Novel Approach to the Synthesis of (R,S)Baclofen via PD(II)-Bipyridine-Catalyzed Conjugative Addition

Ravi Varala and Srinivas R. Adapa
Indian Institute of Chemical Technology, Hyderabad, India

Abstract

Synthesis of (R,S)-baclofen is described starting from N-phthalimidoacetaldehyde. The key step in the synthesis was $\operatorname{Pd}($ II $)$-bipyridine-catalyzed conjugative addition of 4-chloroboronic acid.

Keywords: Allylphthalimide, baclofen, N-phthalimidoacetaldehyde, ozonolysis, Pd(II)-bipy

Baclofen is a promising drug for the treatment of the paroxysmal pain of trigeminal neuralgia as well as spasticity of the spine without influencing sedation. ${ }^{[1,2]}$ In this communication, we report a novel route for the synthesis of racemic baclofen. ${ }^{[3]}$

RESULTS AND DISCUSSION

Our synthesis commenced with the preparation of N -allyl phthalimide ${ }^{[4]}$ (1) by condensing commercially available phthalic anhydride with allyl amine in the presence of triethylamine with toluene as solvent and azeotropic removal of water. Ozonolysis of $\mathbf{1}$ at $-78^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ for 30 min gave N -phthalimidoacetaldehyde ${ }^{[5]}$ (2), which subsequently was treated with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOOEt}$ to give the α, β-unsaturated ester (4). The 1,4 -conjugative addition of $\mathbf{4}$ with 4 -chlorophenylboronicacid (3 equiv.) was optimized in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ to give 5 in 82% yield.

[^0]Among several bases utilized for the conjugate addition, the use of bipyridyl was by far the most efficient. The deprotection of $\mathbf{5}$ in 80% hydrazine hydrate in refluxing ethanol overnight, followed by acidification, gave the baclofen (6) in 22% overall yield. Baclofen (6) was also characterized by its HCl salt (Scheme 1).

EXPERIMENTAL

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 200 MHz , and 300 MHz , and chemical shifts are given in δ units relative to the tetramethylsilane (TMS) signal as an internal reference in CDCl_{3}. Mass spectra were recorded in the form of m / z (intensity relative to base 100) on a VG 7070 H micromass mass spectrometer at $200^{\circ} \mathrm{C}, 70 \mathrm{eV}$, with a trop current of $200 \mu \mathrm{~A}$ and 4 KV acceleration. Melting points have been recorded on an Electrothermal melting-point apparatus. IR spectra were recorded on a Perkin-Elmer 1620-F spectrophotometer. Analytical thin-layer chromatography (TLC) of all reactions was performed on Merck prepared plates (silica gel 60F-254 on glass). Column chromatography was performed using Acme silica gel (100 ± 200 mesh). Reactions were routinely carried out under an atmosphere of nitrogen.

Scheme 1. Synthesis of (R,S)-baclofen.

N-Allylphthalimide (1)

Phthalic anhydride ($7 \mathrm{~g}, 47.28 \mathrm{mmol}$), allyl amine ($3.56 \mathrm{~mL}, 47.60 \mathrm{mmol}$), and triethyl amine $(0.7 \mathrm{~mL})$ in toluene $(500 \mathrm{~mL})$ were heated under reflux under a nitrogen atmosphere for 3.5 h with azeotropic removal of water. The solvent was removed under reduced pressure, diluted with ethyl acetate, washed with dil. HCl , dried over magnesium sulphate, and concentrated to give $1(8.4 \mathrm{~g}, 95 \%)$; mp: $69-70^{\circ} \mathrm{C}$ (lit. mp: 68-70 ${ }^{\circ} \mathrm{C}$); ${ }^{[6]} \mathrm{IR}(\mathrm{KBr})$: 3022, 2921, 1773, $1703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.27(\mathrm{~d}, 2 \mathrm{H})$, $5.15-5.28(\mathrm{dd}, 2 \mathrm{H}), 5.67-5.89(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.88$ (m, 2H); MS (EI): $m / z=76,104,130,169,187 ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 40.0$, 117.7, 123.3, 131.5, 132.1 134.0, 167.9; anal. calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2}$ (\%): C, 70.58; H, 4.85; N, 7.48. Found: C, 70.46; H, 5.00, N, 7.52.

N-Phthalimido Acetaldehyde (2)

Ozone gas was bubbled through a solution of N -allyl phthalimide (5 g , $26.73 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(9: 1,200 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ for 30 min until a blue color persisted. The mixture was purged with N_{2} until the blue color disappeared at the same temperature. DMS ($35 \mathrm{~mL}, 1.2 \mathrm{~mol}$) was added, and the mixture was allowed to warm to room temperature and stirred for 16 h , at which point it was concentrated in vacuo. The residue was crystallized from $\mathrm{DCM} /$ hexane to give the desired compound 2 ($3.13 \mathrm{~g}, 62 \%$). Mp: 110$112^{\circ} \mathrm{C}$ (lit. $\mathrm{mp}: 111^{\circ} \mathrm{C}$); ${ }^{[7]} \mathrm{IR}(\mathrm{KBr}): 2931,1777,1716,1613,1466$, $1400 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.56(\mathrm{~s}, 2 \mathrm{H}), 7.71-7.80$ $(\mathrm{m}, 2 \mathrm{H}), 7.82-7.91(\mathrm{~m}, 2 \mathrm{H}), 9.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 47.36, 123.67, 131.12, 131.99, 134.35, 167.63, 193.0; MS (EI): $m / z=50$, $63,78,104,133,160$ (M-29), 161 (M-28); anal. calcd. for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{NO}_{3}$ (\%): C, 63.49; H, 3.73; N, 7.40. Found: C, 63.54; H, 3.91; N, 7.32.

Ethyl-4-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)but-2-enote (4)

N -Phthalimido acetaldehyde ($2.5 \mathrm{~g}, 13.23 \mathrm{mmol}$) (2) and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}-\mathrm{COOEt}$ (3) $(6.9 \mathrm{~g}, 19.84 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ were stirred for 2.5 h at room temperature. The reaction mixture was washed with water, dried over MgSO_{4}, and concentrated. The residue was purified on silica gel by eluting with $1: 3$ of EtoAc/hexane to give $4(2.67 \mathrm{~g}, 78 \%)$. Mp: $93-95^{\circ} \mathrm{C}$ (lit. mp: $94-96^{\circ} \mathrm{C}$); ${ }^{[8]} \mathrm{IR}(\mathrm{KBr}): 2923,2361,1773,1714,1389,715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.14(\mathrm{t}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.05(\mathrm{q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.34(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.77(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.78$ (m, 4H); MS (EI): $m / z=58,76,103,142,150,186,214,259 ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 13.9,37.9,60.2,122.8,123.2,131.6,134.0,140.6,165.2,167.2$; anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4}(\%): \mathrm{C}, 64.86 ; \mathrm{H}, 5.05 ; \mathrm{N}, 5.40$. Found: C, 64.69; H, 5.13; N, 5.35.

Ethyl 4-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)-3-(4chlorophenyl) Butanoate (5)

4-chlorophenylboronic acid (3.6 g, 23.1 mmol$), 4(2 \mathrm{~g}, 7.7 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}$ $(86 \mathrm{mg}, 0.385 \mathrm{mmol})$, bipyridine $(0.24 \mathrm{~g}, 0.20 \mathrm{mmol})$, AcOH $(7.5 \mathrm{~mL})$, THF $(4 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~mL})$ under argon were heated at $40^{\circ} \mathrm{C}$ for 2 days. ${ }^{[9]}$ The reaction mixture was neutralized with saturated NaHCO_{3}, extracted with $\mathrm{Et}_{2} \mathrm{O}$, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified on silica gel (EtOAc/petroleum ether, 1:20) to give 5 ($2.35 \mathrm{~g}, 82 \%$). Mp: $113-115^{\circ} \mathrm{C}$ (lit. mp: $114-116^{\circ} \mathrm{C}$); $;^{[8]} \mathrm{IR}$ (KBr): 3433, 2968, 2925, 2852, 1773, 1708, 1397, 718, 672, $525 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $1.10(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.69(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 4 \mathrm{H}), 7.23$ (m, 4H), 7.70-7.76 (m, 4H); MS (FAB): $m / z=76,103,129,157,211,298$, $372(\mathrm{M}+1) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.0,38.5,40.2,42.9,60.5,123.3,128.7$, 129.1, 131.8, 133.0, 134.1, 138.9, 168.0, 171.1; anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClNO}_{4}$ (\%): C, 64.61; H, 4.88; N, 3.77. Found: C, 64.39; H, 4.87; N, 3.82.

4-Amino-3-(4-chlorophenyl)butyric Acid Hydrochloride (6) (Baclofen)

Compound 5 ($2.0 \mathrm{~g}, 5.39 \mathrm{mmol}$), ethyl alcohol (75 mL), and 80% hydrazine hydrate (3 mL) were heated under reflux overnight. The mixture was left at room temperature for 10 h , and the solid was filtered and washed with ethanol $(10 \mathrm{~mL})$. To the filtrate, $6 \mathrm{~N} \mathrm{Hcl}(3.5 \mathrm{~mL})$ was added and concentrated to half of its volume. The separated solid was filtered, and the filtrate was concentrated to furnish the desired compound $6(0.74 \mathrm{~g}, 58 \%) . \mathrm{Mp}$: $198-200^{\circ} \mathrm{C}$ (lit. mp : $195-197^{\circ} \mathrm{C}$); ${ }^{[10]} \mathrm{IR}(\mathrm{KBr}): 3000-2500,1720,1580,1490,1410,1200,1190$, 1125, 1010, $950,825 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 2.65-2.91$ (AB part from $\left.\mathrm{ABX}, J_{\mathrm{AB}}=16.6 \mathrm{~Hz}, J_{\mathrm{AX}}=6.9 \mathrm{~Hz}, J_{\mathrm{BX}}=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $3.10-3.39\left(\mathrm{AB}\right.$ part from $\mathrm{ABX}, J_{\mathrm{AB}}=12.8 \mathrm{~Hz}, J_{\mathrm{AX}}=6.0 \mathrm{~Hz}, J_{\mathrm{BX}}=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.64-3.72(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.43(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta 37.7,48.5,128.8,128.9,131.2,141.8,176.0$; anal. calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClNO}_{2}$ (\%): C, 56.21 ; H, 5.66; found: C, $56.15 ;$ H, $5.72 ; \mathrm{N}, 6.54$.

ACKNOWLEDGMENTS

V. R. is thankful to the DIICT, J. S. Yadav, and also CSIR, India, for the award of the fellowship.

REFERENCES

1. Bloom, F. E. Neurotransmission and the Central Nervous System. In Goodman \& Gilman's the Pharmacological Basis of Therapeutics, 9th ed.; Hardman, J. E.,

Limbird, L. E., Molinoff, P. E., Ruddon, R. W., Gilman, A. G., (Eds.); McGrawHill: New York, 1996, pp. 267-282.
2. For some examples of racemic synthesis of baclofen and derivatives, see (a) Keberle, H.; Faigle, J. W.; Wilhelm, M. Swiss Patent 499,046. Chem. Abstr. 1968, 69, 106273f; (b) Ibuka, T.; Schoenfelder, A.; Bildstein, P.; Mann, A. Synth. Commun. 1995, 25, 1777; (c) Coelho, F.; Azevedo, M. B. M.; Boschiero, R.; Resende, P. Synth. Commun. 1997, 27, 2455.
3. (a) Varala, R.; Adapa, S. R. Org. Proc. Res. Dev. 2005, 9, 853; (b) Prasad, C. S. N.; Varala, R.; Adapa, S. R. Heterocycl. Commun. 2002, 8, 281.
4. Yim, A.-M.; Vidal, Y.; Viallefont, P.; Martinez, J. Tetrahedron Asymmetry 2002, 13, 503.
5. Thayumanavan, R.; Tanaka, F.; Barbas III, C. F. Org. Lett. 2004, 6, 3541.
6. Daiss, J. O.; Duda-Johner, S.; Burschka, C.; Holzgrabe, U.; Mohr, K.; Tacke, R. Organometallics 2002, 21, 803.
7. Boisbrum, M.; Vassileva, E.; Raoul, M.; Laronze, J.-Y.; Sapi, J. Montash. Chem. 2003, 134, 1641.
8. Meyer, O.; Becht, J.-M.; Helmchen, G. Synlett 2003, 10, 1539.
9. Lu, X.; Lin, S. J. Org. Chem. 2005, 70, 9651.
10. Thakur, V. V.; Nikalje, M. D.; Sudalai, A. Tetrahedron Asymmetry 2003, 14, 581.

Copyright of Synthetic Communications is the property of Taylor \& Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

[^0]: Received in India May 8, 2006
 IICT Communication No. 051225.
 Address correspondence to Srinivas R. Adapa, Indian Institute of Chemical Technology, Hyderabad 500007, India. E-mail: rvarala_iict@yahoo.co.in

