=7.5$
$\mathrm{Hz}, 2 \mathrm{H}), 1.57-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.25(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ $172.5,169.1,167.1,159.3,147.2,143.1,129.9,128.8,126.7,125.3,123.2,117.2$, 44.7, 35.3, 32.2, 28.4, 26.0, 25.1, 25.0; HRMS (AP-ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}$387.2027, found: 387.2033.

5.1.66. N^{1}-((4-(benzylcarbamoyl)-6-bromoquinolin-2-yl)methyl)- N^{7}-hydroxy heptanediamide (91)

Yield: 37%, mp: $174-176{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 10.38$ (s, 1 H), 9.47 (t, $J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.56$ ($\mathrm{s}, 1 \mathrm{H}$), 7.43-7.29 (m, 5H), $4.57(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, DMSO- d_{6}) δ 172.6, 169.1, 166.2, 160.1, 145.9, 141.5, 138.9, 133.0, 131.1, 128.5, $127.4,127.3,127.1,124.5,120.0,118.5,44.7,42.7,35.2,32.2,28.3,24.9,24.9$; HRMS (AP-ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{BrN}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 527.1288$, found: 527.1296.

5.1.67. N^{1}-((4-(benzylcarbamoyl)-6-bromoquinolin-2-yl)methyl)- N^{8}-hydroxy octanediamide ($\mathbf{9 m}$)

Yield: 70%, mp: 136-138 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 10.38$ (s, 1 H), 9.54 (t, $J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.93(\mathrm{~m}, 2 \mathrm{H})$, $7.60(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.57-4.55(\mathrm{~m}, 4 \mathrm{H}), 2.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.29-1.22(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$ $\delta 172.7,169.1,166.1,160.1,145.6,141.5,138.9,133.1,130.8,128.4,127.4,127.2$, 127.0, 124.5, 120.0, 118.5, 44.5, 42.6, 35.2, 32.2, 28.4, 28.3, 25.1, 24.9; HRMS (AP-ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{BrN}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 541.1445$, found: 541.1435.

5.1.68. N^{1}-((4-(benzylcarbamoyl)-6-bromoquinolin-2-yl)methyl)- N^{9}-hydroxy nonanediamide (9n)

Yield: 91%, mp: $162-164{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.33$ ($\mathrm{s}, 1 \mathrm{H}$), 9.44 (t, $J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.92$ $(\mathrm{m}, 2 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 5 \mathrm{H}), 4.56-4.55(\mathrm{~m}, 4 \mathrm{H}), 2.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.29-1.22(\mathrm{~m}, 6 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, DMSO- d_{6}) δ 172.6, 169.1, 166.1, 160.1, 145.9, 141.5, 138.9, 132.9, 131.1, 128.4, $127.4,127.2,127.0,124.5,119.9,118.4,44.6,42.7,35.3,32.3,28.6,28.5,28.5,25.2$, 25.1; HRMS (AP-ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{BrN}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$555.1601, found: 555.1608.

5.1.69. N^{1}-((6-bromo-4-(phenylcarbamoyl)quinolin-2-yl)methyl)- N^{7}-hydroxy heptanediamide (90)

Yield: 92%, mp: $174-176{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.92$ (s, 1 H), 10.35 ($\mathrm{s}, 1 \mathrm{H}$), $8.67(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.95(\mathrm{~m}$, $2 \mathrm{H}), 7.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.60(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 1.58-1.45 (m, 4H), 1.30-1.22 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 172.7$, 169.1, 164.8, 160.2, 145.9, 141.3, 138.6, 133.1, 131.2, 128.8, 127.1, 124.3, 120.2,
120.1, 118.8, 44.7, 35.2, 32.2, 28.3, 24.9, 24.9; HRMS (AP-ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{BrN}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$513.1132, found: 513.1132.

5.1.70. N^{1}-((6-bromo-4-(phenylcarbamoyl)quinolin-2-yl)methyl)- N^{8}-hydroxy octanediamide (9p)

Yield: 93%, mp: $170-172{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.92$ (s, 1 H), 10.36 ($\mathrm{s}, 1 \mathrm{H}$), $8.62(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J$ $=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 4 \mathrm{H})$, 1.28-1.22 (m, 4H), ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 172.7,169.1,164.7,160.2$, $145.9,141.4,138.6,133.2,131.2,128.9,127.1,124.3,120.2,120.1,118.7,44.7,35.3$, 32.2, 28.4, 28.4, 25.1, 24.9; HRMS (AP-ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{BrN}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 527.1288, found: 527.1281.

5.1.71. N^{1}-hydroxy- $N^{\mathbf{5}}$-(quinolin-2-ylmethyl)glutaramide (9q)

Yield: 85%, mp: $178-180^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.40(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.71(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{t}, J=5.85 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.98-7.94 (m, 2H), 7.78-7.72 (m, 1H), 7.60-7.55 (m, 1H), $7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.54(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=7.35 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.72$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 172.0,168.8,159.5,146.9,136.7,129.6$, 128.3, 127.8, 126.9, 126.1, 119.6, 44.8, 34.7, 31.8, 21.5; HRMS (AP-ESI) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$288.1343, found: 288.1341.

5.1.72. N^{1}-hydroxy- N^{6}-(quinolin-2-ylmethyl)adipamide (9r)

Yield: $44 \%, \mathrm{mp}: 162-164^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.36(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~s}$, $1 \mathrm{H}), 8.56(\mathrm{t}, J=5.85 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.72$ $(\mathrm{m}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J$ $=7.35 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-1.51(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, DMSO- d_{6}) $\delta 172.4,168.9,159.5,146.9,136.6,129.6,128.4,127.8,126.8,126.1$, 119.6, 44.8, 35.1, 32.1, 24.9, 24.9; HRMS (AP-ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 302.1499$, found: 302.1500.

5.1.73. N^{1}-hydroxy- N^{7}-(quinolin-2-ylmethyl)heptanediamide (9s)

Yield: $64 \%, \mathrm{mp}: 156-158{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.36(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{t}, J=5.85 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.94(\mathrm{~m}$, $2 \mathrm{H}), 7.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ (d, $J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=7.35 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.45(\mathrm{~m}$, 4H), 1.30-1.20 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 172.5,169.1,159.6,146.7$, 136.9, 129.7, 128.2, 127.8, 126.9, 126.1, 119.6, 44.7, 35.2, 32.1, 28.3, 25.0, 24.9; HRMS (AP-ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 316.1656$, found: 316.1659.

5.1.74. N^{1}-hydroxy- N^{8}-(quinolin-2-ylmethyl)octanediamide (9t)

Yield: 61%, mp: $134-136{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.35(\mathrm{~s}, 1 \mathrm{H}), 8.67(\mathrm{~s}$, $1 \mathrm{H}), 8.54(\mathrm{t}, J=5.85 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{td}$,
$\left.J_{l}=8.4 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J$ $=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=7.35 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.43(\mathrm{~m}, 4 \mathrm{H})$, $1.27-1.25(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 172.6,169.1,159.5,145.9$, 137.6, 130.1, 127.9, 127.5, 126.9, 126.4, 119.7, 44.4, 35.3, 32.2, 28.4, 28.4, 25.1, 25.0; HRMS (AP-ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$330.1812, found: 330.1819.

5.1.75. $\boldsymbol{N}^{\mathbf{1}}$-((6-fluoroquinolin-2-yl)methyl)- $\boldsymbol{N}^{\boldsymbol{7}}$-hydroxyheptanediamide (9u)

Yield: 86%, mp: 181-182 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.33(\mathrm{~s}, 1 \mathrm{H}), 8.67(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05-8.00(\mathrm{~m}, 1 \mathrm{H})$, $7.78\left(\mathrm{dd}, J_{l}=9.3 \mathrm{~Hz}, J_{2}=3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.67\left(\mathrm{td}, J_{l}=10.5 \mathrm{~Hz}, J_{2}=3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.48(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 2 H), 1.59-1.45 (m, 4H), 1.30-1.20 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz , DMSO- d_{6}) $\delta 172.5$, $169.2,159.4(\mathrm{~d}, J=243.1 \mathrm{~Hz}), 159.2(\mathrm{~d}, J=26 \mathrm{~Hz}), 144.1,136.3,136.2,131.1(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}), 127.5(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 120.4,119.5(\mathrm{~d}, J=25.6 \mathrm{~Hz}), 110.9(\mathrm{~d}, J=21.6$ Hz), 44.7, 35.2, 32.2, 28.3, 25.0, 24.9; HRMS (AP-ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 334.1561$, found: 334.1553 .

5.1.76. N^{1}-((6-chloroquinolin-2-yl)methyl)- \boldsymbol{N}^{7}-hydroxyheptanediamide (9v)

Yield: 84%, mp: $179-180{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.34(\mathrm{~s}, 1 \mathrm{H}), 8.67$ (s, $1 \mathrm{H}), 8.53(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}$, $J=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78\left(\mathrm{dd}, J_{l}=9 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}$, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.45(\mathrm{~m}, 4 \mathrm{H})$, 1.30-1.21 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 172.6,169.1,160.3,145.4$, 136.0, 130.5, 130.4, 130.1, 127.6, 126.5, 120.6, 44.8, 35.2, 32.2, 28.3, 25.0, 24.9; HRMS (AP-ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 350.1266$, found: 350.1262 .

5.1.77. N^{1}-((6-bromoquinolin-2-yl)methyl)- N^{7}-hydroxyheptanediamide (9 w)

Yield: 90%, mp: $180-182{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.32(\mathrm{~s}, 1 \mathrm{H}), 8.65$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.92-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.21(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 172.5,169.1,160.3,145.5,135.9,132.6,130.6$, $129.8,128.2,120.5,118.9,44.8,35.2,32.2,28.3,25.0,24.9$; HRMS (AP-ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$394.0761, found: 394.0766.

5.1.78. \boldsymbol{N}^{1}-((6-bromoquinolin-2-yl)methyl)- N^{8}-hydroxyoctanediamide (9x)

Yield: 71%, mp: $158-160{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, ~ D M S O-d_{6}\right) \delta 10.32(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{t}$, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.84(\mathrm{~m}, 2 \mathrm{H})$, $7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.24(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ 172.6, 169.1, 160.3, 145.3, 136.0, 132.7, 130.4, 129.8, 128.2, 120.5, 118.9, 44.7, 35.3, 32.2, 28.4, 28.4, 25.2, 25.0; HRMS (AP-ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{BrN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 408.0917, found: 408.0936.

5.1.79. \boldsymbol{N}^{1}-hydroxy- \boldsymbol{N}^{7}-((6-iodoquinolin-2-yl)methyl)heptanediamide (9y)

Yield: 95%, mp: $160-162{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.33(\mathrm{~s}, 1 \mathrm{H}), 8.66(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.01\left(\mathrm{dd}, J_{l}=9 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.75(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.51(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 1.59-1.45 (m, 4H), 1.30-1.23 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 172.5$, $169.1,160.3,137.9,136.3,135.6,131.5,131.4,130.3,128.8,128.7,120.3,44.8,35.2$, 32.2, 28.3, 25.0, 24.9. HRMS (AP-ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{IN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 442.0622$, found: 442.0613 .

5.1.80. Methyl 7-(((4-(benzylcarbamoyl)-6-phenylquinolin-2-yl)methyl)amino)-7oxoheptanoate (10a)

To a nitrogen degassed solution of compound $\mathbf{8 1}(0.55 \mathrm{~g}, 1.1 \mathrm{mmol})$ in toluene (25 mL) were successively added phenylboronic acid ($0.16 \mathrm{~g}, 1.3 \mathrm{mmol}$), sodium carbonate $(0.35 \mathrm{~g}, 3.3 \mathrm{mmol}), \mathrm{PPh}_{3}$ (0.05 epuiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.05 equiv). The reaction mixture was refluxed overnight. And water (100 mL) was added. After extraction with EtOAc ($3 * 50 \mathrm{~mL}$), the combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude material was purified by column chromatography to afford white solid $\mathbf{1 0 a}(0.17 \mathrm{~g}, 30 \%) . \mathrm{Mp}$: $155-157{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 9.42(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{t}, J=6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.14-8.11(\mathrm{~m}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.54-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 1 \mathrm{H})$, $4.58-4.54(\mathrm{~m}, 4 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.60-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 2 \mathrm{H})$. ESI-MS m/z: $524.8[\mathrm{M}+\mathrm{H}]^{+}$.
Compound 10b was synthesized by the same method described above.

5.1.81. Methyl 7-oxo-7-(((6-phenylquinolin-2-yl)methyl)amino)heptanoate (10b)

Yield: 60%, mp: $112-114^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.53(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H})$, 8.41 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.26$ (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.82(\mathrm{~m}$, $2 \mathrm{H}), 7.55-7.40(\mathrm{~m}, 4 \mathrm{H}), 4.55(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.27(\mathrm{~m}, 2 \mathrm{H})$. ESI-MS m/z: 391.5 $[\mathrm{M}+\mathrm{H}]^{+}$.

5.1.82. N^{1}-((4-(benzylcarbamoyl)-6-phenylquinolin-2-yl)methyl)- N^{7}-hydroxy heptanediamide (11a)

Yield: 76\%, mp: 174-176 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.35(\mathrm{~s}, 1 \mathrm{H}), 9.45(\mathrm{t}$, $J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.12-8.11$ $(\mathrm{m}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.37(\mathrm{~m}$, $3 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 4.59-4.57(\mathrm{~m}, 4 \mathrm{H}), 2.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.24(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ $172.5,169.1,166.7,159.5,146.6,143.1,139.2,139.2,138.2,129.2,128.5,128.4$, $127.9,127.5,127.4,127.1,126.9,123.4,122.3,117.7,44.7,42.7,35.2,32.2,28.3$, 25.0, 24.9; HRMS (AP-ESI) m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 525.2496$, found: 525.2502.

5.1.83. \boldsymbol{N}^{1}-hydroxy- \boldsymbol{N}^{7}-((6-phenylquinolin-2-yl)methyl)heptanediamide (11b)

Yield: 64%, mp: $158-160{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.33(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~s}$, $1 \mathrm{H}), 8.52(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 8.11-8.02 (m, 2H), 7.85-7.82 (m, 2H), 7.55-7.40 (m, 4H), $4.55(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.21$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.27(\mathrm{~m}, 2 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz, DMSO- d_{6}) δ 172.4, 169.1, 159.7, 146.3, 139.3, 137.6, 137.0, 129.1, 128.9, 128.7, 127.8, 127.1, 127.0, 125.2, 120.0, 44.5, 35.2, 32.2, 28.3, 25.0, 24.9; HRMS (AP-ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 392.1969$, found: 392.1995.

5.2. In vitro HDAC enzymatic assay

HDAC inhibitory activities of all quinoline hydroxamic acid derivatives were evaluated by the Color de Lys ${ }^{\text {TM }}$ assay (BML-AK501, Enzo ${ }^{\circledR}$ Life Sciences) including HDAC1\&2. Based on the HDAC kit instruction, HDAC1\&2 (HeLa cell nucleus extracts), substrate and tested compounds (including positive control compound) were diluted to needed concentrations. Firstly, HDAC1\&2 (15 $\mu \mathrm{L} /$ well) and tested compounds ($10 \mu \mathrm{~L} /$ well) with different concentrations were incubated at $37{ }^{\circ} \mathrm{C}$ for 5 minutes in the 96 -well plate. After addition of substrate ($25 \mu \mathrm{~L} / \mathrm{well}$), the resulting mixture kept up incubating at $37{ }^{\circ} \mathrm{C}$ for 0.5 h . Nextly, the mixture ($50 \mu \mathrm{~L} / \mathrm{well}$) of Color de Lys Developer and TSA was added. After incubation for 0.5 h , absorbance values were measured in a microtiter-plate reader at 405 nm . The inhibition rates were calculated from the ultraviolet absorption values of inhibited wells and positive control wells. Finally, the IC_{50} values were gained using a regression analysis method between the concentration and inhibition rate.

5.3. Molecular docking

Surflex-dock was used for the molecular docking of $\mathbf{9 w}$ and all the parameters were set to the default except mentioned. The HDAC2 active site was gained based on the co-crystal structure of HDAC2-SAHA (PDB code: 4LXZ). Compound 9w was optimized using concord method and then assigned with AM1-BCC charges ${ }^{[17]}$. Other detail method referred to literature. ${ }^{[16]}$

5.4. MTT Assay

MDA-MB-231 (breast cancer cell), PC-3 (prostate cancer cell), K562 (chronic myelogenous leukaemia cell) and A549 (lung cancer cell) were respectively cultured in RPMI1640 medium ($10 \% \mathrm{FBS}$) at $37{ }^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ humid incubator. Cell anti-proliferative assay was determined by MTT [(3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide)] method. Medium ($100 \mu \mathrm{~L} / \mathrm{well}$) including cancer cells (4000 cells/well) was plated in 96 -well plates. After incubation for 8 h , different concentrations of inhibitors ($100 \mu \mathrm{~L} /$ well) were added. Followed by 48 h incubation, 0.5% MTT ($10 \mu \mathrm{~L} / \mathrm{well}$) was used. After 4 h , DMSO ($150 \mu \mathrm{~L}$) was added and rocked for 10 min at $37{ }^{\circ} \mathrm{C}$ in a shaker. At last, the optical density values were read with a microtiter-plate reader at 570 nm .

Acknowledgments

This work was supported by National Natural Science Foundation China (No. 81373281), Shandong Natural Science Fund for Distinguished Young Scholars (No. JQ201319), the Program for New Century Excellent Talents in University (No. NCET-12-0337) and Program for Changjiang Scholars and Innovative Research Team in University, PCSIRT (No. IRT13028).

References and notes

[1] Barneda-Zahonero B.; Parra M. Histone deacetylases and cancer[J]. Molecular Oncology, 2012, 6 (6): 579-589.
[2] Kristensen L.S.; Nielsen H.M.; Hansen L.L. Epigenetics and cancer treatment[J]. European Journal of Pharmacology, 2009, 625 (1-3): 131-142.
[3] Hoshino I.; Matsubara H. Recent advances in histone deacetylase targeted cancer therapy[J]. Surg Today, 2010, 40 (9): 809-815.
[4] Witt O.; Deubzer H.E.; Milde T., et al. HDAC family: What are the cancer relevant targets?[J]. Cancer Letters, 2009, 277 (1): 8-21.
[5] Hess-Stumpp H. Histone deacetylase inhibitors and cancer: from cell biology to the clinic[J]. Eur J Cell Biol, 2005, 84 (2-3): 109-121.
[6] New M.; Olzscha H.; La Thangue N.B. HDAC inhibitor-based therapies: Can we interpret the code?[J]. Molecular Oncology, 2012, 6 (6): 637-656.
[7] Zhang Y.; Fang H.; Feng J., et al. Discovery of a tetrahydroisoquinoline-based hydroxamic acid derivative (ZYJ-34c) as histone deacetylase inhibitor with potent oral antitumor activities[J]. J Med Chem, 2011, 54 (15): 5532-5539.
[8] Zhang Y.; Feng J.; Jia Y., et al. Development of tetrahydroisoquinoline-based hydroxamic acid deri vatives: potent histone deacetylase inhibitors with marked in vitro and in vivo antitumor activities[J]. J Med Chem, 2011, 54 (8): 2823-2838.
[9] Guan P.; Sun F.; Hou X., et al. Design, synthesis and preliminary bioactivity studies of 1,3,4-thiadiazole hydroxamic acid derivatives as novel histone deacetylase inhibitors[J]. Bioorg Med Chem, 2012, 20 (12): 3865-3872.
[10] Guan P.; Wang L.; Hou X., et al. Improved antiproliferative activity of 1,3,4-thiadiazole-containing histone deacetylase (HDAC) inhibitors by introduction of the heteroaromatic surface recognition motif[J]. Bioorg Med Chem, 2014, 22 (21): 5766-5775.
[11] Han L.; Wang L.; Hou X., et al. Design, synthesis and preliminary bioactivity studies of 1,2-dihydrobenzo[d]isothiazol-3-one-1,1-dioxide hydroxamic acid derivatives as novel histone deacetylase inhibitors[J]. Bioorg Med Chem, 2014, 22 (5): 1529-1538.
[12] Zhang Y.; Yang P.; Chou C.J., et al. Development of -Hydroxycinnamamide-Based Histone Deacetylase Inhibitors with Indole-Containing Cap Group[J]. ACS Med Chem Lett, 2013, 4 (2): 235-238.
[13] Li X.; Inks E.S.; Li X., et al. Discovery of the first N-hydroxycinnamamide-based histone deacetylase $1 / 3$ dual inhibitors with potent oral antitumor activity[J]. J Med Chem, 2014, 57 (8): 3324-3341.
[14] Wang J.; Sun F.E.; Han L., et al. Design, synthesis, and preliminary bioactivity studies of substituted purine hydroxamic acid derivatives as novel histone deacetylase (HDAC) inhibitors[J]. MedChemComm, 2014, 5 (12): 1887-1891.
[15] Moffat D.; Patel S.; Day F., et al. Discovery of
2-(6-\{[(6-fluoroquinolin-2-yl)methyl]amino\} bicyclo[3.1.0]hex-3-yl)-N-hydroxypyrim idine-5-carboxamide (CHR-3996), a class I selective orally active histone deacetylase inhibitor[J]. J Med Chem, 2010, 53 (24): 8663-8678.
[16] Hou X.; Li R.; Li K., et al. Fast identification of novel lymphoid tyrosine phosphatase inhibitors using target-ligand interaction-based virtual screening[J]. J Med Chem, 2014, 57 (22): 9309-9322.
[17] Hou X.; Du J.; Zhang J., et al. How to improve docking accuracy of AutoDock4.2: a case study using different electrostatic potentials[J]. J Chem Inf Model, 2013, 53 (1): 188-200.
[18] Butler K.V.; Kalin J.; Brochier C., et al. Rational Design and Simple Chemistry Yield a Superior, Neuroprotective HDAC6 Inhibitor, Tubastatin A[J]. Journal of the American Chemical Society, 2010, 132 (31): 10842-10846.
[19] Whitehead L.; Dobler M.R.; Radetich B., et al. Human HDAC isoform selectivity achieved via exploitation of the acetate release channel with structurally unique small molecule inhibitors[J]. Bioorganic \& Medicinal Chemistry, 2011, 19 (15): 4626-4634.

Fig. 1 HDAC inhibitor pharmacophore model and our substituted quinoline hydroxamic acid derivative

Scheme 1. Reagents and conditions: (a) EDCI, HOBT, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, substituted aniline, $0^{\circ} \mathrm{C}$ to rt, overnight; (b) $\mathrm{SeO}_{2}, 1,4$-dixoane, reflux, 1 h ; (c) (i) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, \mathrm{rt}, 15 \mathrm{~min}$; (ii) PBr_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$, overnight; (d) (i) NaN_{3}, DMF, rt, overnight; (ii) PPh_{3}, THF, rt, 5 h ; (e) EDCI, HOBT, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to RT, overnight; (f) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{KOH}, \mathrm{MeOH}, \mathrm{rt}, 1 \mathrm{~h}$.

Scheme 2. Reagents and conditions: (g) $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}$, phenylboronic acid, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, toluene, reflux, overnight; (f) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{KOH}, \mathrm{MeOH}, \mathrm{rt}, 1 \mathrm{~h}$.

Figure 2. Compounds SARs analysis.

Figure 3 The molecular binding mode of compound 9w and SAHA in the active site of HDAC2 using surflex dock software

Tab. 1 the structures and HDACs inhibitory activities of quinoline hydroxamate derivatives

Compd	R_{1}	R_{2}	n	$\begin{gathered} \mathrm{IC}_{50}{ }^{a} \text { of HDACs } \\ (\mathrm{nM}) \end{gathered}$
9a	H	-CONHBn	3	> 1000
9b	H	-CONHBn	4	>1000
9 c	H	-CONHBn	5	399 ± 26
9d	H	-CONHBn	6	780 ± 285
9e	H	-CONHBn	7	>1000
9 f	H	-CONHPh	5	301 ± 166
9g	H	-CONHPh	6	562 ± 177
9 h	H	-CONHBu-n	5	444 ± 40
9 i	H	-CONHBu-n	6	> 1000
9j	H	-CONHMe	5	642 ± 237
9k	H	-CONHMe	6	> 1000
91	Br	-CONHBn	5	343 ± 86
9 m	Br	-CONHBn	6	>1000
9 n	Br	-CONHBn	7	>1000
90	Br	-CONHPh	5	196 ± 43
9p	Br	-CONHPh	6	>1000
9q	H	H	3	>1000
9r	H	H	4	> 1000
9s	H	H	5	266 ± 110
91	H	H	6	678 ± 332
9 u	F	H	5	155 ± 58
9 y	Cl	H	5	120 ± 15
9w	Br	H	5	85 ± 32
9x	Br	H	6	146 ± 31
9y	I	H	5	132 ± 29
11a	Ph	-CONHBn	5	341 ± 46
11b	Ph	H	5	152 ± 43
SAHA				161 ± 51

${ }^{a}$ Values are the mean of three independent determinations and expressed with standard deviations.

Tab. 2 Anti-proliferative activities against MDA-MB231, PC3, K562 and A549 cell lines

Compd.	$\mathrm{IC}_{50}(\mu \mathrm{M})^{a}$			
	MDA-MB-231	PC-3	K562	A549
$\mathbf{9 v}$	1.84 ± 0.11	9.13 ± 1.91	3.39 ± 0.38	2.71 ± 0.34
$\mathbf{9 w}$	0.90 ± 0.25	9.26 ± 0.50	4.86 ± 1.38	3.89 ± 0.72
9y	1.41 ± 0.37	8.48 ± 1.29	2.45 ± 0.59	2.58 ± 0.31
SAHA	2.02 ± 0.30	7.30 ± 0.20	3.94 ± 0.39	5.32 ± 1.64

${ }^{a}$ Values are the mean of three independent determinations and expressed with standard deviations.

Graphic Abstract

[^0]: * Corresponding author. Phone: +86-531-88382731. Fax: +86-531-88382548. E-mail: haofangen@ sdu.edu.cn.

