

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 63 (2007) 474-491

Simple route to 3-(2-indolyl)-1-propanones via a furan recyclization reaction

Alexander V. Butin,^{a,*} Sergey K. Smirnov,^a Tatyana A. Stroganova,^a Wolfgang Bender^b and Gennady D. Krapivin^a

> ^aResearch Institute of Heterocyclic Compounds Chemistry, Kuban State University of Technology, Moskovskaya Street 2, Krasnodar 350072, Russia
> ^bBayer HealthCare AG, D-51368 Leverkusen, Germany

> > Received 12 July 2006; revised 29 September 2006; accepted 19 October 2006 Available online 15 November 2006

Abstract—A simple route to 1-R-3-(2-indolyl)-1-propanones has been elaborated based on recyclization of 2-(2-aminobenzyl)furan derivatives. Being a modification of the Reissert indole synthesis, our approach employs the furan ring as a source of carbonyl function. This approach is general and allows varying of substituents in aromatic ring as well as in 3-position of indole nucleus. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The indole framework is a structural feature of a vast number of natural and synthetic biologically active compounds. This fact calls forth the elaboration of new methods for the synthesis of indole ring system as well as to modifications of the known general approaches to this class of compounds.¹ One of the oldest synthesis, the Reissert method, based on the reductive cyclization of *ortho*-nitrophenylpyruvate derivatives into indole-2-carboxylic acids, is still important today. On its own² as well as with its closest modifications,³ the method is widely used in the synthesis of natural and unnatural compounds possessing different kinds of biological activity. It is based on the spontaneous cyclization of *ortho*-aminobenzylcarbonyl compounds A generated in situ (Fig. 1).

Figure 1. The cyclization of *ortho*-aminobenzylcarbonyl compounds into indole derivatives.

Two methods are known for the generation of compounds **A**. The first way, perhaps used most widely, includes the reduction of nitro group in *ortho*-nitrobenzylcarbonyl compounds⁴ or their analogs, for example, Leimgruber–

Batcho indole synthesis.⁵ Another one consists in a generation of the carbonyl group by the oxidation of 2-aminophenethyl alcohols⁶ or oxidative cleavage of appropriate olefins.⁷ The carbonyl function can also be obtained by partial reduction of the nitrile group usually in *o*-nitrophenylacetonitriles with simultaneous generation of carbonyl and amino functions.⁸

Methods of indole synthesis employing recyclization of a heterocyclic fragment which can serve as a source of a carbonyl group are also very interesting. Thus, Ogasawara elaborated an original method for the synthesis of indole-3-acetic acid derivatives based on recyclization of 3-(2-aminoaryl)-2,3-dihydro-2,5-dimethoxyfurans in methylene chloride in the presence of trifluoroacetic acid (Scheme 1).⁹ The methodology was employed later in the synthesis of psilocin.¹⁰ Another interesting indole synthesis based on recyclization of 5-aminocoumarines upon treatment with sulfuric acid in boiling methanol was reported by Alper and Nguyen (Scheme 2).¹¹ In the known recyclization of 4-amino-2-methylbenzofuran derivatives into 4-hydroxy-2-methyl-indoles under strong acidic conditions, the furan ring formally acts as a source of carbonyl function (Scheme 3).¹²

It is well known that alkylfurans can be hydrolyzed into 1,4dicarbonyl compounds¹³ under acidic conditions. This property is widely exploited in organic synthesis. In particular, during last years we developed a general approach to the synthesis of benzoannelated heterocyclic compounds based on recyclization of *ortho*-substituted benzylfurans.¹⁴ In a preliminary publication we reported on a novel approach to indole synthesis (Scheme 4).¹⁵

Keywords: Furan; Recyclization; Indoles.

^{*} Corresponding author. Tel.: +7 861 2559556; fax: +7 861 2596592; e-mail: alexander_butin@mail.ru

^{0040–4020/\$ -} see front matter 0 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2006.10.056

Scheme 1.

Scheme 2.

The problem of the highly functionalized indole synthesis always attracts the attention of researchers. Our method allows construction of the indole nucleus with oxopropyl substituent at the 2-position making these compounds suitable for further synthetic use. Few ways of indole synthesis with similar structure are known¹⁶ and the most popular one employs Michael addition.¹⁷ At the same time, limited numbers of 3-(2-indolyl)-1-propanones can be obtained by this method. The main drawback of this approach is the impossibility of synthesis of indoles unsubstituted at the 3-position due to its susceptibility to electrophilic attack. On the other hand, 3-substituted indoles usually react sluggishly with α,β -enones to give Michael products and require the search for more efficient catalysts.^{17f} Recently it was reported that the direction of electrophilic attack can be changed by preliminary reduction of indole into 4,7-dihydroindole via Birch procedure.¹⁸ Subsequent Michael addition with suitable electrophiles and reoxidation leads to the desired indole system. Although this multistep reaction sequence is regioselective, it proceeds in low overall yields.18

The method proposed by us is more general than all existing approaches to 3-(2-indolyl)-1-propanones. We report here detailed results on the indole synthesis published in our pre-liminary article.¹⁵

2.1. Synthesis of starting materials

2-Aminobenzylfurans were the starting compounds for our synthesis of indole derivatives. One of the general approaches to benzylfurans is the alkylation of furans with benzylalcohols,¹⁹ which can be obtained by reduction of the corresponding ketones.

Acylation of veratrol or 1,4-benzodioxane with acyl chlorides under the Friedel–Crafts conditions furnished ketones 1a-i in 75–85% yields. They were further nitrated with fuming nitric acid in acetic acid²⁰ giving nitroderivatives 2a-i. The reduction of the latter with iron powder in water in the presence of acetic acid afforded the desired ketones 3a-i(Scheme 5, Table 1). Ketones 3j,k were obtained from

Scheme 5.

Table 1. Synthesis of the ketones 2 and 3

Entry	R	\mathbb{R}^1	R^2	Product	Yield (%)	Product	Yield (%)
a	OMe	OMe	5-Me-Fur	2a	65	3a	85
b	OMe	OMe	Me	2b	57	3b	72
с	OMe	OMe	Et	2c	65	3c	68
d	OMe	OMe	CH ₂ Ph	2d	63	3d	66
e	OCH ₂	CH_2O	Me	2e	56	3e	65
f	OMe	OMe	Ph	2f	83	3f	90
g	OMe	OMe	4-MeC ₆ H ₄	2g	68	3g	73
ĥ	OMe	OMe	$4-ClC_6H_4$	2h	77	3h	67
i	OCH ₂	CH_2O	Ph	2i	78	3i	74
j	Н	Н	Ph	_		3j	82
k	Н	Н	4-BrC ₆ H ₄	_		3k	85
1	Н	Cl	Ph	—	_	31	75

Scheme 6.

N-tosylanthranilic acid by the known method²¹ and compound **3** was obtained via reduction of benzisoxazole 4^{22} (Scheme 6, Table 1).

Aminobenzylalcohols failed to react with furans under the alkylation conditions employed. This fact can be rationalized by protonation of amino group leading to instability of the corresponding benzyl cation. To overcome such problems and reduce the basicity of the amino group, the ketones **3b–1** were transformed into compounds **5b–1** and then into benzylalcohol derivatives **6b–1** (Scheme 7, Table 2).

Scheme 7.

Table 2. Synthesis of the compounds 5 and 6

Entry	R	R^1	R ²	Product	Yield (%)	Product	Yield (%)
b	OMe	OMe	Me	5b	79	6b	69
c	OMe	OMe	Et	5c	74	6c	72
d	OMe	OMe	CH ₂ Ph	5d	77	6d	68
e	OCH ₂	CH ₂ O	Me	5e	72	6e	70
f	OMe	OMe	Ph	5f	81	6f	85
g	OMe	OMe	4-MeC ₆ H ₄	5g	80	6g	84
h	OMe	OMe	$4-ClC_6H_4$	5h	78	6h	86
i	OCH ₂	CH_2O	Ph	5i	79	6i	83
j	Н	Н	Ph	5j	70	6j	85
k	Н	Н	4-BrC ₆ H ₄	5k	72	6k	89
1	Н	Cl	Ph	51	69	61	89

The reduction of the ketone **3a** with NaBH₄ in the presence of a two-fold excess of AlCl₃ according to the published procedure²³ afforded 2-aminobenzylfuran **7**, which after tosylation gave compound **8a** (Scheme 8, Table 3). 2-Tosylaminobenzylfuran derivatives **8b–1** were prepared by alkylation of 2-methylfuran with corresponding alcohols **6b–1** in the presence of *para*-toluenesulfonic acid with azeotropical removal of water in boiling CH₂Cl₂ for compounds **8b–i** or in boiling benzene for compounds **8j–1** (Scheme 9, Table 3).

Table 3. Synthesis of compounds 8 and 9

Entry	R	R^1	R ²	Product	Yield (%)	Product	Yield (%)
a	OMe	OMe	Н	8a	82	9a	67
b	OMe	OMe	Me	8b	69	9b	78
с	OMe	OMe	Et	8c	75	9c	69
d	OMe	OMe	CH ₂ Ph	8d	42	9d	67
e	OCH ₂	CH_2O	Me	8e	75	9e	85
f	OMe	OMe	Ph	8f	82	9f	80
g	OMe	OMe	4-MeC ₆ H ₄	8g	78	9g	84
ĥ	OMe	OMe	$4-ClC_6H_4$	8h	78	9ĥ	81
i	OCH ₂	CH_2O	Ph	8i	79	9i	71
j	Н	Н	Ph	8j	80	9j	82
k	Н	Н	4-BrC ₆ H ₄	8k	78	9k	81
l	Н	Cl	Ph	81	62	91	66

Scheme 9.

2.2. Synthesis of indole derivatives

Refluxing benzylfurans **8a,b,e–l** in ethanolic solution saturated with hydrogen chloride (Scheme 10, Table 2) leads to indole ketones **9a,b,e–l** (Scheme 10, Table 3). The recyclization reaction starts with furan ring protonation and subsequent nucleophilic attack of the nitrogen atom lone pair onto the furyl cation. Reaction times ranged from 20 to 40 min, except for benzylfurans **8j–l**, which required 1.5–2 h. It should be noted that the recyclization of benzylfurans **8c** (R²=Et) and **8d** (R²=CH₂Ph) under the same conditions proceeded with formation of considerable amounts of unidentified by-products. We found that optimal conditions for the transformation **8c,d** \rightarrow **9c,d** were in acetic acid solution at room temperature in the presence of hydrochloric acid (Scheme 10, Table 3). Moreover, it was found that this method also worked well for other indoles **9a,b,e–l**.

Indole derivatives **9a–1** were fully characterized by spectral methods. For unambiguous proof of structure, X-ray analysis was performed for **9j** (Fig. 2).²⁴

To establish the reaction scope, we studied the influence of the substituents in the 5-position of the furan ring on the reaction course. For this purpose, benzylfurans **8m**–**p** were obtained by alkylation of corresponding furan derivatives with alcohol **6f** (Scheme 11). It is appeared that the nature of the alkyl substituent in the 5-position of the furan ring had no influence on the recyclization process. Corresponding indoles **9m,n** were obtained in high yield from benzylfurans **8m,n**

Scheme 10.

by refluxing in ethanolic hydrogen chloride solution (Scheme 11). Any attempts to recyclize compound **80** failed and resulted in tarry materials. We found that even prolonged heating (12 h) of the benzylfuran **8p** bearing aromatic substituent in 5-position with ethanolic hydrogen chloride resulted in isolation of intact starting material. Optimized conditions for **8p** appeared to be in acetic acid solution in

Figure 2. ORTEP diagram of 9j.

the presence of sufficient amount of 70% perchloric acid at room temperature. Despite the reaction requiring five days for completion it gave pure indole 9p in 60% yield (Scheme 11).

We also studied the influence of the protective group at nitrogen on the course of the recyclization. Starting benzylfurans **8q-t** were prepared according to Scheme 12. As it was expected, replacement of the tosyl group with mesyl one had no influence and corresponding indole **9q** was obtained from **8q** in refluxing ethanol saturated with hydrogen chloride. An attempt to recyclize benzylfuran **8r** under the same conditions failed due to resinification of the reaction mixture. We obtained indole **9r** from a mixture of acetic and hydrochloric acids at room temperature. Unlike **8q** and **8r**, acetylated amine **8s** did not give desired indole **9s**. Only resinification of the reaction mixture was observed.

The failure in the preparation of indoles **9r**,**s** under drastic reflux conditions can be attributed to the hydrolysis of amide function,²⁵ and subsequent side reactions. Most probably recyclization of compounds **8r** and **8s** in ethanolic hydrogen chloride solution gives indoles **10** unsubstituted at nitrogen. The loss of the electron withdrawing protecting group then favors intramolecular cyclization onto the 3-position with the formation of compound **11**. The instability of this intermediate under acidic conditions seems to be a reason for the observed resinification. Scheme 13 presents a plausible explanation and the nature of this transformation will be studied in future.

Entry	R ³	Product	Yield (%)	Product	Yield (%)
m	Et	8m	62	9m	72
n	<i>t</i> -Bu	8n	48	9n	79
o	н	80	24	90	-
р	$4-MeC_6H_4$	8p	59	9р	60

Scheme 12.

Scheme 13.

Indirect support for this hypothesis comes from the isolation of ketone **12** instead of the expected product **9t** upon treatment of **8t** with ethanolic hydrogen chloride solution or the mixture of acetic and hydrochloric acids at room temperature (Scheme 14). However it is not clear whether the loss of the protective group occurs after the ketone **9t** formation or before it. In our opinion, the isolation of ketone **12** was possible due to retarding of secondary cyclization by the bulky tertiary butyl group next to carbonyl function (Scheme 14). Our method of indole synthesis is limited to aryl amines protected with a sulfonyl or a benzoyl group with the exception of the isolation of unsubstituted indole **12** (Scheme 14). In order to access such indoles, we attempted detosylation reaction. We have found that refluxing of indoles **9f–i,k,l** in a methanolic solution of potassium hydroxyde^{26,27} smoothly leads to compounds **13f–i,k,l** (Scheme 15). Indole **12** was prepared from compound **9n** according to this procedure in 60% yield. However this method is applicable only to indoles **9** bearing an aromatic ring in the 3-position and failed with indoles **9a–e** substituted with hydrogen or alkyl group. The search for optimal conditions of detosylation of indoles **9a–e** is in progress.

Entry	R	R ¹	R ²	Product	Yield (%)
f	OMe	OMe	Ph	13f	90
g	OMe	OMe	$4-\text{MeC}_6\text{H}_4$	13g	86
h	OMe	OMe	4-CIC ₆ H ₄	13h	91
i	OCH ₂ CH ₂ O		Ph	13i	81
k	Н	н	$4-BrC_6H_4$	13k	54
I	Н	CI	Ph	131	62

Scheme 15.

3. Conclusion

In conclusion, we would like to note that we have developed a novel modification of Reissert's indole synthesis employing furan rings as a masked 1,4-dicarbonyl compound. Our methodology is very simple with yields ranging from good to high at every stage and allows variation of the substituents in final products and is scalable up to a pilot production. Furthermore, it gives highly functionalized indoles attractive for the further synthetic employment.

4. Experimental

4.1. General

Melting points are uncorrected. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ and in DMSO- d_6 on a Bruker AC 200, Bruker WM 250 and Bruker AM 300 spectrometers. Chemical shifts are reported in parts per million relative to tetramethylsilane as an internal standard and coupling constants (*J*) are given in absolute values in hertz to the nearest 0.1 Hz. Mass spectra were recorded on a Kratos MS-30 instrument with 70 eV electron impact ionization at 200 °C. IR spectra were recorded on InfraLUM FT-02 and InfraLUM FT-801. Column chromatography was carried out using silica gel KSK (50–160 µm) and KSK (5–40 µm) manufactured by LTD Sorbpolymer. A single crystal of **9j** suitable for X-ray crystallography was grown from ethanol.

4.1.1. General procedure for the synthesis of ketones 1a-i. Anhydrous AlCl₃ (57.4 g, 430 mmol) was added to a mixture of the corresponding acyl chloride (31.2 g, 400 mmol) and benzene (200-240 mL) under vigorous stirring keeping the temperature below 0 °C. Veratrole or 1,4benzodioxane (300 mmol) was added successively keeping the temperature below 10 °C. The resulted reaction mixture was brought to 55-60 °C and maintained for 2.5 h at this temperature under vigorous stirring. After completion of the reaction, the mixture was poured into crushed ice (500 g) containing 13 mL of concentrated hydrochloric acid. The benzene layer was separated and evaporated to dryness. The crystalline residue was washed successively with NaHCO₃ solution, water, filtered off, and air dried. Recrystallization from EtOH or hexane afforded compounds **1a-i** in 75-85% yields.

WARNING: Care should be taken when handling benzene as a solvent due to its carcinogenic properties.

4.1.2. General procedure for the nitration of compounds 1a–i. Fuming nitric acid (3.0 mL, 70 mmol) was added dropwise to a solution of corresponding ketone **1** (10 mmol) in AcOH (7 mL) at 0 °C. The reaction mixture was maintained at 0 °C for 10 min and at room temperature for 20 min. Then it was poured into ice and the separated residue was filtered off and washed with a water solution of NaHCO₃ until pH=7 was reached. Recrystallization from EtOH–acetone afforded compounds **2a–i**.

4.1.2.1. 4,5-Dimethoxy-2-nitrophenyl-5-methyl-2-furylmethanone (2a). Yield 1.89 g, 65% as a yellow solid, mp 128–129 °C [Found: C, 57.79; H, 4.42; N, 4.77. $C_{14}H_{13}NO_6$ requires C, 57.73; H, 4.50; N, 4.81%]; ν_{max} (KBr) 1653, 1577, 1522, 1275, 1075, 1016, 878, 812, 784, 758 cm⁻¹; δ_{H} (200 MHz, CDCl₃) 7.68 (1H, s, H_{Ar}), 6.98 (1H, s, H_{Ar}), 6.95 (1H, d, J 3.2 Hz, 4- H_{Fur}), 6.14 (1H, d, J 3.2 Hz, 3- H_{Fur}), 4.03 (3H, s, OMe), 3.97 (3H, s, OMe), 2.35 (3H, s, Me).

4.1.2.2. 1-(4,5-Dimethoxy-2-nitrophenyl)-1-ethanone (**2b**). Yield 1.28 g, 57% as yellow needles, mp 135–137 °C [Found: C, 53.54; H, 5.04; N, 6.37. $C_{10}H_{11}NO_5$ requires C, 53.33; H, 4.92; N, 6.22%]; ν_{max} (KBr) 1701, 1576, 1518, 1463, 1327, 1284, 1225, 1183, 1046, 883, 790 cm⁻¹; δ_{H} (200 MHz, CDCl₃) 7.59 (1H, s, H_{Ar}), 6.74 (1H, s, H_{Ar}), 3.96 (6H, s, OMe), 2.48 (3H, s, Me).

4.1.2.3. 1-(4,5-Dimethoxy-2-nitrophenyl)-1-propanone (2c). Yield 1.55 g, 65% as pale yellow needles, mp 132–133 °C [Found: C, 55.03; H, 5.21; N, 5.99. C₁₁H₁₃NO₅ requires C, 55.23; H, 5.48; N, 5.85%]; $\nu_{\rm max}$ (KBr) 1699, 1578, 1524, 1098, 1060, 1016, 871, 854, 837, 789 cm⁻¹; $\delta_{\rm H}$ (250 MHz, CDCl₃) 7.64 (1H, s, $H_{\rm Ar}$), 6.71 (1H, s, $H_{\rm Ar}$), 3.98 (6H, s, OMe), 2.72 (2H, q, J 7.2 Hz, CH₂Me), 1.25 (3H, t, J 7.2 Hz, CH₂Me).

4.1.2.4. 1-(4,5-Dimethoxy-2-nitrophenyl)-2-phenyl-1ethanone (2d). Yield 1.90 g, 63% as a pale yellow solid, mp 166–167 °C [Found: C, 63.97; H, 5.13; N, 4.74. C₁₆H₁₅NO₅ requires C, 63.78; H, 5.02; N, 4.65%]; ν_{max} (KBr) 1709, 1577, 1509, 1450, 1396, 1332, 1282, 1226, 1176, 1082, 1010, 879, 791, 774, 722, 695 cm⁻¹; δ_{H} (200 MHz, CDCl₃) 7.58 (1H, s, H_{Ar}), 7.22 (5H, s, Ph), 6.42 (1H, s, H_{Ar}), 3.97 (2H, s, CH₂Ph), 3.88 (3H, s, OMe), 3.73 (3H, s, OMe).

4.1.2.5. 1-(7-Nitro-2,3-dihydro-1,4-benzodioxin-6-yl) 1-ethanone (2e). Yield 1.25 g, 56% as a yellow solid, mp 118–120 °C [Found: C, 54.05; H, 4.14; N, 6.40. C₁₀H₉NO₅ requires C, 53.82; H, 4.06; N, 6.28%]; ν_{max} (KBr) 1694, 1616, 1578, 1525, 1351, 1302, 1060, 919, 899, 869, 829, 752, 706 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.64 (1H, s, H_{Ar}), 6.86 (1H, s, H_{Ar}), 4.36–4.33 (4H, m, CH₂CH₂), 2.48 (3H, s, *Me*).

4.1.2.6. 4,5-Dimethoxy-2-nitrophenyl-phenylmethanone (**2f**). Yield 2.38 g, 83% as pale yellow needles, mp 136–138 °C [Found: C, 62.88; H, 4.68; N, 4.98. C₁₅H₁₃NO₅ requires C, 62.72; H, 4.56; N, 4.88%]; ν_{max} (KBr) 1671, 1576, 1519, 1447, 1390, 1334, 1290, 1225, 1180, 1064, 994, 875, 833, 790, 758, 720, 689, 633, 616 cm⁻¹; δ_{H} (300 MHz, CDCl₃) 7.77–7.74 (2H, m, Ph), 7.74 (1H, s, H_{Ar}), 7.60–7.55 (1H, m, Ph), 7.47–7.42 (2H, m, Ph), 6.87 (1H, s, H_{Ar}), 4.04 (3H, s, OMe), 3.97 (3H, s, OMe).

4.1.2.7. 4,5-Dimethoxy-2-nitrophenyl-4-methylphenylmethanone (2g). Yield 2.05 g, 68% as pale yellow needles, mp 139–140 °C [Found: C, 63.97; H, 5.15; N, 4.77. C₁₆H₁₅NO₅ requires C, 63.78; H, 5.02; N, 4.65%]; $\nu_{\rm max}$ (KBr) 1670, 1606, 1575, 1520, 1469, 1456, 1393, 1331, 1287, 1222, 1177, 1064, 868, 783, 754, 615 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.73 (1H, s, $H_{\rm Ar}$), 7.65 (2H, d, *J* 8.0 Hz, $H_{\rm Ar}$), 7.24 (2H, d, *J* 8.0 Hz, $H_{\rm Ar}$), 6.85 (1H, s, $H_{\rm Ar}$), 4.03 (3H, s, OMe), 3.97 (3H, s, OMe), 2.42 (3H, s, Me).

4.1.2.8. 4-Chlorophenyl-4,5-dimethoxy-2-nitrophenylmethanone (2h). Yield 2.47 g, 77% as pale yellow needles, mp 149–150 °C [Found: C, 55.85; H, 3.93; N, 4.51. C₁₅H₁₂ClNO₅ requires C, 56.00; H, 3.76; N, 4.35%]; $\nu_{\rm max}$ (KBr) 1679, 1577, 1520, 1468, 1321, 1285, 1263, 1226, 1065, 864, 823, 787, 756 cm⁻¹; $\delta_{\rm H}$ (250 MHz, CDCl₃) 7.74 (1H, s, $H_{\rm Ar}$), 7.68 (2H, d, J 8.5 Hz, $H_{\rm Ar}$), 7.42 (2H, d, J 8.5 Hz, $H_{\rm Ar}$), 6.84 (1H, s, $H_{\rm Ar}$), 4.04 (3H, s, OMe), 3.98 (3H, s, OMe).

4.1.2.9. 7-Nitro-2,3-dihydro-1,4-benzodioxin-6-ylphenylmethanone (2i). Yield 2.22 g, 78% as pale yellow needles, mp 188–189 °C [Found: C, 63.36; H, 3.77; N, 5.12. $C_{15}H_{11}NO_5$ requires C, 63.16; H, 3.89; N, 4.91%]; ν_{max} (KBr) 1670, 1577, 1525, 888, 873, 732 cm⁻¹; δ_H (250 MHz, CDCl₃) 7.82 (1H, s, H_{Ar}), 7.78–7.74 (2H, m, H_{Ar}), 7.62–7.56 (1H, m, H_{Ar}), 7.49–7.41 (2H, m, H_{Ar}), 6.94 (1H, s, H_{Ar}), 4.41 (4H, s, CH_2CH_2).

4.1.3. General procedure for the reduction of compounds 2a–i. A mixture of corresponding compound **2** (36 mmol), iron powder (20 g), AcOH (70 mL), water (100 mL), and AcOEt (20 mL) was stirred under reflux for 6 h. After completion of the reaction, the mixture was neutralized with NaHCO₃ until pH=7 and filtered off. The residue was washed on the filter with AcOEt (3×150 mL). The organic layer was separated and the water layer was extracted with AcOEt (3×150 mL). Combined extracts were dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue was recrystallized from AcOEt–hexane afforded compounds **3a–i**.

4.1.3.1. 2-Amino-4,5-dimethoxyphenyl-5-methyl-2furylmethanone (3a). Yield 7.99 g, 85% as yellow needles, mp 120 °C [Found: C, 64.39; H, 5.66; N, 5.47. $C_{14}H_{15}NO_4$ requires C, 64.36; H, 5.79; N, 5.36%]; ν_{max} (KBr) 3415, 3301, 1626, 1590, 1577, 1525, 1493, 1467, 1392, 1253, 1211, 1139, 817, 802, 775, 582 cm⁻¹; $\delta_{\rm H}$ (200 MHz, CDCl₃) 7.56 (1H, s, $H_{\rm Ar}$), 7.04 (1H, d, J 3.2 Hz, 4- $H_{\rm Fur}$), 6.20 (1H, s, $H_{\rm Ar}$), 6.18 (1H, d, J 3.2 Hz, 3- $H_{\rm Fur}$), 5.96 (2H, s, NH₂), 3.90 (3H, s, OMe), 3.82 (3H, s, OMe), 2.42 (3H, s, Me).

4.1.3.2. 1-(2-Amino-4,5-dimethoxyphenyl)-1-ethanone (**3b**). Yield 5.05 g, 72% as a pale yellow solid, mp 106– 107 °C [Found: C, 61.76; H, 6.83; N, 7.24. C₁₀H₁₃NO₃ requires C, 61.53; H, 6.71; N, 7.17%]; ν_{max} (KBr) 3446, 3338, 1634, 1590, 1541, 1510, 1456, 1423, 1397, 1246, 1208, 1191, 1164, 1057, 948, 851, 834, 562 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.12 (1H, s, $H_{\rm Ar}$), 6.24 (2H, br s, NH₂), 6.11 (1H, s, $H_{\rm Ar}$), 3.87 (3H, s, OMe), 3.84 (3H, s, OMe), 2.52 (3H, s, Me).

4.1.3.3. 1-(2-Amino-4,5-dimethoxyphenyl)-1-propanone (**3c**). Yield 5.12 g, 68% as a yellow solid, mp 128–129 °C [Found: C, 63.33; H, 7.35; N, 6.78. $C_{11}H_{15}NO_3$ requires C, 63.14; H, 7.23; N, 6.69%]; $\nu_{max}(KBr)$ 3440, 3329, 1632, 1593, 1543, 1510, 937, 838 cm⁻¹; δ_{H} (300 MHz, CDCl₃) 7.18 (1H, s, H_{Ar}), 6.24 (2H, br s, NH_2), 6.12 (1H, s, H_{Ar}), 3.87 (3H, s, OMe), 3.84 (3H, s, OMe), 2.90 (2H, q, J 7.3 Hz, CH_2Me), 1.22 (3H, t, J 7.3 Hz, CH_2Me).

4.1.3.4. 1-(2-Amino-4,5-dimethoxyphenyl)-2-phenyl-1-ethanone (3d). Yield 6.44 g, 66% as a deep yellow solid,

mp 91–92 °C [Found: C, 71.04; H, 6.45; N, 5.27. C₁₆H₁₇NO₃ requires C, 70.83; H, 6.32; N, 5.16%]; ν_{max} (KBr) 3449, 3315, 1629, 1577, 1539, 1509, 1465, 1242, 1149, 852, 845, 830, 723, 700, 553 cm⁻¹; $\delta_{\rm H}$ (200 MHz, CDCl₃) 7.18 (5H, s, Ph), 7.08 (1H, s, $H_{\rm Ar}$), 6.17 (1H, s, $H_{\rm Ar}$), 6.13 (2H, br s, NH₂), 4.07 (2H, s, CH₂Ph), 3.73 (3H, s, OMe), 3.67 (3H, s, OMe).

4.1.3.5. 1-(7-Amino-2,3-dihydro-1,4-benzodioxin-6-yl)-1-ethanone (3e). Yield 4.52 g, 65% as a deep yellow solid, mp 125 °C [Found: C, 62.36; H, 5.65; N, 7.34. $C_{10}H_{11}NO_3$ requires C, 62.17; H, 5.74; N, 7.25%]; $\nu_{max}(KBr)$ 3435, 3321, 1640, 1623, 1587, 1546, 1499, 1303, 1289, 1249, 1230, 1203, 1068, 952, 897, 862 cm⁻¹; $\delta_{\rm H}$ (250 MHz, CDCl₃) 7.23 (1H, s, $H_{\rm Ar}$), 6.12 (1H, s, $H_{\rm Ar}$), 5.97 (2H, br s, NH_2), 4.30–4.27 (2H, m, CH_2), 4.21–4.18 (2H, m, CH_2), 2.49 (3H, s, Me).

4.1.3.6. 2-Amino-4,5-dimethoxyphenyl-phenylmethanone (3f). Yield 8.33 g, 90% as a yellow solid, mp 78– 80 °C [Found: C, 70.24; H, 5.99; N, 5.52. $C_{15}H_{15}NO_3$ requires C, 70.02; H, 5.88; N, 5.44%]; ν_{max} (KBr) 3426, 3314, 1627, 1588, 1530, 1510, 1461, 1446, 1396, 1320, 1249, 1126, 832, 699 cm⁻¹; δ_{H} (300 MHz, CDCl₃) 7.63– 7.61 (2H, m, Ph), 7.53–7.43 (3H, m, Ph), 6.94 (1H, s, H_{Ar}), 6.22 (2H, br s, NH₂), 6.21 (1H, s, H_{Ar}), 3.91 (3H, s, OMe), 3.66 (3H, s, OMe).

4.1.3.7. 2-Amino-4,5-dimethoxyphenyl-4-methylphenylmethanone (3g). Yield 7.12 g, 73% as a yellow solid, mp 103–104 °C [Found: C, 71.01; H, 6.43; N, 5.25. C₁₆H₁₇NO₃ requires C, 70.83; H, 6.32; N, 5.16%]; $\nu_{\rm max}$ (KBr) 3446, 3339, 1631, 1593, 1552, 1514, 1467, 1447, 1411, 1384, 1279, 1257, 1230, 1209, 1172, 1120, 868, 836, 767, 577 cm⁻¹; $\delta_{\rm H}$ (200 MHz, CDCl₃) 7.54 (2H, d, *J* 7.6 Hz, $H_{\rm Ar}$), 7.25 (2H, d, *J* 7.6 Hz, $H_{\rm Ar}$), 6.97 (1H, s, $H_{\rm Ar}$), 6.21 (1H, s, $H_{\rm Ar}$), 6.16 (2H, br s, NH₂), 3.90 (3H, s, OMe), 3.67 (3H, s, OMe), 2.43 (3H, s, Me).

4.1.3.8. 2-Amino-4,5-dimethoxyphenyl-4-chlorophenylmethanone (3h). Yield 7.02 g, 67% as yellow needles, mp 140–141 °C [Found: C, 61.93; H, 4.91; N, 4.87. C₁₅H₁₄ClNO₃ requires C, 61.76; H, 4.84; N, 4.80%]; ν_{max} (KBr) 3453, 3317, 1624, 1606, 1580, 1533, 1394, 1260, 1219, 1126, 864, 842, 768 cm⁻¹; δ_{H} (200 MHz, CDCl₃) 7.53 (2H, d, J 8.1 Hz, H_{Ar}), 7.43 (2H, d, J 8.1 Hz, H_{Ar}), 6.85 (1H, s, H_{Ar}), 6.20 (2H, br s, NH₂), 6.18 (1H, s, H_{Ar}), 3.89 (3H, s, OMe), 3.66 (3H, s, OMe).

4.1.3.9. 7-Amino-2,3-dihydro-1,4-benzodioxin-6-yl-phenylmethanone (3i). Yield 6.79 g, 74% as a pale yellow solid, mp 144–145 °C [Found: C, 70.77; H, 5.21; N, 5.58. C₁₅H₁₃NO₃ requires C, 70.58; H, 5.13; N, 5.49%]; $\nu_{\rm max}$ (KBr) 3432, 3324, 1640, 1583, 1549, 1500, 1304, 1255, 1237, 1206, 1072, 934, 880, 832, 749, 704 cm⁻¹; $\delta_{\rm H}$ (200 MHz, CDCl₃) 7.63–7.58 (2H, m, Ph), 7.50–7.43 (3H, m, Ph), 7.00 (1H, s, $H_{\rm Ar}$), 6.22 (1H, s, $H_{\rm Ar}$), 5.93 (2H, br s, NH₂), 4.31–4.26 (2H, m, CH₂), 4.19–4.14 (2H, m, CH₂).

4.1.3.10. 2-Amino-5-chlorophenyl-phenylmethanone (**31**). Compound **31** was obtained similarly to **3a**–**i** from compound **4** in 75% yield as yellow needles.

4.1.4. General procedure for the tosylation of ketones 3b,d–i. *p*-Toluenesulfonyl chloride (10.67 g, 56 mmol) was added to a solution of corresponding compound **3** (47 mmol) in pyridine (36 mL) at room temperature and the mixture was left for 1 h. Then it was poured into excess of water and the precipitate was filtered off, washed with water, and dried. Recrystallization from CH_2Cl_2 -hexane afforded products **5b,d–i**.

4.1.4.1. 2-Acetyl-4,5-dimethoxy-1-(4-methylphenyl-sulfonamido)benzene (5b). Yield 12.96 g, 79% as a pale yellow solid, mp 144–146 °C [Found: C, 58.76; H, 5.56; N, 4.09. C₁₇H₁₉NO₅S requires C, 58.44; H, 5.48; N, 4.01%]; $\nu_{\rm max}$ (KBr) 3257, 1631, 1578, 1518, 1002, 961, 917, 863, 848, 811, 726, 706, 677, 659, 575, 546 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 11.51 (1H, s, NH), 7.68 (2H, d, *J* 8.1 Hz, $H_{\rm Ts}$), 7.31 (1H, s, $H_{\rm Ar}$), 7.21 (2H, d, *J* 8.1 Hz, $H_{\rm Ts}$), 7.13 (1H, s, *Me*), 3.85 (3H, s, OMe), 2.48 (3H, s, Me), 2.37 (3H, s, Me).

4.1.4.2. 4,5-Dimethoxy-1-(4-methylphenylsulfonamido)-2-propionylbenzene 5c. Compound **5c** was obtained similarly to **5b,d–i** but *p*-toluenesulfonyl chloride was added at 0 °C and the mixture maintained at this temperature for 20 min before pouring into water. Yield 12.63 g, 74% as colorless needles, mp 143–144 °C [Found: C, 59.62; H, 5.97; N, 3.99. C₁₈H₂₁NO₅S requires C, 59.49; H, 5.82; N, 3.85%]; ν_{max} (KBr) 3257, 1638, 1612, 1577, 1517, 1162, 951, 911, 861, 818, 682, 575 cm⁻¹; $\delta_{\rm H}$ (250 MHz, CDCl₃) 11.50 (1H, s, NH), 7.67 (2H, d, *J* 8.2 Hz, $H_{\rm Ts}$), 7.31 (1H, s, $H_{\rm Ar}$), 7.20 (2H, d, *J* 8.2 Hz, $H_{\rm Ts}$), 7.16 (1H, s, $H_{\rm Ar}$), 3.93 (3H, s, OMe), 3.84 (3H, s, OMe), 2.82 (2H, q, *J* 7.2 Hz, CH₂Me), 2.36 (3H, s, Me), 1.11 (3H, t, *J* 7.2 Hz, CH₂Me).

4.1.4.3. 4,5-Dimethoxy-1-(4-methylphenylsulfon-amido)-2-(2-phenylacetyl)benzene (5d). Yield 15.38 g, 77% as a white solid, mp 153–154 °C [Found: C, 65.19; H, 5.53; N, 3.36. $C_{23}H_{23}NO_5S$ requires C, 64.92; H, 5.45; N, 3.29%]; ν_{max} (KBr) 3280, 1627, 1573, 1516, 1464, 1425, 1400, 1346, 1160, 982, 912, 718, 698, 675, 655, 583, 567, 545, 512 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 11.44 (1H, s, NH), 7.66 (2H, d, *J* 8.1 Hz, $H_{\rm Ts}$), 7.33–7.09 (9H, m, Ph+ $H_{\rm Ar}$ + $H_{\rm Ts}$), 4.12 (2H, s, CH_2 Ph), 3.92 (3H, s, OMe), 3.76 (3H, s, OMe), 2.38 (3H, s, *Me*).

4.1.4.4. 7-Acetyl-6-(4-methylphenylsulfonamido)-2,3dihydro-1,4-benzodioxine (5e). Yield 11.74 g, 72% as colorless cubes, mp 179–181 °C [Found: C, 58.97; H, 5.02; N, 4.11. C₁₇H₁₇NO₅S requires C, 58.78; H, 4.93; N, 4.03%]; $\nu_{\rm max}$ (KBr) 3260, 1639, 1578, 1514, 1468, 1409, 930, 901, 875, 813, 730, 707, 682, 663, 643, 563, 551, 516 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 11.25 (1H, s, N*H*), 7.71 (2H, d, *J* 8.1 Hz, $H_{\rm Ts}$), 7.22 (2H, s, $H_{\rm Ar}$), 7.21 (2H, d, *J* 8.1 Hz, $H_{\rm Ts}$), 4.31– 4.28 (2H, m, CH₂), 4.23–4.20 (2H, m, CH₂), 2.43 (3H, s, *Me*), 2.37 (3H, s, *Me*).

4.1.4.5. 2-Benzoyl-4,5-dimethoxy-1-(4-methylphenyl-sulfonamido)benzene (5f). Yield 15.65 g, 81% as a white solid, mp 171–172 °C [Found: C, 64.46; H, 5.04; N, 3.31. $C_{22}H_{21}NO_5S$ requires C, 64.22; H, 5.14; N, 3.40%]; $\nu_{max}(KBr)$ 3248, 1642, 1600, 1575, 1514, 1450, 1384, 1346, 1266, 1211, 1161, 1109, 1092, 1001, 902, 697 cm⁻¹; $\delta_{\rm H}$ (250 MHz, CDCl₃) 10.23 (1H, s, NH), 7.53 (2H, d,

J 8.2 Hz, H_{Ts}), 7.55–7.52 (1H, m, Ph), 7.39–7.27 (5H, m, H_{Ar} +Ph), 7.03 (2H, d, J 8.2 Hz, H_{Ts}), 6.80 (1H, s, H_{Ar}), 4.00 (3H, s, OMe), 3.67 (3H, s, OMe), 2.23 (3H, s, Me).

4.1.4.6. 4,5-Dimethoxy-2-(4-methylbenzoyl)-1-(4-methylphenylsulfonamido)benzene (**5g**). Yield 15.98 g, 80% as a white solid, mp 195–196 °C [Found: C, 65.17; H, 5.53; N, 3.36. $C_{23}H_{23}NO_5S$ requires C, 64.92; H, 5.45; N, 3.29%]; ν_{max} (KBr) 3269, 1635, 1605, 1518, 1388, 1356, 1269, 1254, 1213, 1174, 1158, 1111, 1006, 899, 768, 688, 669, 562 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 10.15 (1H, s, NH), 7.53 (2H, d, J 8.1 Hz, $H_{\rm Ts}$), 7.38 (1H, s, $H_{\rm Ar}$), 7.26 (2H, d, J 8.1 Hz, $H_{\rm Ar}$), 7.19 (2H, d, J 8.1 Hz, $H_{\rm Ar}$), 7.02 (2H, d, J 8.1 Hz, $H_{\rm Ts}$), 6.83 (1H, s, $H_{\rm Ar}$), 3.99 (3H, s, OMe), 3.69 (3H, s, OMe), 2.44 (3H, s, Me), 2.23 (3H, s, Me).

4.1.4.7. 2-(4-Chlorobenzoyl)-4,5-dimethoxy-1-(4-methylphenylsulfonamido)benzene (5h). Yield 16.31 g, 78% as a white solid, mp 201 °C [Found: C, 59.53; H, 4.78; N, 3.02. $C_{22}H_{20}CINO_5S$ requires C, 59.26; H, 4.52; N, 3.14%]; $\nu_{max}(KBr)$ 3262, 1636, 1605, 1590, 1519, 1356, 1159, 772, 688, 671, 590, 580, 545, 514 cm⁻¹; δ_{H} (250 MHz, CDCl₃) 10.08 (1H, s, NH), 7.53 (2H, d, J 8.2 Hz, H_{Ts}), 7.37 (1H, s, H_{Ar}), 7.36 (2H, d, J 8.5 Hz, H_{Ar}), 7.28 (2H, d, J 8.5 Hz, H_{Ar}), 7.03 (2H, d, J 8.2 Hz, H_{Ts}), 6.74 (1H, s, H_{Ar}), 4.00 (3H, s, OMe), 3.69 (3H, s, OMe), 2.25 (3H, s, Me).

4.1.4.8. 7-Benzoyl-6-(4-methylphenylsulfonamido)-2,3-dihydro-1,4-benzodioxine (5i). Yield 15.19 g, 79% as a yellow solid, mp 194 °C [Found: C, 64.75; H, 4.40; N, 3.59. $C_{22}H_{19}NO_5S$ requires C, 64.53; H, 4.68; N, 3.42%]; ν_{max} (KBr) 3182, 1621, 1600, 1572, 1500, 1399, 1339, 1310, 1246, 1157, 1065, 881, 815, 740, 710, 693, 671 cm⁻¹; δ_{H} (250 MHz, CDCl₃) 10.09 (1H, s, NH), 7.60 (2H, d, *J* 8.1 Hz, H_{Ts}), 7.59–7.53 (1H, m, Ph), 7.34 (1H, s, H_{Ar}), 7.44–7.32 (4H, m, Ph), 7.07 (2H, d, *J* 8.1 Hz, H_{Ts}), 6.90 (1H, s, H_{Ar}), 4.35–4.31 (2H, m, CH₂), 4.24–4.20 (2H, m, CH₂), 2.25 (3H, s, *Me*).

4.1.4.9. 2-Benzoyl-1-(4-methylphenylsulfonamido)benzene (5j). Compound **5j** was obtained similarly to **5b,d–i** but the reaction mixture was refluxed for 25– 30 min after the addition of *p*-toluenesulfonyl chloride. Yield 11.55 g, 70% as colorless cubes, mp 128–129 °C [Found: C, 68.50; H, 4.96; N, 4.07. $C_{20}H_{17}NO_3S$ requires C, 68.36; H, 4.88; N, 3.99%]; v_{max} (KBr) 3245, 1646, 1596, 1482, 1450, 1396, 1325, 1316, 1295, 1283, 1258, 1211, 1165, 1092, 941, 898, 883, 768, 749, 725, 709 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 9.99 (1H, s, NH), 7.82–7.79 (1H, m, $H_{\rm Ar}$), 7.60–7.50 (4H, m, $H_{\rm Ar}+H_{\rm Ts}$), 7.41–7.38 (5H, m, $H_{\rm Ar}$), 7.13–7.04 (3H, m, $H_{\rm Ar}+H_{\rm Ts}$), 2.25 (3H, s, *Me*).

4.1.4.10. 2-(4-Bromobenzoyl)-1-(4-methylphenylsulfonamido)benzene (5k). Compound **5k** was obtained similarly to **5j**. Yield 14.55 g, 72% as colorless needles, mp 145–146 °C [Found: C, 55.99; H, 3.85; N, 3.31. $C_{20}H_{16}BrNO_3S$ requires C, 55.82; H, 3.75; N, 3.25%]; ν_{max} (KBr) 3266, 1644, 1600, 1582, 941, 895, 814, 787, 757, 736, 728, 689, 559, 544 cm⁻¹; δ_{H} (250 MHz, CDCl₃) 9.84 (1H, s, NH), 7.82–7.78 (1H, m, H_{Ar}), 7.58–7.50 (5H, m, H_{Ar} + H_{Ts}), 7.36–7.33 (1H, m, H_{Ar}), 7.27 (2H, d, J 8.5 Hz, H_{Ar}), 7.15–7.08 (1H, m, H_{Ar}), 7.05 (2H, d, J 8.1 Hz, H_{Ts}), 2.26 (3H, s, Me).

4.1.4.11. 2-Benzoyl-4-chloro-1-(4-methylphenylsulfonamido)benzene (51). Compound **51** was obtained similarly to **5j**. Yield 12.49 g, 69% as colorless needles, mp 125– 126 °C [Found: C, 62.49; H, 4.27; N, 3.74. C₂₀H₁₆ClNO₃S requires C, 62.25; H, 4.18; N, 3.63%]; ν_{max} (KBr) 3267, 1637, 1593, 1470, 1381, 1337, 1292, 1165, 807, 710, 691 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 9.70 (1H, s, NH), 7.77 (1H, d, J 8.8 Hz, $H_{\rm Ar}$), 7.55 (2H, d, J 8.1 Hz, $H_{\rm Ts}$), 7.62– 7.33 (7H, m, $H_{\rm Ar}$ +Ph), 7.04 (2H, d, J 8.1 Hz, $H_{\rm Ts}$), 2.24 (3H, s, *Me*).

4.1.4.12. *N*-(**2**-Benzoyl-4,5-dimethoxyphenyl)methanesulfonamide 5q. Compound 5q was obtained similarly to 5b,d–i, employing mesylchloride instead of *p*-toluenesulfonyl chloride. Yield 11.49 g, 73% as a yellow solid, mp 116–117 °C [Found: C, 57.31; H, 4.88; N, 4.42. C₁₆H₁₇NO₅S requires C, 57.30; H, 5.11; N, 4.18%]; ν_{max} (KBr) 3255, 1611, 1576, 1523, 1344, 1265, 1151, 966, 937, 879, 835, 763, 741, 702, 520 cm⁻¹; $\delta_{\rm H}$ (200 MHz, CDCl₃) 10.50 (1H, s, N*H*), 7.72–7.47 (5H, m, Ph), 7.44 (1H, s, *H*_{Ar}), 7.09 (1H, s, *H*_{Ar}), 4.01 (3H, s, OMe), 3.75 (3H, s, OMe), 3.00 (3H, s, Me).

4.1.4.13. 2-Benzoyl-4,5-dimethoxy-1-phenylcarboxamidobenzene (5r). Benzoylchloride (10.0 g, 71 mmol) was added to a solution of ketone **3f** (8.23 g, 32 mmol) in pyridine (26 mL). The reaction mixture was left for 1 h at room temperature and then poured into excess of water. The clotted precipitate was filtered off, washed with water, and recrystallized from CH₂Cl₂–hexane. Yield 9.01 g, 78% as yellow needles, mp 190 °C [Found: C, 73.30; H, 5.45; N, 3.99. C₂₂H₁₉NO₄ requires C, 73.12; H, 5.30; N, 3.88%]; ν_{max} (KBr) 3255, 1662, 1615, 1591, 1524, 751, 703 cm⁻¹; $\delta_{\rm H}$ (250 MHz, CDCl₃) 12.52 (1H, s, NH), 8.76 (1H, s, $H_{\rm Ar}$), 8.12–8.08 (2H, m, Ph), 7.72–7.69 (2H, m, Ph), 7.62–7.48 (6H, m, Ph), 7.12 (1H, s, $H_{\rm Ar}$), 4.08 (3H, s, OMe), 3.74 (3H, s, OMe).

4.1.4.14. *N*-(**2-Benzoyl-4,5-dimethoxyphenyl)acetamide (5s).** A mixture of the compound **3f** (7 g, 27 mmol) and Ac₂O (5.5 g, 54 mmol) was refluxed for 10 min, cooled to room temperature, poured into water and brought to pH=7 with NaHCO₃. The precipitate was filtered off and recrystallized from CH₂Cl₂-hexane. Yield 5.89 g, 73% as yellow cubes, mp 140–141 °C [Found: C, 68.39; H, 5.83; N, 4.75. C₁₇H₁₇NO₄ requires C, 68.22; H, 5.72; N, 4.68%]; ν_{max} (KBr) 3232, 1685, 1617, 1526, 1468, 1346, 1261, 1210, 1117, 1010, 881, 836, 771, 745, 706 cm⁻¹; $\delta_{\rm H}$ (250 MHz, CDCl₃) 11.42 (1H, s, NH), 8.46 (1H, s, $H_{\rm Ar}$), 7.69–7.48 (5H, m, Ph), 7.03 (1H, s, $H_{\rm Ar}$), 4.00 (3H, s, OMe), 3.72 (3H, s, OMe), 2.25 (3H, s, Me).

4.1.5. General method of reduction of compounds 5b–l,q. Finely ground NaBH₄ (3.8 g, 100 mmol) was added portionwise to a solution of corresponding compound **5** (50 mmol) in EtOH (50 mL). The reaction mixture was brought to reflux and left for 1 h at room temperature. Then it was poured into water and neutralized with 10% hydrochloric acid until pH=7. The precipitate was filtered off, washed with water, and recrystallized from EtOH-acetone mixture affording compounds **6b-l**,**q**.

4.1.5.1. 2-(1-Hydroxyethyl)-4,5-dimethoxy-1-(4-methylphenylsulfonamido)benzene (6b). Yield 12.11 g, 69% as a white solid, mp 144–146 °C [Found: C, 58.34; H, 6.13; N, 4.10. C₁₇H₂₁NO₅S requires C, 58.10; H, 6.02; N, 3.99%]; ν_{max} (KBr) 3447, 3148, 1522, 1452, 1389, 1335, 1271, 1214, 1200, 1155, 1130, 1087, 1015, 991, 564 cm⁻¹; $\delta_{\rm H}$ (250 MHz, DMSO- d_6) 9.22 (1H, s, NH), 7.60 (2H, d, *J* 8.1 Hz, $H_{\rm Ts}$), 7.39 (2H, d, *J* 8.1 Hz, $H_{\rm Ts}$), 6.96 (1H, s, $H_{\rm Ar}$), 6.19 (1H, s, $H_{\rm Ar}$), 5.04 (1H, br s, OH), 4.98 (1H, q, *J* 6.3 Hz, CHMe), 3.73 (3H, s, OMe), 3.43 (3H, s, OMe), 2.38 (3H, s, Me), 1.16 (3H, d, *J* 6.3 Hz, CHMe).

4.1.5.2. 2-(1-Hydroxypropyl)-4,5-dimethoxy-1-(4methylphenylsulfonamido)benzene (6c). Yield 13.14 g, 72% as a white solid, mp 159–160 °C [Found: C, 59.35; H, 6.50; N, 3.99. $C_{18}H_{23}NO_5S$ requires C, 59.16; H, 6.34; N, 3.83%]; ν_{max} (KBr) 3458, 3227, 1519, 1466, 1453, 1382, 1338, 1266, 1204, 1182, 1162, 1124, 1091, 1074, 1011, 989, 917, 693, 559, 544 cm⁻¹; δ_{H} (250 MHz, DMSO- d_6) 9.20 (1H, s, NH), 7.60 (2H, d, J 8.1 Hz, H_{Ts}), 7.38 (2H, d, J 8.1 Hz, H_{Ts}), 6.90 (1H, s, H_{Ar}), 6.28 (1H, s, H_{Ar}), 5.04 (1H, br s, OH), 4.72–4.66 (1H, m, CHCH₂Me), 3.71 (3H, s, OMe), 3.46 (3H, s, OMe), 2.38 (3H, s, Me), 1.39 (2H, dq, J 7.2, 6.3 Hz, CHCH₂Me), 0.76 (3H, t, J 7.2 Hz, CHCH₂Me).

4.1.5.3. 2-(1-Hydroxy-2-phenylethyl)-4,5-dimethoxy-1-(4-methylphenylsulfonamido)benzene (6d). Yield 14.52 g, 68% as a white solid, mp 118–119 °C [Found: C, 64.88; H, 5.97; N, 3.35. $C_{23}H_{25}NO_5S$ requires C, 64.62; H, 5.89; N, 3.28%]; ν_{max} (KBr) 3481, 3265, 1614, 1597, 1518, 1496, 1456, 1394, 1341, 1268, 1211, 1161, 1112, 1089, 1012, 985, 900, 699, 662 cm⁻¹; $\delta_{\rm H}$ (250 MHz, CDCl₃) 7.66 (2H, d, *J* 8.2 Hz, $H_{\rm Ts}$), 7.41 (1H, s, *NH*), 7.26–7.21 (5H, m, Ph+ $H_{\rm Ts}$), 6.97–6.94 (2H, m, Ph), 6.82 (1H, s, $H_{\rm Ar}$), 6.54 (1H, s, $H_{\rm Ar}$), 4.78 (1H, t, *J* 7.6 Hz, CHCH₂Ph), 3.75 (6H, s, OMe), 2.88–2.69 (2H, m, CHCH₂Ph), 2.38 (3H, s, Me), 2.27 (1H, br s, OH).

4.1.5.4. 7-(1-Hydroxyethyl)-6-(4-methylphenylsulfonamido)-2,3-dihydro-1,4-benzodioxine (6e). Yield 12.22 g, 70% as a white solid, mp 144–145 °C [Found: C, 58.67; H, 5.57; N, 4.13. C₁₇H₁₉NO₅S requires C, 58.44; H, 5.48; N, 4.01%]; ν_{max} (KBr) 3452, 3174, 1587, 1506, 1462, 1427, 1377, 1323, 1288, 1176, 1161, 1127, 1078, 1067, 921, 893, 812, 658, 569, 554, 532 cm⁻¹; $\delta_{\rm H}$ (250 MHz, DMSO- d_6) 9.30 (1H, s, NH), 7.62 (2H, d, J 8.1 Hz, $H_{\rm Ts}$), 7.39 (2H, d, J 8.1 Hz, $H_{\rm Ts}$), 6.84 (1H, s, $H_{\rm Ar}$), 6.26 (1H, s, $H_{\rm Ar}$), 5.06 (1H, br s, OH), 4.87 (1H, q, J 6.3 Hz, CHMe), 4.19–4.14 (4H, m, CH_2CH_2), 2.39 (3H, s, Me), 1.12 (3H, d, J 6.3 Hz, CHMe).

4.1.5.5. 2-Hydroxy(phenyl)methyl-4,5-dimethoxy-1-(**4-methylphenylsulfonamido)benzene (6f).** Yield 17.55 g, 85% as a white solid, mp 194–195 °C [Found: C, 58.44; H, 5.48; N, 4.01. $C_{22}H_{23}NO_5S$ requires C, 63.91; H, 5.61; N, 3.39%]; ν_{max} (KBr) 3489, 3185, 1513, 1394, 1350, 1166, 1014, 992, 902, 869, 720, 674, 575 cm⁻¹; δ_H (250 MHz, CDCl₃) 7.53 (2H, d, *J* 8.2 Hz, H_{Ts}), 7.34–7.27 (4H, m, Ph+N*H*), 7.21 (2H, d, *J* 8.2 Hz, H_{Ts}), 7.17–7.12 (2H, m, Ph), 6.83 (1H, s, *H*_{Ar}), 6.46 (1H, s, *H*_{Ar}), 5.52 (1H, s, *CH*), 3.78 (3H, s, *OMe*), 3.69 (3H, s, *OMe*), 2.58 (1H, br s, *OH*), 2.42 (3H, s, *Me*).

4.1.5.6. 2-Hydroxy(4-methylphenyl)methyl-4,5-dimethoxy-1-(4-methylphenylsulfonamido)benzene (6g). Yield 17.93 g, 84% as colorless cubes, mp 179–180 °C [Found: C, 64.83; H, 6.01; N, 3.36. $C_{23}H_{25}NO_5S$ requires C, 64.62; H, 5.89; N, 3.28%]; ν_{max} (KBr) 3482, 3164, 1513, 1464, 1398, 1353, 1272, 1206, 1179, 1164, 1094, 1016, 992, 907, 868, 817, 760, 736, 709, 690, 674, 579, 559 cm⁻¹; $\delta_{\rm H}$ (200 MHz, DMSO- d_6) 9.17 (1H, s, NH), 7.55 (2H, d, *J* 8.2 Hz, $H_{\rm Ts}$), 7.34 (2H, d, *J* 8.2 Hz, $H_{\rm Ts}$), 7.10 (2H, d, *J* 8.8 Hz, $H_{\rm Ar}$), 7.06 (2H, d, *J* 8.8 Hz, $H_{\rm Ar}$), 6.87 (1H, s, $H_{\rm Ar}$), 6.20 (1H, s, $H_{\rm Ar}$), 6.01 (1H, s, CH), 5.81 (1H, br s, OH), 3.64 (3H, s, OMe), 3.41 (3H, s, OMe), 2.37 (3H, s, Me), 2.27 (3H, s, Me).

4.1.5.7. 2-[4-Chlorophenyl(hydroxy)methyl]-4,5-dimethoxy-1-(4-methylphenylsulfonamido)benzene (6h). Yield 19.22 g, 86% as a white solid, mp 174–175 °C [Found: C, 59.13; H, 5.24; N, 3.01. C₂₂H₂₂ClNO₅S requires C, 58.99; H, 4.95; N, 3.13%]; ν_{max} (KBr) 3474, 3173, 1518, 1489, 1464, 1441, 1400, 1354, 1275, 1209, 1182, 1167, 1092, 1022, 1011, 993, 907, 816, 762, 745, 689, 675, 583 cm⁻¹; $\delta_{\rm H}$ (200 MHz, DMSO- d_6) 9.20 (1H, s, NH), 7.55 (2H, d, *J* 8.2 Hz, $H_{\rm Ts}$), 7.33 (2H, d, *J* 8.2 Hz, $H_{\rm Ts}$), 7.30 (2H, d, *J* 8.8 Hz, $H_{\rm Ar}$), 7.22 (2H, d, *J* 8.8 Hz, $H_{\rm Ar}$), 6.89 (1H, s, $H_{\rm Ar}$), 6.20 (1H, s, $H_{\rm Ar}$), 6.08 (1H, s, CH), 5.97 (1H, br s, OH), 3.67 (3H, s, OMe), 3.47 (3H, s, OMe), 2.37 (3H, s, Me).

4.1.5.8. 7-Hydroxy(phenyl)methyl-6-(4-methylphenylsulfonamido)-2,3-dihydro-1,4-benzodioxine (6i). Yield 17.06 g, 83% as a white solid, mp 90–91 °C [Found: C, 64.50; H, 5.32; N, 3.65. $C_{22}H_{21}NO_5S$ requires C, 64.22; H, 5.14; N, 3.40%]; ν_{max} (KBr) 3492, 3228, 1589, 1506, 1459, 1414, 1383, 1311, 1158, 1091, 1067, 1040, 1012, 912, 888, 818, 733, 702, 684 cm⁻¹; δ_{H} (200 MHz, DMSO- d_6) 9.27 (1H, s, NH), 7.58 (2H, d, J 8.2 Hz, H_{Ts}), 7.35 (2H, d, J 8.2 Hz, H_{Ts}), 7.29–7.16 (5H, m, Ph), 6.63 (1H, s, H_{Ar}), 6.28 (1H, s, H_{Ar}), 5.92 (1H, s, CH), 5.82 (1H, br s, OH), 4.11 (4H, s, CH_2CH_2), 2.37 (3H, s, Me).

4.1.5.9. 2-Hydroxy(phenyl)methyl-1-(4-methylphenyl-sulfonamido)benzene (6j). Yield 15.00 g, 85% as a white solid, mp 147–148 °C [Found: C, 68.21; H, 5.49; N, 3.88. $C_{20}H_{19}NO_3S$ requires C, 67.97; H, 5.42; N, 3.96%]; $\nu_{max}(KBr)$ 3450, 3112, 1322, 1154, 740, 698, 569 cm⁻¹; δ_H (250 MHz, DMSO- d_6) 9.42 (1H, s, NH), 7.53 (2H, d, J 8.1 Hz, H_{Ts}), 7.37–7.15 (8H, m, $H_{Ar}+H_{Ts}$), 7.13–7.06 (2H, m, H_{Ar}), 7.01–6.95 (1H, m, H_{Ar}), 6.23 (1H, br s, OH), 6.01 (1H, s, CH), 2.37 (3H, s, Me).

4.1.5.10. 2-[4-Bromophenyl(hydroxy)methyl]-1-(4methylphenylsulfonamido)benzene (6k). Yield 19.22 g, 89% as pale yellow cubes, mp 142–143 °C [Found: C, 55.73; H, 4.30; N, 3.32. $C_{20}H_{18}BrNO_3S$ requires C, 55.56; H, 4.20; N, 3.24%]; ν_{max} (KBr) 3420, 3136, 1595, 1488, 1461, 1401, 1325, 1234, 1156, 1087, 1003, 926, 817, 796, 765, 693, 562 cm⁻¹; δ_H (250 MHz, DMSO- d_6) 9.40 (1H, s, NH), 7.51 (2H, d, J 8.1 Hz, H_{Ts}), 7.45 (2H, d, J 8.4 Hz, H_{Ar}), 7.30 (2H, d, J 8.1 Hz, H_{Ts}), 7.31–7.25 (1H, m, H_{Ar}), 7.20–7.10 (4H, m, H_{Ar}), 7.00–6.95 (1H, m, H_{Ar}), 6.30 (1H, br s, OH), 6.03 (1H, s, CH), 2.37 (3H, s, Me).

4.1.5.11. 4-Chloro-2-hydroxy(phenyl)methyl-1-(4methylphenylsulfonamido)benzene (6l). Yield 17.22 g, 89% as a white solid, mp 120–122 °C [Found: C, 62.19; H, 4.77; N, 3.68. $C_{20}H_{18}CINO_3S$ requires C, 61.93; H, 4.68; N, 3.61%]; $\nu_{max}(KBr)$ 3428, 3143, 1485, 1323, 1159, 1088, 1007, 698, 670, 574 cm⁻¹; δ_{H} (250 MHz, DMSO d_6) 9.51 (1H, br s, NH), 7.53 (2H, d, J 8.1 Hz, H_{Ts}), 7.34– 7.19 (9H, m, $H_{Ar}+H_{Ts}$), 6.89 (1H, d, J 8.6 Hz, H_{Ar}), 6.27 (1H, br s, OH), 6.07 (1H, s, CH), 2.37 (3H, s, Me).

4.1.5.12. *N*-[**2**-Hydroxy(phenyl)methyl-4,5-dimethoxyphenyl]methanesulfonamide (6q). Yield 14.15 g, 84% as a white solid, mp 173–174 °C [Found: C, 57.23; H, 5.90; N, 4.41. C₁₆H₁₉NO₅S requires C, 56.96; H, 5.68; N, 4.15%]; ν_{max} (KBr) 3470, 3271, 1514, 1456, 1439, 1395, 1334, 1265, 1203, 1146, 1119, 1024, 996, 976, 921, 873, 749, 733, 516 cm⁻¹; $\delta_{\rm H}$ (200 MHz, CDCl₃) 7.60 (1H, s, NH), 7.40–7.29 (5H, m, Ph), 7.21 (1H, s, $H_{\rm Ar}$), 6.76 (1H, s, $H_{\rm Ar}$), 5.92 (1H, d, *J* 3.0 Hz, *CH*), 3.87 (3H, s, *OMe*), 3.86 (3H, s, *OMe*), 3.09 (1H, d, *J* 3.0 Hz, *OH*), 2.20 (3H, s, *Me*).

4.1.5.13. 2-Hydroxy(phenyl)methyl-4,5-dimethoxy-1phenylcarboxamidobenzene (6r). Finely ground $NaBH_4$ (3.41 g, 90 mmol) was added portionwise to a solution of compound 5r (16.2 g, 45 mmol) in EtOH (200 mL). The reaction mixture was brought to reflux and then left for 1 h at room temperature. Then it was poured into water and neutralized with 10% hydrochloric acid until pH=7. The precipitate was filtered off, washed with water, and recrystallized from ethanol-acetone mixture. Yield 11.92 g, 73% as a white solid, mp 173-174 °C [Found: C, 72.97; H, 5.70; N, 3.96. C₂₂H₂₁NO₄ requires C, 72.71; H, 5.82; N, 3.85%]; v_{max}(KBr) 3461, 3364, 1659, 1616, 1539, 1508, 1464, 1454, 1414, 1377, 1331, 1259, 1235, 1213, 1203, 1138, 1090, 733, 696 cm⁻¹; $\delta_{\rm H}$ (250 MHz, CDCl₃) 9.20 (1H, br s, NH), 8.02 (1H, s, H_{Ar}), 7.69–7.66 (2H, m, Ph), 7.50– 7.30 (8H, m, Ph), 6.64 (1H, s, H_{Ar}), 5.94 (1H, d, J 3.2 Hz, CH), 3.94 (3H, s, OMe), 3.79 (3H, s, OMe), 3.15 (1H, d, J 3.2 Hz, OH).

4.1.5.14. N-[2-Hydroxy(phenyl)methyl-4,5-dimethoxyphenyl]acetamide (6s). Finely ground NaBH₄ (0.15 g, 16 mmol) was added portionwise to a solution of compound 5s (1.9 g, 4.2 mmol) in ethanol (22 mL). The reaction mixture was refluxed for 5 min, cooled, poured into water, and neutralized with 10% hydrochloric acid until pH=7. The precipitate was filtered off, washed with water, and recrystallized from EtOH-acetone. Yield 0.86 g, 68% as colorless needles, mp 176-177 °C [Found: C, 67.94; H, 6.45; N, 4.72. C₁₇H₁₉NO₄ requires C, 67.76; H, 6.36; N, 4.65%]; v_{max}(KBr) 3421, 3361, 1657, 1614, 1527, 1509, 1452, 1412, 1253, 1234, 1203, 1116, 1035, 1016, 864, 728, 696, 605, 593, 550 cm⁻¹; $\delta_{\rm H}$ (250 MHz, CDCl₃) 8.18 (1H, br s, NH), 7.52 (1H, s, H_{Ar}), 7.37–7.31 (5H, m, Ph), 6.67 (1H, s, H_{Ar}), 5.85 (1H, d, J 3.0 Hz, CH), 3.88 (3H, s, OMe), 3.80 (3H, s, OMe), 3.51 (1H, d, J 3.0 Hz, OH), 1.95 (3H, s, Me).

4.1.5.15. 4,5-Dimethoxy-2-(5-methyl-2-furylmethyl)aniline (7). A mixture of compound 3a (7 g, 27 mmol), THF (250 mL), NaBH₄ (4.2 g, 110 mmol), and anhydrous AlCl₃ (8 g, 60 mmol) was stirred at room temperature until full consumption of starting material **3a** (TLC monitoring). The reaction mixture was poured into ice-water mixture and extracted with AcOEt (3×150 mL). Combined extracts were dried over anhydrous Na₂SO₄ and evaporated at reduced pressure. The compound 7 was used at the next step without additional purification. Yield 5.34 g, 80% as a yellow solid, mp 55 °C (AcOEt-hexane) [Found: C, 68.19; H, 7.01; N, 5.75. C₁₄H₁₇NO₃ requires C, 68.00; H, 6.93; N, 5.66%]; $\nu_{\rm max}$ (KBr) 3396, 3318, 1612, 1519, 1467, 1447, 1256, 1218, 1019, 1002, 856, 849, 795, 764, 747, 653 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 6.66 (1H, s, $H_{\rm Ar}$), 6.31 (1H, s, H_{Ar}), 5.85 (2H, s, H_{Fur}), 3.83 (3H, s, OMe), 3.81 (3H, s, OMe), 3.77 (2H, s, CH₂), 3.50 (2H, br s, NH₂), 2.26 (3H, s, Me).

4.1.5.16. 4,5-Dimethoxy-2-(5-methyl-2-furylmethyl)-1-(4-methylphenylsulfonamido)benzene (8a). p-Toluenesulfonyl chloride (4.43 g, 23 mmol) was added to a solution of compound 7 (4.79 g, 19.4 mmol) in pyridine (19 mL) and the reaction mixture was left for 1 h at room temperature and then poured into water. The precipitated compound was filtered off, air dried, and recrystallized from CH₂Cl₂-hexane. Yield 4.9 g, 63% as a white solid, mp 115–116 °C [Found: C, 63.05; H, 5.89; N, 3.41. C₂₁H₂₃NO₅S requires C, 62.83; H, 5.77; N, 3.49%]; *v*_{max}(KBr) 3221, 1519, 1420, 1327, 1216, 1162, 992, 679 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.59 (2H, d, J 8.1 Hz, H_{Ts}), 7.23 (2H, d, J 8.1 Hz, H_{Ts}), 6.92 (1H, s, H_{Ar}), 6.59 (1H, s, H_{Ar}), 6.56 (1H, s, NH), 5.82 (1H, d, J 3.0 Hz, 4-H_{Fur}), 5.74 (1H, d, J 3.0 Hz, 3-H_{Fur}), 3.82 (3H, s, OMe), 3.81 (3H, s, OMe), 3.37 (2H, s, CH₂), 2.41 (3H, s, Me), 2.24 (3H, s, Me).

4.1.6. General procedure for the synthesis of compounds 8b–i. A mixture of corresponding compound **6** (10 mmol), *p*-TsOH (0.1 g, 6 mmol), and 2-methylfuran (1.64 g, 20 mmol) in CH₂Cl₂ (70 mL) was refluxed with azeotropic removal of water for 2–3 h (TLC monitoring). The reaction mixture was neutralized with a solution of NaHCO₃ and organic layer was separated, washed with water, and dried over anhydrous Na₂SO₄. Then it was reduced in volume to 5–10 mL and diluted with hexane up to 50–60 mL. The resulted solution was passed through a pad of silica gel and left for crystallization or evaporated to dryness and used in further steps.

4.1.6.1. 4,5-Dimethoxy-2-[1-(5-methyl-2-furyl)ethyl]-1-(4-methylphenylsulfonamido)benzene (**8b**). Yield 2.86 g, 69% as a white solid, mp 109–110 °C [Found: C, 63.83; H, 6.17; N, 3.48. $C_{22}H_{25}NO_5S$ requires C, 63.60; H, 6.06; N, 3.37%]; ν_{max} (KBr) 3275, 1514, 1160, 1010, 900, 868, 816, 787, 675, 554 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.60 (2H, d, *J* 8.2 Hz, *H*_{Ts}), 7.23 (2H, d, *J* 8.2 Hz, *H*_{Ts}), 6.87 (1H, s, *H*_{Ar}), 6.62 (1H, s, *H*_{Ar}), 6.52 (1H, s, NH), 5.80 (1H, d, *J* 3.0 Hz, 4-*H*_{Fur}), 5.73 (1H, d, *J* 3.0 Hz, 3-*H*_{Fur}), 3.81 (3H, s, OMe), 3.79 (3H, s, OMe), 3.76 (1H, q, *J* 7.2 Hz, CHMe), 2.40 (3H, s, *Me*), 2.21 (3H, s, *Me*), 1.22 (3H, d, *J* 7.2 Hz, CHMe).

4.1.6.2. 4,5-Dimethoxy-2-[1-(5-methyl-2-furyl)propyl]-1-(4-methylphenylsulfonamido)benzene (8c). Compound 8c was obtained as a pale yellow oil and used as such at the next step without additional purification. Yield 3.22 g, 75%.

4.1.6.3. 4,5-Dimethoxy-2-[1-(5-methyl-2-furyl)-2-phenylethyl]-1-(4-methylphenylsulfonamido)benzene (8d). Compound **8d** was obtained as a pale yellow oil and used as such at the next step without additional purification. Yield 2.06 g, 42%.

4.1.6.4. 7-[1-(5-Methyl-2-furyl)ethyl]-6-(4-methyl-phenylsulfonamido)-2,3-dihydro-1,4-benzodioxine (8e). Yield 3.10 g, 75% as a white solid, mp 136–138 °C [Found: C, 64.22; H, 5.79; N, 3.50. $C_{22}H_{23}NO_5S$ requires C, 63.91; H, 5.61; N, 3.39%]; ν_{max} (KBr) 3270, 1504, 1392, 1332, 1311, 1161, 1068, 898, 681, 580, 550 cm⁻¹; δ_{H} (300 MHz, CDCl₃) 7.62 (2H, d, *J* 8.2 Hz, H_{Ts}), 7.25 (2H, d, *J* 8.2 Hz, H_{Ts}), 6.89 (1H, s, H_{Ar}), 6.65 (1H, s, H_{Ar}), 6.50 (1H, s, NH), 5.80 (1H, d, *J* 3.0 Hz, 4- H_{Fur}), 5.75 (1H, d, *J* 3.0 Hz, 3- H_{Fur}), 4.23 (4H, s, CH_2CH_2), 3.70 (1H, q, *J* 7.2 Hz, CHMe), 2.41 (3H, s, Me), 2.21 (3H, s, Me), 1.23 (3H, d, *J* 7.2 Hz, CHMe).

4.1.6.5. 4,5-Dimethoxy-2-[5-methyl-2-furyl(phenyl)methyl]-1-(4-methylphenylsulfonamido)benzene (8f). Yield 3.91 g, 82% as a white solid, mp 134–135 °C [Found: C, 68.24; H, 5.19; N, 2.82. $C_{27}H_{27}NO_5S$ requires C, 67.90; H, 5.07; N, 2.93%]; ν_{max} (KBr) 3283, 1513, 1450, 1384, 1345, 1288, 1263, 1210, 1164, 1091, 1018, 902, 720, 710, 677, 567, 548 cm⁻¹; δ_{H} (250 MHz, CDCl₃) 7.63 (2H, d, J 8.2 Hz, H_{Ts}), 7.30 (2H, d, J 8.2 Hz, H_{Ts}), 7.26–7.20 (3H, m, Ph), 7.00 (1H, s, H_{Ar}), 6.75–6.69 (2H, m, Ph), 6.22 (1H, s, H_{Ar}), 6.12 (1H, s, NH), 5.84 (1H, d, J 3.0 Hz, 4- H_{Fur}), 5.58 (1H, d, J 3.0 Hz, 3- H_{Fur}), 4.75 (1H, s, CH), 3.85 (3H, s, OMe), 3.62 (3H, s, OMe), 2.47 (3H, s, Me), 2.23 (3H, s, Me).

4.1.6.6. 4,5-Dimethoxy-2-[5-methyl-2-furyl(4-methylphenyl)methyl]-1-(4-methylphenylsulfonamido)benzene (8g). Yield 3.83 g, 78% as a white solid, mp 143–145 °C [Found: C, 68.66; H, 6.13; N, 2.97. $C_{28}H_{29}NO_5S$ requires C, 68.41; H, 5.95; N, 2.85%]; ν_{max} (KBr) 3252, 1512, 1462, 1446, 1393, 1340, 1289, 1204, 1164, 1093, 1018, 909, 813, 782, 756, 672, 552 cm⁻¹; δ_{H} (250 MHz, CDCl₃) 7.61 (2H, d, *J* 8.1 Hz, H_{Ts}), 7.28 (2H, d, *J* 8.1 Hz, H_{Ts}), 7.04 (2H, d, *J* 8.0 Hz, H_{Ar}), 7.01 (1H, s, H_{Ar}), 6.62 (2H, d, *J* 8.0 Hz, H_{Ar}), 6.24 (1H, s, H_{Ar}), 6.07 (1H, s, NH), 5.83 (1H, d, *J* 3.0 Hz, 4- H_{Fur}), 5.55 (1H, d, *J* 3.0 Hz, 3- H_{Fur}), 4.67 (1H, s, CH), 3.84 (3H, s, OMe), 3.63 (3H, s, OMe), 2.45 (3H, s, Me), 2.32 (3H, s, Me), 2.22 (3H, s, Me).

4.1.6.7. 2-[4-Chlorophenyl(5-methyl-2-furyl)methyl]4,5-dimethoxy-1-(4-methylphenylsulfonamido)benzene (**8h**). Yield 3.89 g, 76% as a white solid, mp 138–139 °C [Found: C, 63.52; H, 5.28; N, 2.89. $C_{27}H_{26}CINO_5S$ requires C, 63.34; H, 5.12; N, 2.74%]; $\nu_{max}(KBr)$ 3243, 1518, 1492, 1331, 1161, 790, 674, 567, 549 cm⁻¹; δ_{H} (300 MHz, CDCl₃) 7.62 (2H, d, *J* 8.2 Hz, *H*_{Ts}), 7.28 (2H, d, *J* 8.2 Hz, *H*_{Ts}), 7.20 (2H, d, *J* 8.4 Hz, *H*_{Ar}), 6.92 (1H, s, *H*_{Ar}), 6.69 (2H, d, *J* 8.4 Hz, *H*_{Ar}), 6.25 (1H, s, *H*_{Ar}), 6.06 (1H, s, *NH*), 5.85 (1H, d, *J* 3.0 Hz, 4-*H*_{Fur}), 5.61 (1H, d, *J* 3.0 Hz, 3-*H*_{Fur}), 4.93 (1H, s, *CH*), 3.81 (3H, s, *OMe*), 3.64 (3H, s, *OMe*), 2.45 (3H, s, *Me*), 2.24 (3H, s, *Me*).

4.1.6.8. 7-[5-Methyl-2-furyl(phenyl)methyl]-6-(4-methylphenylsulfonamido)-2,3-dihydro-1,4-benzodioxine (8i). Yield 3.75 g, 79% as a white solid, mp 200 °C [Found: C, 68.03; H, 5.44; N, 3.07. $C_{27}H_{25}NO_5S$ requires C, 68.19; H, 5.30; N, 2.95%]; ν_{max} (KBr) 3269, 1499, 1375, 1335, 1315, 1165, 1069, 901, 679, 563 cm⁻¹; δ_{H} (250 MHz, CDCl₃) 7.65 (2H, d, *J* 8.2 Hz, H_{Ts}), 7.33 (2H, d, *J* 8.2 Hz, H_{Ts}), 7.28–7.25 (3H, m, Ph), 7.00 (1H, s, H_{Ar}), 6.78–6.72 (2H, m, Ph), 6.24 (1H, s, H_{Ar}), 6.04 (1H, s, NH), 5.84 (1H, d, *J* 3.0 Hz, 4- H_{Fur}), 5.58 (1H, d, *J* 3.0 Hz, 3- H_{Fur}), 4.71 (1H, s, CH), 4.26–4.21 (4H, m, CH₂CH₂), 2.47 (3H, s, Me), 2.23 (3H, s, Me).

4.1.6.9. 2-[5-Methyl-2-furyl(phenyl)methyl]-1-(4-methylphenylsulfonamido)benzene (8j). A mixture of the compound **6j** (3.53 g, 10 mmol), 2-methylfuran (1.64 g, 20 mmol), and BF₃·OEt₂ (0.01 mL) in benzene (50 mL) was refluxed with azeotropic removal of water within 20-60 min (TLC monitoring). The reaction mixture was neutralized with NaHCO3 solution in water and organic layer was separated, washed with water and dried over anhydrous Na₂SO₄. The benzene solution was reduced in volume to 5-7 mL and diluted with hexane up to 50-60 mL. The resultant solution was passed through a pad of silica gel and left for crystallization. Yield 3.34 g, 80% as a white solid, mp 128-129 °C [Found: C, 71.77; H, 5.70; N, 3.48. C₂₅H₂₃NO₃S requires C, 71.92; H, 5.55; N, 3.35%]; v_{max}(KBr) 3271, 1489, 1452, 1385, 1338, 1168, 1090, 907, 784, 752, 702, 669, 566, 548 cm⁻¹; $\delta_{\rm H}$ (250 MHz, CDCl₃) 7.58 (2H, d, J 8.2 Hz, H_{Ts}), 7.50–7.47 (1H, m, H_{Ar}), 7.28– 7.21 (6H, m, H_{Ar}+H_{Ts}), 7.13–7.07 (1H, m, H_{Ar}), 6.81–6.73 (3H, m, H_{Ar}), 6.28 (1H, s, NH), 5.86 (1H, d, J 3.0 Hz, 4-H_{Fur}), 5.60 (1H, d, J 3.0 Hz, 3-H_{Fur}), 4.88 (1H, s, CH), 2.44 (3H, s, Me), 2.24 (3H, s, Me).

WARNING: Care should be taken when handling benzene as a solvent due to its carcinogenic properties.

4.1.6.10. 2-[4-Bromophenyl(5-methyl-2-furyl)methyl]-1-(4-methylphenylsulfonamido)benzene (8k). Compound **8k** was obtained similarly to compounds **8j**. Yield 3.87 g, 78% as colorless cubes, mp 137–138 °C [Found: C, 60.73; H, 4.59; N, 2.74. C₂₅H₂₂BrNO₃S requires C, 60.49; H, 4.47; N, 2.82%]; ν_{max} (KBr) 3288, 1486, 1378, 1338, 1164, 1091, 785, 660, 566, 548 cm⁻¹; δ_{H} (250 MHz, CDCl₃) 7.58 (2H, d, *J* 8.2 Hz, *H*_{Ts}), 7.47–7.43 (1H, m, *H*_{Ar}), 7.37 (2H, d, *J* 8.2 Hz, *H*_{Ar}), 7.28–7.21 (3H, m, *H*_{Ar}+*H*_{Ts}), 7.14–7.08 (1H, m, *H*_{Ar}), 6.76–6.73 (1H, m, *H*_{Ar}), 6.65 (2H, d, *J* 8.2 Hz, *H*_{Ar}), 6.25 (1H, s, NH), 5.86 (1H, d, *J* 3.0 Hz, 4-*H*_{Fur}), 5.61 (1H, d, *J* 3.0 Hz, 3-*H*_{Fur}), 4.97 (1H, s, CH), 2.44 (3H, s, *Me*), 2.25 (3H, s, *Me*).

4.1.6.11. 4-Chloro-2-[5-methyl-2-furyl(phenyl)methyl]-1-(4-methylphenylsulfonamido)benzene (81). Compound **81** was obtained similarly to compounds **8j**. Yield 2.80 g, 62% as a white solid, mp 123–124 °C [Found: C, 66.29; H, 4.76; N, 3.17. $C_{25}H_{22}CINO_3S$ requires C, 66.44; H, 4.91; N, 3.10%]; $\nu_{max}(KBr)$ 3334, 1488, 1401, 1322, 1156, 1115, 1089, 931, 890, 814, 777, 702, 657, 583, 544 cm⁻¹; δ_H (300 MHz, CDCl₃) 7.58 (2H, d, J 8.2 Hz, H_{Ts}), 7.42 (1H, d, J 8.6 Hz, H_{Ar}), 7.30–7.23 (5H, m, Ph+ H_{Ts}), 7.22 (1H, dd, J 8.6, 2.4 Hz, H_{Ar}), 6.81–6.78 (2H, m, Ph), 6.74 (1H, d, J 2.4 Hz, H_{Ar}), 6.22 (1H, s, NH), 5.87 (1H, d, J 3.0 Hz, 4-*H*_{Fur}), 5.63 (1H, d, *J* 3.0 Hz, 3-*H*_{Fur}), 4.83 (1H, s, *CH*), 2.45 (3H, s, *Me*), 2.25 (3H, s, *Me*).

2-[5-Ethyl-2-furyl(phenyl)methyl]-4,5-di-4.1.6.12. methoxy-1-(4-methylphenylsulfonamido)benzene (8m). Compound 8m was obtained similarly to compounds 8b-i employing 2-ethylfuran instead of 2-methylfuran. Yield 3.04 g, 62% as colorless cubes, mp 137–138 °C [Found: C, 68.66; H, 6.11; N, 2.97. C₂₈H₂₉NO₅S requires C, 68.41; H, 5.95; N, 2.85%]; v_{max}(KBr) 3278, 1613, 1599, 1561, 1520, 1494, 1466, 1448, 1381, 1348, 898, 809, 756, 718, 706, 670, 640, 565, 547 cm⁻¹; $\delta_{\rm H}$ (250 MHz, CDCl₃) 7.63 (2H, d, J 8.2 Hz, H_{Ts}), 7.30 (2H, d, J 8.2 Hz, H_{Ts}), 7.27-7.21 (3H, m, Ph), 7.00 (1H, s, H_{Ar}), 6.77–6.71 (2H, m, Ph), 6.22 (1H, s, H_{Ar}), 6.12 (1H, s, NH), 5.85 (1H, d, J 3.2 Hz, $4-H_{\rm Fur}$), 5.58 (1H, d, J 3.2 Hz, $3-H_{\rm Fur}$), 4.72 (1H, s, CH), 3.86 (3H, s, OMe), 3.62 (3H, s, OMe), 2.58 (2H, q, J 7.2 Hz, CH₂Me), 2.45 (3H, s, Me), 1.20 (3H, t, J 7.2 Hz, CH_2Me).

4.1.6.13. 2-[5-(tert-Butyl)-2-furyl(phenyl)methyl]-4,5dimethoxy-1-(4-methylphenylsulfonamido)benzene (8n). A mixture of compound 6f (2 g, 5 mmol), 2-tert-butylfuran (1.0 g, 8 mmol), and 70% HClO₄ (0.2 mL) in 1,4-dioxane (7 mL) was maintained at 65-70 °C for 20-25 min (TLC monitoring). Then the reaction mixture was poured into water, neutralized with NaHCO₃, and extracted with CH₂Cl₂ $(3 \times 50 \text{ mL})$. The organic layer was separated, dried over anhydrous Na₂SO₄, and evaporated to dryness. The residue was recrystallized from hexane. Yield 1.25 g, 48% as a white solid, mp 68-70 °C [Found: C, 69.50; H, 6.27; N, 2.94. C₃₀H₃₃NO₅S requires C, 69.34; H, 6.40; N, 2.70%]; v_{max}(KBr) 3259, 1599, 1513, 1461, 1344, 1207, 1189, 1162, 1092, 1007, 907, 815, 722, 703, 664, 564, 548 cm⁻¹; $\delta_{\rm H}$ (250 MHz, CDCl₃) 7.61 (2H, d, J 8.2 Hz, H_{Ts}), 7.29 (2H, d, J 8.2 Hz, H_{Ts}), 7.30–7.24 (3H, m, Ph), 6.99 (1H, s, H_{Ar}), 6.83–6.80 (2H, m, Ph), 6.22 (1H, s, H_{Ar}), 6.01 (1H, s, NH), 5.81 (1H, d, J 3.1 Hz, 4-H_{Fur}), 5.51 (1H, d, J 3.1 Hz, 3-H_{Fur}), 4.72 (1H, s, CH), 3.84 (3H, s, OMe), 3.63 (3H, s, OMe), 2.43 (3H, s, Me), 1.22 (9H, s, *t*-*Bu*).

4.1.6.14. 2-[2-Furyl(phenyl)methyl]-4,5-dimethoxy-1-(**4-methylphenylsulfonamido)benzene** (**80**). Compound **80** was obtained similarly to compounds **8n** employing furan instead of 2-*tert*-butylfuran. Yield 0.56 g, 24% as a white solid, mp 160–161 °C [Found: C, 67.58; H, 5.60; N, 3.13. $C_{26}H_{25}NO_5S$ requires C, 67.37; H, 5.44; N, 3.02%]; ν_{max} (KBr) 3269, 1515, 1451, 1347, 1211, 1179, 1164, 1091, 1008, 726, 681, 569 cm⁻¹; δ_{H} (200 MHz, CDCl₃) 7.63 (2H, d, J 8.2 Hz, H_{Ts}), 7.35–7.24 (6H, m, Ph+ H_{Ts} + 5- H_{Fur}), 6.94 (1H, s, H_{Ar}), 6.81–6.77 (2H, m, Ph), 6.28 (1H, dd, J 3.2, 1.9 Hz, 4- H_{Fur}), 6.26 (1H, s, H_{Ar}), 6.00 (1H, br s, NH), 5.74 (1H, d, J 3.2 Hz, 3- H_{Fur}), 4.91 (1H, s, CH), 3.82 (3H, s, OMe), 3.63 (3H, s, OMe), 2.45 (3H, s, Me).

4.1.6.15. 4,5-Dimethoxy-2-[5-(4-methylphenyl)-2-furyl(phenyl)methyl]-1-(4-methylphenylsulfonamido)-benzene (8p). A mixture of compound **6f** (0.99 g, 2.4 mmol), 2-(4-methylphenyl)furan (0.42 g, 2.7 mmol), and concentrated hydrochloric acid (10 mL) in 30 mL of AcOH was maintained at 55–60 °C for 2 min. Then the reaction mixture was poured into water, neutralized with NaHCO₃, and

extracted with CH₂Cl₂ (3×50 mL). The organic layer was washed with water, dried over anhydrous Na₂SO₄, and evaporated to dryness. The residue was recrystallized from hexane. Yield 0.78 g, 59% as a white solid, mp 113–114 °C [Found: C, 71.48; H, 5.80; N, 2.75. C₃₃H₃₁NO₅S requires C, 71.59; H, 5.64; N, 2.53%]; ν_{max} (KBr) 3233, 1514, 1327, 1162, 703, 672, 569, 548 cm⁻¹; δ_{H} (250 MHz, CDCl₃) 7.64 (2H, d, *J* 8.2 Hz, H_{Ts}), 7.44 (2H, d, *J* 8.1 Hz, H_{Ar}), 7.29 (2H, d, *J* 8.1 Hz, H_{Ts}), 7.28–7.23 (3H, m, Ph), 7.16 (2H, d, *J* 8.1 Hz, H_{Ar}), 6.97 (1H, s, H_{Ar}), 6.89–6.86 (2H, m, Ph), 6.46 (1H, d, *J* 3.2 Hz, 4- H_{Fur}), 6.34 (1H, s, H_{Ar}), 6.06 (1H, br s, NH), 5.76 (1H, d, *J* 3.2 Hz, 3- H_{Fur}), 4.91 (1H, s, CH), 3.84 (3H, s, OMe), 3.62 (3H, s, OMe), 2.38 (3H, s, Me), 2.36 (3H, s, Me).

4.1.6.16. *N*-**{4,5-Dimethoxy-2-[5-methyl-2-furyl(phe-nyl)methyl]phenyl}methanesulfonamide (8q).** Compound **8q** was obtained similarly to the compounds **8b**–**i** from **6q** as a pale yellow oil and used as such in further steps.

4.1.6.17. 4,5-Dimethoxy-2-[5-methyl-2-furyl(phenyl)methyl]-1-phenylcarboxamidobenzene (8r). A mixture of compound 6r (6.2 g, 17 mmol), 2-methylfuran (2.8 g, 34 mmol), and 70% HClO₄ (0.5 mL) in 1,4-dioxane (20 mL) was maintained at 70-75 °C for 20-25 min. The reaction mixture was poured into water, neutralized with NaHCO₃, and left overnight at room temperature. The crystalline precipitate was filtered off, washed with water, and recrystallized from CH₂Cl₂-hexane. Yield 4.79 g, 66% as a white solid, mp 143-144 °C [Found: C, 76.13; H, 6.02; N, 3.37. C₂₇H₂₅NO₄ requires C, 75.86; H, 5.89; N, 3.28%]; v_{max}(KBr) 3232, 1643, 1513, 1212, 1091, 1023, 699 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.72–7.68 (2H, m, Ph+NH), 7.52-7.47 (m, 3H, H_{Ph}), 7.40-7.28 (5H, m, Ph+H_{Ar}), 7.19–7.17 (2H, m, Ph), 6.53 (1H, s, H_{Ar}), 5.93 (1H, d, J 3.0 Hz, 4-H_{Fur}), 5.89 (1H, d, J 3.0 Hz, 3-H_{Fur}), 5.47 (1H, s, CH), 3.93 (3H, s, OMe), 3.75 (3H, s, OMe), 2.25 (3H, s, Me).

4.1.6.18. N-{4,5-Dimethoxy-2-[5-methyl-2-furyl(phenyl)methyl]phenyl]acetamide (8s). A mixture of compound 6s (3.3 g, 11 mmol), 2-methylfuran (1.8 g, 22 mmol), and 70% HClO₄ (0.32 mL) in 1,4-dioxane (12 mL) was maintained at 70-75 °C for 15-20 min. The reaction mixture was poured into water, neutralized with NaHCO₃, and extracted with CH_2Cl_2 (3×50 mL). The extract was dried over anhydrous Na₂SO₄ and evaporated to dryness. The obtained product was recrystallized from CH₂Cl₂-hexane. Yield 2.73 g, 68% as a white solid, mp 127-128 °C [Found: C, 72.40; H, 6.22; N, 3.94. C₂₂H₂₃NO₄ requires C, 72.31; H, 6.34; N, 3.83%]; v_{max}(KBr) 3280, 1655, 1528, 1519, 1212, 1020, 788, 757, 737, 702 cm⁻¹; $\delta_{\rm H}$ (250 MHz, CDCl₃) 7.35–7.28 (4H, m, Ph+H_{Ar}), 7.17–7.14 (2H, m, Ph), 6.94 (1H, br s, NH), 6.52 (1H, s, H_{Ar}), 5.93 (1H, d, J 3.0 Hz, 4-H_{Fur}), 5.83 (1H, d, J 3.0 Hz, 3-H_{Fur}), 5.42 (1H, s, CH), 3.88 (3H, s, OMe), 3.75 (3H, s, OMe), 2.29 (3H, s, Me), 1.94 (3H, s, Me).

4.1.6.19. *N*-{2-[5-(*tert*-Butyl)-2-furyl(phenyl)methyl]-**4,5-dimethoxyphenyl}acetamide** (8t). 2-*tert*-Butylfuran (0.48 g, 3.9 mmol) was added to a solution of compound **6s** (0.78 g, 2.6 mmol) in AcOH (30 mL) followed by hydrochloric acid (11 mL) under cooling in water bath. The

resulted reaction mixture was maintained at room temperature for 24 h (TLC monitoring), poured into water, neutralized with NaHCO₃, and extracted with AcOEt $(3 \times 50 \text{ mL})$. The extract was dried over anhydrous Na₂SO₄ and evaporated to dryness. The residue was purified on silica gel (5-40 µm) column with AcOEt-hexane (2:3) as an eluent. The solvent was removed in a rotatory evaporator and the residue was recrystallized from hexane. Yield 0.61 g, 58% as a white solid, mp 133-134 °C [Found: C, 73.81; H, 7.29; N, 3.55. C₂₅H₂₉NO₄ requires C, 73.69; H, 7.17; N, 3.44%]; $\nu_{max}(KBr)$ 3321, 1659, 1535, 1513, 1260, 1216, 783, 759, 734, 698 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.35–7.29 (4H, m, Ph+ H_{Ar}), 7.14–7.16 (2H, m, Ph), 6.84 (1H, br s, NH), 6.50 (1H, s, H_{Ar}), 5.89 (1H, d, J 3.0 Hz, 4-H_{Fur}), 5.78 (1H, d, J 3.0 Hz, 3-H_{Fur}), 5.39 (1H, s, CH), 3.87 (3H, s, OMe), 3.74 (3H, s, OMe), 1.90 (3H, s, Me), 1.26 (9H, s, *t*-*Bu*).

4.1.7. General procedure for the synthesis of compounds 9a,b,e–n. Ethanolic HCl (10 mL) prepared by saturation of 200 g of EtOH with 100 g of gaseous HCl was added to a solution of corresponding compound **8** (2 mmol) in EtOH (10 mL). The reaction mixture was refluxed until all starting compound was consumed (TLC monitoring). The reaction mixture was poured into water and the precipitate obtained was filtered off, washed with water and recrystallized from ethanol.

4.1.7.1. 4-[5,6-Dimethoxy-1-(4-methylphenylsulfonyl)-1*H*-2-indolyl]-2-butanone (9a). Yield 0.54 g, 67% as a white solid, mp 174–175 °C [Found: C, 62.96; H, 5.94; N, 3.70. C₂₁H₂₃NO₅S requires C, 62.83; H, 5.77; N, 3.49%]; ν_{max} (KBr) 1721, 1488, 1157, 1053, 918, 855, 815, 667, 607, 541 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.75 (1H, s, $H_{\rm Ind}$), 7.56 (2H, d, *J* 8.2 Hz, $H_{\rm Ts}$), 7.16 (2H, d, *J* 8.2 Hz, $H_{\rm Ts}$), 6.82 (1H, s, $H_{\rm Ind}$), 6.26 (1H, s, $H_{\rm Ind}$), 3.95 (3H, s, *OMe*), 3.85 (3H, s, *OMe*), 3.22–3.18 (2H, m, *CH*₂), 2.91– 2.87 (2H, m, *CH*₂), 2.32 (3H, s, *Me*), 2.15 (3H, s, *Me*); $\delta_{\rm C}$ (50 MHz, CDCl₃) 207.5, 147.5, 147.2, 144.9, 139.2, 135.7, 131.5, 129.9(2C), 126.2(2C), 122.7, 110.2, 101.9, 99.2, 56.4, 56.1, 43.6, 30.0, 23.6, 21.6; MS: *m/z* (%) 401 (M⁺, 78), 246 (69), 205 (23), 204 (100), 203 (57), 190 (22), 189 (96), 188 (18), 174 (16), 145 (15), 91 (67).

4.1.7.2. 4-[5,6-Dimethoxy-3-methyl-1-(4-methylphenyl)-1H-2-indolyl]-2-butanone (**9b**). Yield 0.65 g, 78% as a white solid, mp 147–148 °C [Found: C, 63.84; H, 6.18; N, 3.49. $C_{22}H_{25}NO_5S$ requires C, 63.60; H, 6.06; N, 3.37%]; $\nu_{max}(KBr)$ 1716, 1489, 1361, 1347, 1214, 1164 cm⁻¹; δ_H (200 MHz, CDCl₃) 7.78 (1H, s, H_{Ind}), 7.50 (2H, d, *J* 8.2 Hz, H_{Ts}), 7.15 (2H, d, *J* 8.2 Hz, H_{Ts}), 6.77 (1H, s, H_{Ind}), 3.99 (3H, s, OMe), 3.89 (3H, s, OMe), 3.19–3.11 (2H, m, CH₂), 2.93–2.85 (2H, m, CH₂), 2.32 (3H, s, Me), 2.16 (3H, s, Me), 2.09 (3H, s, Me); δ_C (50 MHz, CDCl₃) 207.8, 147.5, 147.1, 144.5, 135.4, 134.0, 130.6, 129.6(2C), 126.0(2C), 124.4, 117.9, 100.2, 99.4, 56.3, 56.0, 43.9, 29.9, 21.4, 20.8, 9.0; MS: m/z (%) 415 (M⁺, 26), 261 (22), 260 (100), 218 (64), 217 (59), 204 (15), 203 (70), 202 (29), 188 (17), 174 (16), 159 (26), 91 (22).

4.1.7.3. 4-[3-Ethyl-5,6-dimethoxy-1-(4-methylphenyl-sulfonyl)-1*H***-2-indolyl]-2-butanone** (9c). Concentrated hydrochloric acid (10 mL) was added to a solution of

compound 8c (2.1 g, 4.9 mmol) in AcOH (40 mL) under cooling in water bath. The resulted reaction mixture was maintained at room temperature for 2 h (TLC monitoring), poured into water, neutralized with NaHCO₃, and extracted with CH₂Cl₂ (3×50 mL). The extract was dried over anhydrous Na₂SO₄ and evaporated to dryness. The residue was purified on silica gel (50-160 µm) column with acetone-CH₂Cl₂-hexane (5:3:20) as an eluent. The solvent was removed in rotatory evaporator and residue was recrystallized from CH₂Cl₂-hexane. Yield 1.45 g, 69% as a white solid, mp 90 °C [Found: C, 64.62; H, 6.51; N, 3.07. C₂₃H₂₇NO₅S requires C, 64.31; H, 6.34; N, 3.26%]; v_{max}(KBr) 1713, 1489, 1469, 1358, 1277, 1215, 1194, 1177, 1157, 1016, 852, 676 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.79 (1H, s, $H_{\rm Ind}$), 7.48 (2H, d, J 8.2 Hz, H_{Ts}), 7.14 (2H, d, J 8.2 Hz, H_{Ts}), 6.80 (1H, s, H_{Ind}), 3.97 (3H, s, OMe), 3.91 (3H, s, OMe), 3.17-3.12 (2H, m, CH₂), 2.92-2.87 (2H, m, CH₂), 2.57 (2H, q, J 7.5 Hz, CH₂Me), 2.32 (3H, s, Me), 2.17 (3H, s, *Me*), 1.10 (3H, t, J 7.5 Hz, CH₂*Me*); $\delta_{\rm C}$ (50 MHz, CDCl₃) 208.0, 147.6, 147.2, 144.6, 135.5, 133.8, 131.1, 129.7(2C), 126.1(2C), 124.3, 123.6, 100.4, 99.7, 56.5, 56.2, 44.7, 30.0, 21.6, 20.9, 17.6, 14.8; MS: m/z (%) 429 (M⁺, 20), 275 (20), 274 (100), 232 (32), 231 (42), 218 (16), 217 (41), 216 (68), 202 (21), 91 (20).

4.1.7.4. 4-[3-Benzyl-5.6-dimethoxy-1-(4-methylphenylsulfonyl)-1H-2-indolyl]-2-butanone (9d). Compound 9d was obtained similarly to compounds 9c. Yield 1.61 g, 67% as a white solid, mp 135–136 °C [Found: C, 68.65; H, 6.12; N, 2.96. C₂₈H₂₉NO₅S requires C, 68.41; H, 5.95; N, 2.85%]; v_{max}(KBr) 1717, 1489, 1459, 1351, 1286, 1212, 1175, 1147, 1087, 1021, 895, 853, 736, 689, 655 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.81 (1H, s, H_{Ind}), 7.49 (2H, d, J 8.3 Hz, H_{Ts}), 7.16–7.14 (5H, m, Ph+H_{Ts}), 6.95–6.92 (2H, m, Ph), 6.63 (1H, s, H_{Ind}), 3.97 (3H, s, OMe), 3.95 (2H, s, CH₂Ph), 3.77 (3H, s, OMe), 3.18–3.13 (2H, m, CH₂), 2.80-2.75 (2H, m, CH₂), 2.36 (3H, s, Me), 2.09 (3H, s, *Me*); $\delta_{\rm C}$ (50 MHz, CDCl₃) 207.7, 147.8, 147.4, 144.7, 139.5, 135.7, 135.3, 131.3, 129.8(2C), 128.4(2C), 128.0(2C), 126.2(2C), 126.1, 124.2, 121.3, 100.8, 99.8, 56.5, 56.1, 44.1, 30.0, 21.6, 21.1; MS: m/z (%) 491 (M⁺, 63), 336 (100), 279 (18), 278 (15), 190 (16), 91(39).

4.1.7.5. 4-[8-Methyl-6-(4-methylphenylsulfonyl)-2,3dihydro-6H-[1,4]dioxino[2,3-f]indol-7-yl]-2-butanone (9e). Yield 0.70 g, 85% as colorless cubes, mp 122–123 °C [Found: C, 64.20; H, 5.77; N, 3.28. C₂₂H₂₃NO₅S requires C, 63.91; H, 5.61; N, 3.39%]; v_{max}(KBr) 1720, 1579, 1477, 1353, 1168, 1145, 1113, 1067, 916, 885, 810, 670, 647, 574 cm⁻¹; $\delta_{\rm H}$ (250 MHz, CDCl₃) 7.72 (1H, s, $H_{\rm Ind}$), 7.54 (2H, d, J 8.2 Hz, H_{Ts}), 7.16 (2H, d, J 8.2 Hz, H_{Ts}), 6.78 (1H, s, H_{Ind}), 4.29–4.25 (4H, m, CH₂CH₂), 3.17–3.11 (2H, m, CH₂), 2.91–2.85 (2H, m, CH₂), 2.33 (3H, s, Me), 2.15 (3H, s, Me), 2.05 (3H, s, Me); δ_C (50 MHz, CDCl₃) 208.0, 144.5, 141.8, 141.4, 135.5, 134.8, 131.3, 129.7(2C), 126.3(2C), 125.9, 117.5, 105.6, 104.2, 64.5, 64.3, 43.9, 30.0, 21.6, 20.9, 9.1; MS: m/z (%) 413 (M⁺, 15), 259 (34), 258 (100), 216 (76), 215 (69), 202 (50), 201 (20), 159 (30), 145 (20), 101 (18), 91 (29).

4.1.7.6. 4-[5,6-Dimethoxy-1-(4-methylphenylsulfonyl)-3-phenyl-1*H*-2-indolyl]-2-butanone (9f). Yield 0.76 g, 80% as colorless needles, mp 175–176 °C [Found: C, 68.14; H, 5.81; N, 2.80. $C_{27}H_{27}NO_5S$ requires C, 67.90; H, 5.70; N, 2.93%]; $\nu_{max}(KBr)$ 1715, 1488, 1469, 1439, 1362, 1309, 1232, 1183, 1156, 1088, 1021, 946, 850, 816, 769, 708, 690, 663, 603 cm⁻¹; δ_{H} (250 MHz, CDCl₃) 7.86 (1H, s, H_{Ind}), 7.59 (2H, d, J 8.2 Hz, H_{Ts}), 7.50–7.38 (3H, m, Ph), 7.29–7.25 (2H, m, Ph), 7.19 (2H, d, J 8.2 Hz, H_{Ts}), 6.72 (1H, s, H_{Ind}), 4.02 (3H, s, OMe), 3.81 (3H, s, OMe), 3.23–3.14 (2H, m, CH₂), 2.98–2.89 (2H, m, CH₂), 2.36 (3H, s, Me), 2.13 (3H, s, Me); δ_{C} (50 MHz, CDCl₃) 207.4, 147.9, 147.4, 144.8, 135.3, 134.8, 132.9, 130.8, 129.8(2C), 129.6(2C), 128.8(2C), 127.6, 126.1(2C), 124.7, 123.5, 100.8, 99.3, 56.4, 56.0, 44.8, 29.7, 21.5, 21.4; MS: m/z (%) 477 (M⁺, 33), 323 (28), 322 (60), 280 (25), 279 (21), 276 (31), 266 (21), 265 (36), 264 (77), 234 (39), 232 (16), 219 (25), 218 (100), 217 (24), 204 (19), 91 (26).

4-[5,6-Dimethoxy-3-(4-methylphenyl)-1-(4-4.1.7.7. methylphenylsulfonyl)-1*H*-2-indolyl]-2-butanone (9g). Yield 0.82 g, 84% as a white solid, mp 154–155 °C [Found: C, 68.67; H, 6.13; N, 2.96. C₂₈H₂₉NO₅S requires C, 68.41; H, 5.95; N, 2.85%]; v_{max}(KBr) 1714, 1490, 1465, 1444, 1365, 1295, 1230, 1216, 1181, 1156, 1088, 1034, 1017, 850, 774, 663, 632, 576, 544 cm⁻¹; $\delta_{\rm H}$ (200 MHz, CDCl₃) 7.83 (1H, s, H_{Ind}), 7.58 (2H, d, J 8.2 Hz, H_{Ts}), 7.25 (2H, d, J 7.8 Hz, H_{Ar}), 7.18 (2H, d, J 8.2 Hz, H_{Ts}), 7.14 (2H, d, J 7.8 Hz, H_{Ar}), 6.71 (s, 1H, H_{Ind}), 4.01 (3H, s, OMe), 3.80 (3H, s, OMe), 3.20-3.12 (2H, m, CH₂), 2.94-2.86 (2H, m, CH₂), 2.41 (3H, s, Me), 2.32 (3H, s, Me), 2.12 (3H, s, Me); $\delta_{\rm C}$ (50 MHz, CDCl₃) 207.4, 147.8, 147.4, 144.8, 137.4, 135.3, 134.7, 130.7, 129.8(2C), 129.7(2C), 129.5(2C), 129.4, 126.1(2C), 124.7, 123.7, 100.9, 99.3, 56.4, 56.0, 44.8, 29.7, 21.5, 21.4, 21.2; MS: m/z (%) 491 (M⁺, 27), 337 (21), 336 (73), 294 (31), 293 (22), 280 (25), 279 (52), 278 (100), 264 (22), 234 (23), 218 (41), 91 (43).

4.1.7.8. 4-[3-(4-Chlorophenyl)-5,6-dimethoxy-1-(4methylphenylsulfonyl)-1H-2-indolyl]-2-butanone (9h). Yield 0.83 g, 81% as a white solid, mp 123–124 °C [Found: C, 63.53; H, 5.22; N, 2.99. C₂₇H₂₆ClNO₅S requires C, 63.34; H, 5.12; N, 2.74%]; v_{max}(KBr) 1711, 1489, 1441, 1363, 1288, 1267, 1219, 1185, 1157, 1089, 1039, 1015, 852, 837, 678, 657, 613, 572, 548 cm⁻¹; $\delta_{\rm H}$ (200 MHz, CDCl₃) 7.83 (1H, s, H_{Ind}), 7.58 (2H, d, J 8.2 Hz, H_{Ts}), 7.42 (2H, d, J 8.0 Hz, H_{Ar}), 7.20 (2H, d, J 8.0 Hz, H_{Ar}), 7.18 (2H, d, J 8.2 Hz, H_{Ts}), 6.66 (1H, s, H_{Ind}), 4.01 (3H, s, OMe), 3.80 (3H, s, OMe), 3.19–3.10 (2H, m, CH₂), 2.94–2.85 (2H, m, CH₂), 2.36 (3H, s, Me), 2.13 (3H, s, Me); $\delta_{\rm C}$ (50 MHz, CDCl₃) 207.2, 148.1, 147.6, 145.0, 135.3, 135.1, 133.7, 131.5, 131.1(2C), 130.8, 129.9(2C), 129.1(2C), 126.2(2C), 123.6, 123.3, 100.6, 99.4, 56.5, 56.1, 44.7, 29.8, 21.6, 21.4; MS: m/z (%) 513/511 (M⁺, 25/58), 358 (24), 357 (100), 356 (71), 314 (27), 313 (27), 301 (21), 300 (75),299 (42), 298 (59), 265 (25), 221 (16), 220 (24), 91 (77).

4.1.7.9. 4-[6-(4-Methylphenylsulfonyl)-8-phenyl-2,3dihydro-6H-[1,4]dioxino[2,3-f]indol-7-yl]-2-butanone (9i). Yield 0.67 g, 71% as a white solid, mp 186–188 °C [Found: C, 68.32; H, 5.48; N, 3.27. $C_{27}H_{25}NO_5S$ requires C, 68.19; H, 5.30; N, 2.95%]; ν_{max} (KBr) 1712, 1471, 1358, 1332, 1156, 1084, 1064, 1035, 1016, 938, 844, 703, 681, 660, 588, 548 cm⁻¹; δ_{H} (300 MHz, CDCl₃) 7.79 (1H, s, H_{Ind}), 7.62 (2H, d, J 8.2 Hz, H_{Ts}), 7.44–7.34 (3H, m, Ph), 7.25–7.23 (2H, m, Ph), 7.20 (2H, d, J 8.2 Hz, H_{Ts}), 6.75 (1H, s, H_{Ind}), 4.29–4.27 (2H, m, CH_2), 4.25–4.23 (2H, m, CH_2), 3.21–3.16 (2H, m, CH_2), 2.92–2.87 (2H, m, CH_2), 2.36 (3H, s, Me), 2.11 (3H, s, Me); δ_{C} (50 MHz, CDCl₃) 207.4, 144.8, 142.2, 141.7, 135.6, 135.4, 132.8, 131.4, 129.9(2C), 129.7(2C), 128.8(2C), 127.7, 126.4(2C), 124.9, 124.3, 106.5, 104.2, 64.5, 64.3, 44.8, 29.8, 21.6, 21.5; MS: m/z (%) 475 (M⁺, 19), 321 (100), 320 (80), 278 (71), 277 (21), 276 (21), 264 (80), 262 (64), 91 (24).

4.1.7.10. 4-[1-(4-Methylphenylsulfonyl)-3-phenyl-1H-2-indolvll-2-butanone (9i). Yield 0.68 g. 82% as colorless cubes, mp 119-120 °C [Found: C, 72.31; H, 5.70; N, 3.49. C₂₅H₂₃NO₃S requires C, 71.92; H, 5.55; N, 3.35%]; v_{max}(KBr) 1713, 1449, 1408, 1363, 1272, 1233, 1215, 1172, 1091, 1040, 1022, 778, 740, 707, 659, 575, 546 cm⁻¹; $\delta_{\rm H}$ (200 MHz, CDCl₃) 8.26–8.22 (1H, m, $H_{\rm Ind}$), 7.63 (2H, d, J 8.2 Hz, H_{Ts}), 7.49–7.24 (8H, m, H_{Ind}+Ph), 7.18 (2H, d, J 8.2 Hz, H_{Ts}), 3.30-3.21 (2H, m, CH₂), 2.99-2.90 (2H, m, CH₂), 2.32 (3H, s, Me), 2.13 (3H, s, Me); δ_C (50 MHz, CDCl₃) 207.2, 144.9, 136.6, 136.3, 135.5, 132.6, 130.5, 129.8(2C), 129.7(2C), 128.7(2C), 127.7, 126.3(2C), 124.7, 124.4, 123.9, 119.5, 115.2, 44.7, 29.7, 21.5, 21.3; MS: m/z (%) 417 (M⁺, 26), 263 (33), 262 (82), 221 (25), 220 (84), 219 (44), 218 (79), 217 (48), 206 (17), 205 (61), 204 (100), 91 (46).

4.1.7.11. 4-[3-(4-Bromophenyl)-1-(4-methylphenylsulfonyl)-1H-2-indolyl]-2-butanone (**9k**). Yield 0.80 g, 81% as a white solid, mp 119–120 °C [Found: C, 60.75; H, 4.66; N, 2.94. C₂₅H₂₂BrNO₃S requires C, 60.49; H, 4.47; N, 2.82%]; ν_{max} (KBr) 1713, 1486, 1453, 1409, 1363, 1238, 1172, 1090, 1067, 1039, 1008, 748, 706, 665, 577, 547 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.30–6.97 (12H, m, $H_{\rm Ar}$ + $H_{\rm Ind}$ + $H_{\rm Ts}$), 3.37–3.07 (2H, m, CH₂), 2.92–2.60 (2H, m, CH₂), 2.22 (3H, s, *Me*), 2.00 (3H, s, *Me*); $\delta_{\rm C}$ (50 MHz, CDCl₃) 207.0, 145.0, 136.6, 136.5, 135.4, 131.9(2C), 131.7, 131.4(2C), 130.1, 129.9(2C), 126.3(2C), 124.9, 124.0, 123.1, 121.8, 119.2, 115.2, 44.6, 29.8, 21.6, 21.2; MS: *m/z* (%) 497/495 (M⁺, 15/14), 342/340 (60/61), 300 (42), 298 (53), 284 (68), 282 (76), 219 (35), 218 (100), 217 (89), 216 (18), 205 (34), 204 (59), 203 (20), 91 (73).

4.1.7.12. 4-[5-Chloro-1-(4-methylphenylsulfonyl)-3phenyl-1*H*-2-indolyl]-2-butanone (9l). Yield 0.60 g, 66% as a white solid, mp 175–176 °C [Found: C, 66.73; H, 5.09; N, 3.26. C₂₅H₂₂ClNO₃S requires C, 66.44; H, 4.91; N, 3.10%]; v_{max}(KBr) 1712, 1492, 1446, 1415, 1360, 1303, 1286, 1236, 1166, 1130, 1090, 1070, 1045, 1022, 808, 780, 708, 674, 585, 537 cm $^{-1}$; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.18 (1H, d, J 9.5 Hz, H_{Ar}), 7.62 (2H, d, J 8.2 Hz, H_{Ts}), 7.48–7.39 (3H, m, H_{Ar}), 7.29–7.23 (4H, m, H_{Ar}), 7.22 (2H, d, J 8.2 Hz, H_{T_s} , 3.25–3.20 (2H, m, CH₂), 2.94–2.89 (2H, m, CH₂), 2.37 (3H, s, Me), 2.13 (3H, s, Me); $\delta_{\rm C}$ (50 MHz, CDCl₃) 206.9, 145.2, 137.8, 135.2, 135.0, 132.0, 131.8, 130.0(2C), 129.8, 129.7(2C), 128.9(2C), 128.0, 126.3(2C), 124.8, 123.7, 119.1, 116.2, 44.5, 29.7, 21.6, 21.3; MS: m/z (%) 453/451 (M⁺, 6/15), 298 (34), 297 (25), 296 (78), 256 (22), 255 (18), 254 (69), 253 (20), 252 (18), 240 (49), 239 (26), 238 (100), 219 (24), 218 (66), 217 (66), 204 (31), 91 (61).

4.1.7.13. 1-[5,6-Dimethoxy-1-(4-methylphenylsulfonyl)-3-phenyl-1*H***-2-indolyl]-3-pentanone (9m).** Yield 0.71 g, 72% as colorless cubes, mp 149–150 °C [Found: C, 68.63; H, 6.11; N, 2.98. C₂₈H₂₉NO₅S requires C, 68.41; H, 5.95; N, 2.85%]; v_{max}(KBr) 1714, 1491, 1465, 1441, 1415, 1360, 1309, 1285, 1225, 1186, 1163, 1114, 1088, 1046. 1026, 951, 841, 820, 767, 705, 687, 656, 603, 566, 545 cm⁻¹; $\delta_{\rm H}$ (250 MHz, CDCl₃) 7.85 (1H, s, $H_{\rm Ind}$), 7.59 (2H, d, J 8.2 Hz, H_{Ts}), 7.49–7.36 (3H, m, Ph), 7.29–7.25 (2H, m, Ph), 7.19 (2H, d, J 8.2 Hz, H_{Ts}), 6.72 (1H, s, H_{Ind}), 4.02 (3H, s, OMe), 3.80 (3H, s, OMe), 3.22-3.13 (2H, m, CH₂), 2.93–2.84 (2H, m, CH₂), 2.42 (2H, q, J 7.2 Hz, CH₂Me), 2.35 (3H, s, Me), 1.05 (3H, t, J 7.2 Hz, CH₂Me): δ_C (50 MHz, CDCl₃) 210.0, 147.8, 147.3, 144.7, 135.2, 135.0, 132.8, 130.7, 129.7(2C), 129.5(2C), 128.7(2C), 127.6, 126.1(2C), 124.6, 123.4, 100.7, 99.2, 56.3, 55.9, 43.4, 35.6, 21.4(2C), 7.7; MS: m/z (%) 491 (M⁺, 14), 336 (100), 280 (22), 279 (97), 266 (30), 265 (17), 264 (66), 234 (20), 220 (20), 139 (15), 91 (54).

4.1.7.14. 1-[5,6-Dimethoxy-1-(4-methylphenylsulfonyl)-3-phenyl-1*H*-2-indolyl]-4,4-dimethyl-3-pentanone (9n). Yield 0.82 g, 79% as a white solid, mp 135 °C [Found: C, 69.50; H, 6.67; N, 2.89. C₃₀H₃₃NO₅S requires C, 69.34; H, 6.40; N, 2.70%]; v_{max}(KBr) 1702, 1491, 1363, 1179, 1160, 1088, 1048, 1026, 953, 851, 706, 687, 656, 606, 573, 547 cm⁻¹; $\delta_{\rm H}$ (250 MHz, CDCl₃) 7.87 (1H, s, $H_{\rm Ind}$), 7.59 (2H, d, J 8.2 Hz, H_{Ts}), 7.47–7.34 (3H, m, Ph), 7.28–7.25 (2H, m, Ph), 7.18 (2H, d, J 8.2 Hz, H_{Ts}), 6.73 (1H, s, H_{Ind}), 4.01 (3H, s, OMe), 3.80 (3H, s, OMe), 3.16-3.07 (2H, m, CH₂), 3.00–2.92 (2H, m, CH₂), 2.35 (3H, s, Me), 1.13 (9H, s, t-Bu); $\delta_{\rm C}$ (50 MHz, CDCl₃) 214.6, 148.0, 147.6, 144.8, 135.6, 133.1, 130.9, 129.8, 129.7(4C), 128.8(2C), 127.6, 126.2(2C), 124.5, 123.7, 101.0, 99.5, 56.5, 56.2, 44.0, 38.2, 26.4(3C), 21.9, 21.6; MS: m/z (%) 519 (M⁺, 27), 366 (43), 365 (100), 280 (41), 265 (36), 264 (27).

4.1.7.15. 3-[5,6-Dimethoxy-1-(4-methylphenylsulfonyl)-3-phenyl-1H-2-indolyl]-1-(4-methylphenyl)-1-propanone (9p). $HClO_4$ (70%, 16.3 mL) was added dropwise to a solution of compound 8p (0.50 g, 0.9 mmol) in AcOH (40 mL) under cooling with water. The resultant reaction mixture was left for five days at room temperature until completion of the reaction (TLC monitoring), then poured into water, neutralized with NaHCO₃, and extracted with CH_2Cl_2 (3×50 mL). The organic layer was dried over anhydrous Na₂SO₄ and evaporated to dryness. The residue was purified on silica gel (50-160 µm) column with AcOEthexane (1:5) as an eluent. The solvent was removed in rotatory evaporator and residue was recrystallized from CH₂Cl₂-hexane. Yield 0.30 g, 60% as a white solid, mp 187 °C [Found: C, 71.70; H, 5.99; N, 2.75. C₃₃H₃₁NO₅S requires C, 71.59; H, 5.64; N, 2.53%]; v_{max}(KBr) 1676, 1488, 1049, 1029, 955, 856, 703, 683, 659, 605, 566, 550 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.90 (1H, s, $H_{\rm Ind}$), 7.83 (2H, d, J 7.9 Hz, H_{Ar}), 7.62 (2H, d, J 8.0 Hz, H_{Ts}), 7.46-7.18 (9H, m, $H_{Ar}+H_{Ts}$), 6.76 (1H, s, H_{Ind}), 4.02 (3H, s, OMe), 3.81 (3H, s, OMe), 3.43-3.34 (4H, m, CH₂CH₂), 2.40 (3H, s, Me), 2.34 (3H, s, Me); δ_C (75 MHz, CDCl₃) 198.4, 147.9, 147.5, 144.9, 143.8, 135.4, 135.3, 134.2, 133.0, 130.9, 129.8(2C), 129.7(2C), 129.2(2C), 128.9(2C), 128.2(2C), 127.7, 126.3(2C), 124.8, 123.6, 100.9, 99.4, 56.5, 56.1, 40.2, 22.1, 21.7, 21.6; MS: m/z (%) 553 (M⁺, 7), 399 (15), 398 (17), 264 (18), 220 (16), 155 (14), 139 (16), 120 (23), 119 (91), 91 (100).

4.1.7.16. 4-(5,6-Dimethoxy-1-methylsulfonyl-3-phenyl-1H-2-indolyl)-2-butanone (9q). Compound **9q** was obtained similarly to compounds **9a,b,e–n.** Yield 0.67 g, 84% as a white solid, mp 126–127 °C [Found: C, 62.65; H, 5.80; N, 3.60. C₂₁H₂₃NO₅S requires C, 62.83; H, 5.77; N, 3.49%]; ν_{max} (KBr) 1712, 1490, 1470, 1441, 1357, 1300, 1235, 1216, 1179, 1153, 1025, 765, 705, 555, 520 cm⁻¹; $\delta_{\rm H}$ (200 MHz, CDCl₃) 7.69 (1H, s, $H_{\rm Ind}$), 7.55–7.36 (5H, m, Ph), 6.83 (1H, s, $H_{\rm Ind}$), 3.99 (3H, s, OMe), 3.85 (3H, s, OMe), 3.22–3.14 (2H, m, CH₂), 2.90–2.82 (2H, m, CH₂), 2.30 (3H, s, Me), 2.10 (3H, s, Me); $\delta_{\rm C}$ (50 MHz, CDCl₃) 207.2, 148.3, 147.8, 134.8, 132.9, 130.4, 129.7(2C), 129.0(2C), 127.8, 124.4, 123.5, 101.4, 98.7, 56.5, 56.3, 44.6, 39.7, 29.7, 21.2; MS: *m*/*z* (%) 401 (M⁺, 27), 322 (32), 280 (24), 265 (61), 263 (100), 248 (18), 221 (18).

4.1.7.17. 4-(1-Benzoyl-5,6-dimethoxy-3-phenyl-1H-2indolyl)-2-butanone (9r). Hydrochloric acid (18 mL) was added dropwise to a solution of compound 8r (0.8 g, 1.9 mmol) in AcOH (54 mL) under cooling with water. The resulted reaction mixture was maintained at 30 °C for 1.5 h (TLC monitoring), then poured into water, neutralized with NaHCO₃, and extracted with CH_2Cl_2 (3×50 mL). The organic layer was dried over anhydrous Na₂SO₄ and evaporated to dryness. The residue was purified on silica gel (50-160 μ m) column with acetone–CH₂Cl₂–hexane (5:3:20) as an eluent. The solvent was removed in rotatory evaporator and residue was recrystallized from CH₂Cl₂-hexane. Yield 0.50 g, 63% as a yellow solid, mp 114–115 $^\circ C$ [Found: C, 76.19; H, 6.01; N, 3.40. C₂₇H₂₅NO₄ requires C, 75.86; H, 5.89; N, 3.28%]; v_{max}(KBr) 1715, 1678, 1488, 1442, 1357, 1321, 1289, 1160, 1098, 845, 798, 765, 715, 695 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.82-7.79 (2H, m, Ph), 7.68-7.63 (1H, m, Ph), 7.57-7.40 (7H, m, Ph), 6.87 (1H, s, H_{Ind}), 6.35 (1H, s, H_{Ind}), 3.82 (3H, s, OMe), 3.53 (3H, s, OMe), 3.21-3.16 (2H, m, CH₂), 2.72-2.67 (2H, m, CH₂), 2.00 (3H, s, *Me*); $\delta_{\rm C}$ (50 MHz, CDCl₃) 207.2, 169.8, 146.9, 146.7, 135.6, 135.2, 133.6, 133.1, 130.6, 129.8(4C), 129.0(2C), 128.9(2C), 127.5, 122.7, 122.5, 100.9, 98.7, 56.3, 55.8, 44.1, 29.6, 21.2; MS: m/z (%) 427 (M⁺, 37), 306 (27), 106 (17), 105 (100), 77 (51).

4.1.7.18. 1-(5,6-Dimethoxy-3-phenyl-1*H*-2-indolyl)-4,4-dimethyl-3-pentanone (12). A solution of compound 8t (0.45 g, 1.1 mmol) in EtOH (75 mL) and ethanolic HCl (15 mL) (prepared by saturation of 200 g of ethanol with 100 g of gaseous HCl) was refluxed until the starting compound 8t was consumed (TLC monitoring). The reaction mixture was poured into water, neutralized with NaHCO₃, and extracted with AcOEt $(3 \times 150 \text{ mL})$. Combined organic extracts were dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue was purified on silica gel (50–160 μ m) column with AcOEt-hexane (1:3) as an eluent. The solvent was removed in a rotatory evaporator and residue was recrystallized from hexane. Yield 0.77 g, 19% as a white solid, mp 60 °C [Found: C, 75.37; H, 7.53; N, 4.01. C₂₃H₂₇NO₃ requires C, 75.59; H, 7.45; N, 3.83%]; $\nu_{\rm max}$ (KBr) 3371, 1700, 1483, 1129, 703 cm⁻¹; $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.69 (1H, br s, NH), 7.48–7.47 (4H, m, Ph), 7.35–7.31 (1H, m, Ph), 7.09 (1H, s, H_{Ind}), 6.90 (1H, s, H_{Ind}), 3.93 (3H, s, OMe), 3.88 (3H, s, OMe), 3.09-3.05 (2H, m, CH₂), 2.91–2.87 (2H, m, CH₂), 1.15 (9H, s, t-Bu); $\delta_{\rm C}$ (75 MHz, CDCl₃) 214.1, 146.9, 145.2, 135.7,

134.0(2C), 129.5(2C), 128.6(2C), 125.9, 120.3, 114.2, 101.2, 94.6, 56.6, 56.3, 44.3, 37.5, 26.6(3C), 20.1; MS: *m*/*z* (%) 365 (M⁺, 78), 350 (15), 267 (19), 266 (100).

4.1.8. General procedure for the synthesis of compounds 13f–i,k,l. Compounds **9f–i,k,l** (2 mmol) were added to a solution of KOH (5.6 g, 100 mmol) in MeOH (23 mL) and the mixture was refluxed for 4 h. After completion of the reaction (TLC monitoring), the mixture was poured into 200 mL of water and the product was extracted with CH₂Cl₂. The organic layer was washed with water (3× 100 mL) and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure and the residue was recrystallized from CH₂Cl₂–hexane.

4.1.8.1. 4-(5,6-Dimethoxy-3-phenyl-1*H***-2-indolyl)-2butanone (13f). Yield 0.58 g, 90% as a beige solid, mp 103–105 °C [Found: C, 74.52; H, 6.67; N, 4.45. C_{20}H_{21}NO_3 requires C, 74.28; H, 6.55; N, 4.33%]; \nu_{max}(KBr) 3363, 1713, 1487, 1464, 1133, 848, 757, 708 cm⁻¹; \delta_{H} (250 MHz, CDCl₃) 8.64 (1H, br s,** *NH***), 7.51–7.43 (4H, m, Ph), 7.36–7.30 (1H, m, Ph), 7.06 (1H, s, H_{Ind}), 6.88 (1H, s, H_{Ind}), 3.92 (3H, s, OMe), 3.87 (3H, s, OMe), 3.07–3.03 (2H, m, CH₂), 2.88–2.84 (2H, m, CH₂), 2.19 (3H, s, Me); \delta_{C} (50 MHz, CDCl₃) 210.0, 146.9, 145.2, 135.7, 133.7(2C), 129.5(2C), 128.8(2C), 126.0, 120.3, 114.3, 101.2, 94.6, 56.6, 56.3, 44.2, 30.1, 19.8; MS: m/z (%) 323 (M⁺, 68), 266 (100), 235 (16), 222 (20).**

4.1.8.2. 4-[5,6-Dimethoxy-3-(4-methylphenyl)-1*H***-2indolyl]-2-butanone (13g).** Yield 0.58 g, 86% as a yellow solid, mp 130–131 °C [Found: C, 74.63; H, 6.91; N, 4.27. $C_{21}H_{23}NO_3$ requires C, 74.75; H, 6.87; N, 4.15%]; $\nu_{max}(KBr)$ 3372, 1708, 1012, 933, 841, 828, 766, 741, 675 cm⁻¹; δ_{H} (250 MHz, CDCl₃) 8.60 (1H, br s, NH), 7.34 (2H, d, *J* 8.1 Hz, H_{Ar}), 7.28 (2H, d, *J* 8.1 Hz, H_{Ar}), 7.04 (1H, s, H_{Ind}), 6.88 (1H, s, H_{Ind}), 3.92 (3H, s, OMe), 3.86 (3H, s, OMe), 3.06–3.02 (2H, m, CH₂), 2.88–2.83 (2H, m, CH₂), 2.43 (3H, s, Me), 2.18 (3H, s, Me); δ_{C} (50 MHz, CDCl₃) 210.0, 146.9, 145.2, 135.6, 133.5(2C), 132.7, 129.5(2C), 129.4(2C), 120.4, 114.1, 101.2, 94.6, 56.5, 56.3, 44.2, 30.1, 21.3, 19.8; MS: m/z (%) 337 (M⁺, 100), 322 (15), 281 (26), 280 (92), 265 (15), 249 (28), 236 (23), 221 (16).

4.1.8.3. 4-[3-(4-Chlorophenyl)-5,6-dimethoxy-1*H***-2indolyl]-2-butanone (13h). Yield 0.65 g, 91% as a beige solid, mp 122–123 °C [Found: C, 67.41; H, 5.74; N, 3.99. C_{20}H_{20}ClNO₃ requires C, 67.13; H, 5.63; N, 3.91%]; \nu_{max}(KBr) 3367, 1705, 1485, 1468, 1333, 1236, 1180, 1159, 1131, 1014, 836, 767 cm⁻¹; \delta_{H} (250 MHz, CDCl₃) 8.67 (1H, br s, N***H***), 7.44 (2H, d,** *J* **8.4 Hz,** *H***_{Ar}), 7.36 (2H, d,** *J* **8.4 Hz,** *H***_{Ar}), 6.99 (1H, s,** *H***_{Ind}), 6.88 (1H, s,** *H***_{Ind}), 3.92 (3H, s, OMe), 3.86 (3H, s, OMe), 3.04–2.98 (2H, m, CH₂), 2.89–2.83 (2H, m, CH₂), 2.19 (3H, s, Me); \delta_{C} (50 MHz, CDCl₃) 210.0, 147.0, 145.4, 134.2, 133.8, 131.7, 130.7(2C), 129.4, 128.9(2C), 120.0, 113.1, 100.7, 94.6, 56.5, 56.3, 44.2, 30.1, 19.6; MS:** *m***/***z* **(%) 359/357 (M⁺, 35/100), 302 (24), 301 (18), 300 (72), 266 (17), 265 (44), 221 (22).**

4.1.8.4. 4-(8-Phenyl-2,3-dihydro-6*H***-[1,4]dioxino[2,3-***f***]indol-7-yl)-2-butanone (13i). Yield 0.52 g, 81% as a beige** solid, mp 197–198 °C [Found: C, 74.96; H, 6.12; N, 4.48. $C_{20}H_{19}NO_3$ requires C, 74.75; H, 5.96; N, 4.36%]; ν_{max} (KBr) 3367, 1705, 1468, 1377, 1337, 1167, 1065, 704 cm⁻¹; δ_{H} (250 MHz, CDCl₃) 8.47 (1H, br s, NH), 7.49–7.24 (5H, m, Ph), 7.08 (1H, s, H_{Ind}), 6.84 (1H, s, H_{Ind}), 4.30–4.23 (4H, m, CH_2CH_2), 3.08–3.01 (2H, m, CH_2), 2.90–2.83 (2H, m, CH_2), 2.18 (3H, s, Me); δ_C (50 MHz, CDCl₃) 210.0, 140.8, 139.2, 135.5, 134.8, 130.5, 129.4(2C), 128.6(2C), 125.9, 122.1, 113.7, 105.5, 98.2, 64.7, 64.4, 44.1, 30.1, 19.7; MS: m/z (%) 321 (M⁺, 57), 278 (17), 265 (25), 264 (100), 208 (20), 180 (18).

4.1.8.5. 4-[3-(4-Bromophenyl)-1*H***-2-indolyl]-2-butanone (13k). Yield 0.37 g, 54% as a white solid, mp 138–139 °C [Found: C, 63.40; H, 4.83; N, 4.22. C_{18}H_{16}BrNO requires C, 63.17; H, 4.71; N, 4.09%]; \nu_{max}(KBr) 3355, 1707, 1488, 1369, 748, 714 cm⁻¹; \delta_{H} (300 MHz, CDCl₃) 8.82 (1H, br s, N***H***), 7.56 (2H, d,** *J* **8.0 Hz, H_{Ar}), 7.57–7.53 (1H, m, H_{Ind}), 7.33 (2H, d,** *J* **8.0 Hz, H_{Ar}), 7.36–7.29 (1H, m, H_{Ind}), 7.18–7.14 (1H, m, H_{Ind}), 7.10–7.06 (1H, m, H_{Ind}), 3.06–3.02 (2H, m, CH₂), 2.88–2.84 (2H, m, CH₂), 2.18 (3H, s,** *Me***); \delta_{C} (50 MHz, CDCl₃) 209.8, 135.3, 135.2, 134.4, 131.8(2C), 131.3(2C), 127.3, 122.1, 120.1, 119.9, 118.7, 113.3, 110.9, 44.0, 30.1, 19.6; MS:** *m/z* **(%) 343/341 (M⁺, 47/49), 325/323 (24/24), 310/308 (13/16), 300/298 (22/24), 271 (15), 218 (27), 217 (21), 206 (17), 205 (100), 204 (60), 203 (16).**

4.1.8.6. 4-(5-Chloro-3-phenyl-1*H***-2-indolyl)-2-butanone (13l). Yield 0.37 g, 62% as a beige solid, mp 129–131 °C [Found: C, 72.87; H, 5.55; N, 4.57. C_{18}H_{16}ClNO requires C, 72.60; H, 5.42; N, 4.70%]; \nu_{max}(KBr) 3389, 1703, 794, 769, 734, 706 cm⁻¹; \delta_{H} (200 MHz, CDCl₃) 8.89 (1H, br s, N***H***), 7.55 (1H, d,** *J* **1.5 Hz, H_{Ind}), 7.51–7.30 (5H, m, Ph), 7.25 (1H, d,** *J* **6.8 Hz, H_{Ind}), 7.14 (1H, dd,** *J* **6.8, 1.5 Hz, H_{Ind}), 3.10–3.06 (2H, m, CH₂), 2.91–2.86 (2H, m, CH₂), 2.21 (3H, s,** *Me***); \delta_{C} (50 MHz, CDCl₃) 210.2, 136.7(2C), 134.7, 133.6, 129.7(2C), 128.8(2C), 126.4, 125.6, 122.0, 118.4, 114.3, 111.8, 43.9, 30.1, 19.6; MS:** *m***/***z* **(%) 299/297 (M⁺, 29/77), 256 (19), 254 (63), 240 (47), 219 (20), 218 (23), 217 (23), 206 (21), 205 (100), 204 (94), 203 (20).**

Acknowledgements

Financial support was provided by Bayer HealthCare AG and the Russian Foundation of Basic Research (Grant 03-03-32759). The authors would like to emphasize their special thanks to Dr. Valery E. Zavodnik for X-ray analysis.

References and notes

- See the following reviews: (a) Moody, C. J. Synlett 1994, 681– 688; (b) Sundberg, R. J. Indoles; Academic: London, 1996; (c) Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 1999, 2849– 2866; (d) Gribble, G. W. J. Chem. Soc., Perkin Trans. 1 2000, 1045–1075; (e) Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 2001, 2491–2515.
- (a) Taga, M.; Ohtsuka, H.; Inoune, I.; Kawaguchi, T.; Nomura, S.; Yamada, K.; Date, T.; Hiramutsu, H.; Sato, Y. *Heterocycles* 1996, 42, 251–263; (b) Shin, C.; Yamada, Y.; Hayashi, K.;

Yonezawa, Y.; Umemura, K.; Tanji, T.; Yoshimura, J. *Heterocycles* **1996**, *43*, 891–898; (c) Wang, Z.; Jimenez, L. S. *J. Org. Chem.* **1996**, *61*, 816–818; (d) Dong, W.; Jimenez, L. S. *J. Org. Chem.* **1999**, *64*, 2520–2523; (e) Katayama, S.; Ae, N.; Nagata, R. *J. Org. Chem.* **2001**, *66*, 3474–3483.

- (a) Cushing, T. D.; Sanz-Cervera, J. F.; Williams, R. M. J. Am. Chem. Soc. 1996, 118, 557–579; (b) Kozmin, S. A.; Rawal, V. H. J. Am. Chem. Soc. 1998, 120, 13523–13524; (c) Alvarez, M.; Bros, M. A.; Joule, J. A. Tetrahedron Lett. 1998, 39, 679–680; (d) Wong, A.; Kuethe, J. T.; Davies, I. W.; Hughes, D. L. J. Org. Chem. 2004, 69, 7761–7764.
- 4. (a) Iwama, T.; Birman, V. B.; Kozmin, S. A.; Rawal, V. H. Org. Lett. 1999, 1, 673–676; (b) Suzuki, H.; Gyoutoku, H.; Yokoo, H.; Shibna, M.; Sato, Y.; Yamada, H.; Murakami, Y. Synlett 2000, 1196–1198; (c) Rutherford, J. L.; Rainka, M. P.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 15168–15169; (d) Banwell, M. G.; Kelly, B. D.; Kokas, O. J.; Lupton, D. W. Org. Lett. 2003, 5, 2497–2500; (e) Gallou, F.; Yee, N.; Qiu, F.; Senanayake, C.; Linz, G.; Schnaubelt, J.; Soyka, R. Synlett 2004, 883–885.
- (a) Ochi, M.; Kataoka, K.; Ariki, S.; Iwatsuki, C.; Kodama, M.; Fukuyama, Y. J. Nat. Prod. **1998**, 61, 1043–1045; (b) Hume, W. E.; Tokunaga, T.; Nagata, R. Tetrahedron **2002**, 58, 3605– 3611; (c) Faul, M. M.; Grutsch, J. L.; Kobierski, M. E.; Kopach, M. E.; Krumrich, C. A.; Staszak, M. A.; Udodong, U.; Vicenzi, J. T.; Sullivan, K. A. Tetrahedron **2003**, 59, 7215–7229; (d) Fetter, J.; Bertha, F.; Poszavacz, L.; Simig, G. J. Heterocycl. Chem. **2005**, 42, 137–139.
- 6. (a) Tsuji, Y.; Kotachi, S.; Huh, K.-T.; Watanabe, Y. J. Org. Chem. 1990, 55, 580–584; (b) Webb, R. R.; Venuti, M. C.; Eigenbrot, C. J. Org. Chem. 1991, 56, 4706–4713; (c) Aoyagi, Y.; Mizusaki, T.; Ohta, A. Tetrahedron Lett. 1996, 37, 9203–9206; (d) Fujita, K.-I.; Yamomoto, K.; Yamaguchi, R. Org. Lett. 2002, 4, 2691–2694.
- (a) Danishefsky, S. J.; Phillips, G. B. *Tetrahedron Lett.* 1984, 25, 3159–3162;
 (b) Maehr, H.; Smallheer, J. J. Am. Chem. Soc. 1985, 107, 2943–2945;
 (c) Ziegler, F. E.; Berlin, M. Y. *Tetrahedron Lett.* 1998, 39, 2455–2458;
 (d) Banfield, S. C.; England, D. B.; Kerr, M. A. Org. Lett. 2001, 3, 3325–3327;
 (e) Zawada, P. V.; Banfield, S. C.; Kerr, M. A. Synlett 2003, 971–974.
- (a) Makoza, M.; Stalewski, J. *Tetrahedron* 1995, *51*, 7263–7276;
 (b) Makoza, M.; Stalewski, J.; Maslennikova, O. S. *Synthesis* 1997, 1131–1133;
 (c) Belley, M.; Scheigetz, J.; Dube, P.; Dolman, S. *Synlett* 2001, 222–225;
 (d) Walkington, A.; Gray, M.; Hossner, F.; Kitteringham, J.; Voyle, M. *Synth. Commun.* 2003, *33*, 2229–2233.
- 9. Samizu, K.; Ogasawara, K. Synlett 1994, 499-500.
- Sakagami, H.; Ogasawara, K. *Heterocycles* 1999, 51, 1131– 1135.
- 11. Alper, P. B.; Nguyen, K. T. J. Org. Chem. 2003, 68, 2051-2053.
- 12. Cnilin, A.; Rodighiero, P.; Guiotto, A. Synthesis **1998**, 309–312.
- See the following reviews: (a) Dean, F. M. Adv. Heterocycl. Chem. 1982, 30, 167–238; (b) Dean, F. M. Adv. Heterocycl. Chem. 1982, 31, 237–344; (c) Piancatelli, G.; D'Auria, M.; D'Onofrio, F. Synthesis 1994, 867–889.
- (a) Abaev, V. T.; Gutnov, A. V.; Butin, A. V. *Khim. Geterotsikl.* Soedin **1998**, 603–607; (b) Abaev, V. T.; Osipova, A. A.; Butin, A. V. *Khim. Geterotsikl. Soedin.* **2001**, 849–850; (c) Gutnov, A. V.; Abaev, V. T.; Butin, A. V.; Dmitriev, A. S. J. Org. Chem. **2001**, 66, 8685–8686; (d) Butin, A. V.;

Abaev, V. T.; Mel'chin, V. V.; Dmitriev, A. S. *Tetrahedron Lett.* **2005**, *46*, 8439–8441; See the following review: (e) Butin, A. V.; Abaev, V. T. *Izv. Akad. Nauk, Ser. Khim.* **2001**, 1436–1443.

- Butin, A. V.; Stroganova, T. A.; Lodina, I. V.; Krapivin, G. D. *Tetrahedron Lett.* **2001**, *42*, 2031–2033.
- (a) Ziegler, F. E.; Spitzner, E. B.; Wilkins, C. K. J. Org. Chem. 1971, 36, 1759–1764; (b) Vedachalam, M.; Mohan, B.; Srinivasan, P. C. Tetrahedron Lett. 1983, 24, 3531–3532; (c) Sadanandan, E. V.; Vedachalam, M.; Srinivasan, P. C. Indian J. Chem., Sect. B 1993, 32B, 481–483; (d) Lee, J.; Ha, J. D.; Cha, J. K. J. Am. Chem. Soc. 1997, 119, 8127–8128.
- (a) Garnick, R. L.; Levery, S. B.; Le Quesne, P. W. J. Org. Chem. 1978, 43, 1226–1229; (b) Iqbal, Z.; Jackson, A. H.; Rao, K. R. N. Tetrahedron Lett. 1988, 29, 2577–2580; (c) Dujardin, G.; Poirier, J.-M. Bull. Soc. Franc 1994, 131, 900– 909; (d) Srivastava, N.; Banik, B. K. J. Org. Chem. 2003, 68, 2109–2114; (e) Bartoli, G.; Bartolacci, M.; Bosco, M.; Foglia, G.; Giuliani, A.; Marcantoni, E.; Sambri, L.; Torregiani, E. J. Org. Chem. 2003, 68, 4594–4597; (f) Arcadi, A.; Bianchi, G.; Chiarini, M.; D'Annibale, G.; Marinelli, F. Synlett 2004, 944–950.
- 18. Cavdar, H.; Saracoglu, N. Tetrahedron 2005, 61, 2401–2405.
- (a) Kul'nevich, V. G.; Zhuravlev, S. V. Khim. Geterotsikl. Soedin 1984, 307–308; (b) Gutnov, A. V.; Butin, A. V.; Abaev, V. T.; Krapivin, G. D.; Zavodnik, V. E. Molecules 1999, 4, 204–218; See the following review: (c) Butin, A. V.; Stroganova, T. A.; Kul'nevich, V. G. Khim. Geterotsikl. Soedin 1999, 867–901.
- As a typical procedure, see: (a) Kamath, H. V.; Dhekne, V. V.; Kulkarni, S. N. *Indian J. Chem., Sect. B* 1982, 21B, 911–913.
 Org. Synth. 1952, 32, 8–13.
- 22. Davis, R. B.; Pizzini, L. C. J. Org. Chem. 1960, 25, 1884-1888.

- 23. Ono, A.; Suzuki, N.; Kamimura, J. Synthesis 1987, 736–738.
- 24. Crystal data of compound **9***j*: $C_{18}H_{14}O_2$, monoclinic, space group P2(1)/c; a=9.312(2) Å, b=12.490(2) Å, c=18.634(4) Å, $\alpha=90^{\circ}$, $\beta=95.60(3)^{\circ}$, $\gamma=90^{\circ}$, V=2156.9(7) Å³, Z=4, $D_{calcd}=1.286$ Mg/m³, F(000)=880; 1958 reflections collected, 1839 unique ($R_{int}=0.0225$); final *R* indices (1839 observed collections $I>2\sigma I$): $R_1=0.0299$, $wR_2=0.0800$; final *R* indices (all data): $R_1=0.0299$, $wR_2=0.0800$. Crystallographic data (excluding structure factors) for the structure in this article have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 601089. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(0)-1223-336033 or e-mail: deposit@ccdc.cam.ac.uk]. Each request should be accompanied by the complete citation of this paper.
- Butin, A. V.; Smirnov, S. K.; Stroganova, T. A. J. Heterocycl. Chem. 2006, 43, 623–628.
- 26. (a) Itoh, T.; Yokoya, M.; Miyauchi, K.; Nagata, K.; Ohsawa, A. Org. Lett. 2003, 5, 4301–4304; (b) Haskins, C. M.; Knight, D. W. Tetrahedron Lett. 2004, 45, 599–601; (c) Strekowski, L.; Aken, K. V.; Gulevich, Y. J. Heterocycl. Chem. 2000, 37, 1495–1499; (d) Fresneda, P. M.; Molina, P.; Bleda, J. A. Tetrahedron 2001, 57, 2355–2363; (e) Tanaka, K.; Katsumura, S. J. Am. Chem. Soc. 2002, 124, 9660–9661; (f) McClenaghan, N. D.; Passalacqua, R.; Loiseau, F.; Campagna, S.; Verheyde, B.; Hameurlaine, A.; Dehaen, W. J. Am. Chem. Soc. 2003, 125, 5356–5365.
- (a) Cheng, K.-F.; Wong, T.-T.; Wong, W.-T.; Lai, T.-F. J. Chem. Soc., Perkin Trans. 1 1990, 2487–2496; (b) Phisalaphong, C.; Takayama, H.; Sakai, S.-I. Tetrahedron Lett. 1993, 34, 4035– 4038.