moeity (9, 10). The $\mathrm{C}_{3}-\mathrm{CH}_{3}$ proton signal has a δ value of ~ 2.80 for the aliphatic series $13 B-16 B$, whereas it is only ~ 2.48 for the aromatic analogue $12 B$.

N -(3-Methyl-2-quinoxaloyl) Amines (1C-16C). These were obtained by deoxygenation of the corresponding quinoxaline 1,4 -dioxides (0.10 mol) with excess $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(69.6 \mathrm{~g}, 0.40$ mol) in refluxing aqueous EtOH, following standard procedures (15). The title compounds are precipitated from the reaction mixture by cooling and dilution with water, collected, dried, and crystallized from the appropriate solvent. Yields of the pure quinoxalines were in the range $45-70 \%$. The mass spectra of 1C-16C show characteristic peaks at the following m / z values: $\mathrm{M}^{+}, 171,143$. The $\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{OH}\right)^{+}$ions are also observed for 12C-16C. The ${ }^{1} \mathrm{H}$ NMR spectra (in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) are in agreement with the assigned structures. The $\mathrm{C}_{3}-\mathrm{CH}_{3} \delta$ value is ~ 2.90 for $12 C-16 C$.

Acknowledgment

We thank Professor C. H. Hassall (Director of Research, La Roche, England) for the biological tests and for his interest in this work.

Registry No. 1A, 63664-38-0; 1B, 88996-65-0; 1C, 88996-79-6; 2A, 88996-62-7; 2B, 88996-66-1; 2C, 88996-80-9; 3A, 58102-37-7; 3B, 88996-67-2; 3C, 88996-81-0; 4A, 63664-40-4; 4B, 88996-68-3; 4C, 88996-82-1; 5A, 63664-41-5; 5B, 88996-69-4; 5C, 88996-83-2; 6A, 63664-42-6; 6B, 88996-70-7; 6C, 88996-84-3; 7A, 64401-27-0; 7B, 88996-71-8; 7C, 88996-85-4; 8А, 64401-28-1; 8B, 88996-72-9; 8С, 88996-86-5; 9A, 63664-39-1; 9B, 88996-73-0; 9C, 88996-87-6; 10A, 63701-36-0; 10B, 81485-17-8; 10C, 88996-88-7; 11A, 63664-37-9; 11B, 89063-57-0; 11C, 89063-58-1; 12A, 63664-36-8; 12B, 88996-74-1; 12C, 88996-89-8; 13A, 64401-30-5; 13B, 88996-75-2; 13C, 88996-90-1; 14A,

63664-35-7; 14B, 88996-76-3; 14C, 88996-91-2; 15A, 88996-63-8; 15B, 88996-77-4; 15C, 88996-92-3; 16A, 88996-64-9; 16B, 88996-78-5; 16C, 88996-93-4; [R - $\left.\left(R^{*}, S^{*}\right)\right]-\mathrm{MeNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}(\mathrm{OH}) \mathrm{Ph}, 299-42-3 ;(\pm)-\left(R^{*},-\right.$ $\left.S^{*}\right)-\mathrm{MeNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}(\mathrm{OH}) \mathrm{Ph}, 90-81-3$; diketene, 674-82-8; (S)-2-amino-3-methylbutanol, 2026-48-4; (S)-2-amino-4-methylpentanol, 7533-40-6; [$S-\left(R^{*}, S^{*}\right)$]-2-amino-3-methyipentanol, 88996-94-5; 3-(2-aminoethyl)indole hydrochloride, 343-94-2; 4-(2-aminoethyl)imidazole hydrochloride, 55-36-7; 1-adamantanamine hydrochloride, 665-66-7; 2-adamantanamine hydrochloride, 10523-68-9; D-(+)-glucosamine hydrochloride, 66-84-2; benzofuroxan, 674-82-8.

Literature Clied

(1) Ochia, E. "Aromatic Amine Oxides"; Elsevier: Amsterdam, 1967.
(2) Katritsky, A. H.; Lagowskl, J. M. "Chemistry of the Heterocyclic N. Oxides"; Academic Press: New York, 1971
(3) Pfizer, Inc., U.S. Patent 3948911,1976
(4) Pfizer Inc., U.S. Patent 4007 184, 1977.
(5) Pfizer Inc., U. S. patent $4039540,1977$.
(6) AG. Clba-Gelgy, German Patent 2701707, 1977.
(7) Research Corp., British Patent $1308370,1973$.
(8) Haddadin, M. J.; Issidorides, C. H. Heterocycles 1976, 4, 767-816.
(9) EL-Abadelah, M. M.; Sabri, S. S.; Nazer, M. Z.; Za'ater, M. F. Tetrahe dron 1976, 32, 2931-8.
(10) EL-Abadelah, M. M.; Sabri, S. S.; Tashtoush, H. I. Tetrahedron 1979, 35, 2571-6.
(11) Henry, J. B. "Clinical Diagnosis and Management by Laboratory Methods"; Saunders: Philadelphia, PA, 1979; Vol. II, p 1622.
(12) Vogl, O.; Pöhm, M. Monatsh. Chem. 1952, 83, 541-3.
(13) Sabri, S. S.; EL-Abadelah, M. M.; Za'ater, M. F. J. Chem. Soc., Perkin Trans. 1 1977, 1356-9.
(14) Mallory, F. M. In "Organic Synthesis"; Wiley: New York, 1967; Collect. Vol. IV, p 74.
(15) Haddadin, M. J.; Zahr, G. E.; Rawdah, T. N.; Chelhot, N. C.; Issidorides, C. H. Tetrahedron 1974, 30, 659-66.

Received for review August 24, 1983. Accepted October 26, 1983. We gratefully acknowledge the Research Committee of Jordan University and the Arab Pharmaceutical Co. (Amman) for financial support.

Potential Central Nervous System Active Agents. 3. Synthesis of Some Substituted Benzamides and Phenylacetamides

Vincent C. Agwada
Department of Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria

The preparation and spectral properties (IR, ${ }^{1} \mathrm{H}$ NMR) are given for 45 benzamides and 10 phenylacetamides substituted on nitrogen with allyl, benzhydryl, benzyl, or cyclopropyl groups, and variously substituted on the acyl part with halo, methoxyl, methyl, or nitro groups. The benzamide derlvatives were synthesized by the Schotten-Baumann method, and the phenylacetamide derivatives were prepared by heating the appropriate \mathbf{N}-benzhydrylammonium salt in $\mathbf{0}$-xylene. Thirty-one of the compounds are new.

In the preceding communications $(1,2)$ the synthesis and the spectroscopic properties (IR, mass spectra, ${ }^{1} \mathrm{H}$ NMR) of several aromatic N-benzyl amides were reported. Presented in the current communication are the synthesis and the spectroscopic data for 45 benzamides and 10 phenylacetamides substituted on nitrogen with allyl, benzhydryl, benzyl, or cyclopropyl groups, and variously substituted on the acyl part with halo, methoxyl, methyl, or nitro groups. The benzamide derivatives were prepared by the Schotten-Baumann method in anhydrous benzene, and the phenylacetamide derivatives were
synthesized from their corresponding N-benzhydrylammonium salts in boiling 0 -xylene as has been described earlier (1). With the exception of compounds Ia, VIa,b,h, and VIIa, all derivatives bearing the N-benzhydryl and N-cyclopropyl groups described herein are previously unreported. Compounds IIb,g, IIId, and $\mathrm{Vb}, \mathrm{e}, \mathrm{f}$, bearing the N-allyl, N, N-diallyl, or N, N-dibenzyl groups, are also unreported. The spectroscopic data (IR, ${ }^{1} \mathrm{H}$ NMR) not hitherto described in the literature are reported in this publication. The experimental and IR data on all the compounds are summarized in Table I, and those of the ${ }^{1} \mathrm{H}$ NMR data are given in Table II. Satisfactory elemental analyses ($\pm 0.4 \%$ for $\mathrm{C}, \mathrm{H}, \mathrm{N}$, and halogens, where present) were obtained for all compounds.

The structures of these amides were established on the basis of analytical and spectroscopic data. These compounds have been submitted for biological screening, and results will be published elsewhere.

Experimental Section

The reagents used in these experiments were of commercial grade. Mass spectra were determined on a Varian-MAT CH-5 spectrometer at 70 eV, by Messrs. J. C. Cook and M. Cochran, Mass Spectroscopy Laboratory, University of Illinois, Urbana
Table I. Experimental and IR Data of Some Substituted Benzamides and Phenylacetamides

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{compd} \& \multirow[t]{3}{*}{mol formula} \& \multirow[t]{3}{*}{$\mathrm{M}^{+} .{ }^{a}$} \& \multirow[t]{3}{*}{yield, \%} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{$\mathrm{mp},{ }^{\circ} \mathrm{C}$}} \& \multicolumn{4}{|l|}{IR, cm^{-1}}

\hline \& \& \& \& \& \& \multicolumn{3}{|l|}{amide band} \& \multirow[t]{2}{*}{others}

\hline \& \& \& \& exptl \& reported \& NH \& I \& II \&

\hline Ia \& $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}$ \& 161 \& 76 \& 99 \& 97.5-98 (3), 100.6-101 (4) \& 3245 \& 1623 \& 1557 \& $$
1567
$$

\hline Ib \& $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}$ \& 175 \& 82 \& 110-112 \& 97.5-98(3),100.6-101 (1) \& 3310 \& 1633 \& 1528 \& 1613 sh. 1573,1506

\hline Ic \& $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2}$ \& 191 \& 93 \& 138-140 \& \& 3280 \& 1623 \& 1542 \& $1610,1562 \mathrm{sh}, 1503$

\hline Id \& $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{FNO}$ \& 179 \& $79^{\text {b }}$ \& 77-78 \& \& 3282 \& 1647 \& 1530 \& $$
1617
$$

\hline Ie \& $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{FNO}$ \& 179 \& 60 \& 84-84.5 \& \& 3305 \& 1638 \& 1520 \& $$
1582
$$

\hline If \& $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{FNO}$
$\mathrm{C}{ }_{10} \mathrm{H}_{10} \mathrm{CINO}$ \& 179
$195 / 197$ \& 95
81

c \& 118-119 \& \& 3275 \& 1642 \& $1543 \mathrm{sh}, 1523$ \& 1612, 1573 sh

\hline Ig \& $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{CINO}$ \& 195/197 \& 81^{c} \& 119-121 \& \& 3250 \& 1633 \& 1549 \& 1609 sh, 1595

\hline İ \& $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{CINO}$ \& 195/197 \& 95 \& 135 \& \& 3285 \& 1643, 1633 \& 1530 \& 1593

\hline Ij \& $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{H}_{10}^{\mathrm{BrNO}} \mathrm{INO}$ \& $239 / 241$
287 \& 71 \& 120
148 \& \& 3268 \& 1643 \& 1525 \& $1613 \mathrm{sh}, 1590$

\hline Ik \& $\mathrm{C}_{10}^{10} \mathrm{H}_{10}^{10} \mathrm{~N}_{2} \mathrm{O}_{3}$ \& 206 \& 69^{e} \& 153-154 \& \& 3311 \& 1647 \& 1528 \& 1615 sh, 1585

\hline Il \& $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$ \& 206 \& 82^{e} \& 180-182 \& \& 3290 \& 1642 \& 1545 sh, 1532 \& 1598, 1518

\hline IIa \& $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}^{3}$ \& 175 \& 92 \& 76-77 ${ }^{\text {c }}$ \& \& 3285 \& 1632 \& 1542 \& 1598, 1518

\hline IIb \& $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{FNO}$ \& 179 \& 78 \& 45-46 ${ }^{\text {c }}$ \& \& 3310 \& 1636 \& 1542 \& 1586

\hline IIc \& $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{FNO}$ \& 179 \& 73 \& 65-66 ${ }^{\text {c }}$ \& \& 3320 \& 1633 \& 1542 \& 1603, 1591

\hline IId \& $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClNO}$ \& 195/197 \& 80 \& 65-66 ${ }^{f}$ \& 67-68 (5), 63-67 (6) \& 3260 \& 1638 \& 1527 \& 1590

\hline IIe \& $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{CINO}$ \& 195/197 \& 81 \& 50 \& 43-45(7) \& 3308 \& 1633 \& 1526 \& 1595,1568

\hline IIf \& $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClNO}$ \& 195/197 \& 92 \& 72-73 ${ }^{\text {c }}$ \& 73 (8) \& 3280 \& 1628 \& 1528 \& 1593

\hline IIg \& $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrNO}$ \& 239/241 \& ${ }_{\text {d }}{ }^{\text {95 }}$ \& $88-89^{c}$ \& \& 3260 \& 1640 \& 1529 \& 1588

\hline Inh \& $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$ \& 206 \& 95 \& 55^{e} \& \& 3265 \& 1639 \& 1540 sh \& 1518

\hline Iİ \& $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ \& 206 \& 99^{e} \& 119-120 \& \& 3320 \& 1650, 1638 \& 1540 \& 1597, 1513

\hline IIIa \& $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}$ \& 215 \& 77^{8} \& 50-52 \& \& \& 1631 \& \&

\hline IIIb \& $\mathrm{C}_{13}^{\mathrm{C}_{13} \mathrm{H}_{14}{ }_{14} \mathrm{NO}_{2}}$ \& 231
$235 / 2$ \& 86
$78{ }^{g}$ \& 40 \& \& \& 1623 \& \& 1603, 1591

\hline IIId \& $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ \& 246 \& 47° \& 53-53.5 \& \& \& 1633 \& \& 1595

\hline IVa \& $\mathrm{C}_{14}^{13} \mathrm{H}_{12} \mathrm{FNO}^{3}$ \& 229 \& 82 \& 68-69 \& 39-40 (9) \& 3268 \& 1636 \& 1528 \& 1569,1514
1613

\hline IVb \& $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ \& 256 \& 77 \& 138-139 ${ }^{h}$ \& 122-123 (10) \& 3278 \& 1635 \& 1550 \& 1614, 1522

\hline Va \& $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}$ \& 301 \& 98 \& 113 \& $$
\begin{aligned}
& 112-112.8(11,12) \\
& 113-114(13), 113.5- \\
& 114.5(14)
\end{aligned}
$$ \& \& 1620 \& \& 1570

\hline Vb \& $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}$ \& 315 \& 56 \& 98 \& \& \& 1627 \& \&

\hline Vc \& $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{2}$ \& 331 \& 88 \& $121-122^{c}$ \& 121-122 (14) \& \& 1633 \& \& 1604

\hline Vd \& $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FNO}$ \& 319 \& 91 \& i \& \& \& 1630 \& \& 1610, 1580

\hline Ve \& $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FNO}$ \& 319 \& 87 \& 97^{c} \& \& \& 1629 \& \& 1602, 1585

\hline Vf \& $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{CINO}$ \& 335/337 \& 91 \& $116-117^{e}$ \& \& \& 1630 \& \& 1590, 1583

\hline Vg \& $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClNO}$ \& 335/337 \& 95 \& 125-127 \& 112-113.5 (14) \& \& 1637 \& \& $1568{ }^{\text {1 }}$

\hline Vh \& $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClNO}$ \& $335 / 337$ \& 65 \& 110^{c} \& 108-109 (14) \& \& 1640 \& \& 1593

\hline Vi \& $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$ \& 346
346 \& 84 \& 109^{c} \& 104-105 (15) \& \& 1637 \& \& 1575, 1541, 1526

\hline Vj
VIa \& $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$ \& 346
287 \& 86 \& $129^{h}{ }^{\text {1 }}$ \& \& \& 1636 \& \& 1600, 1515

\hline VIa \& $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}$ \& 287 \& 92^{e} \& 167 \& $$
\begin{aligned}
& 167-169(16), 167, \\
& 173(17), 171-172.4(18,19), \\
& 175-176(20), 185(21)
\end{aligned}
$$ \& 3308 \& 1633 \& 1510 \& 1595, 1583

\hline VIb \& $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{2}$ \& 317
305 \& $81{ }^{e}$ \& 193-195 \& 198-199(20) \& 3330 \& 1635 \& 1520 \& 1618, 1578

\hline VIc \& $\mathrm{C}_{20} \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{FNO}$ \& 305
305 \& $74{ }^{e}$
91 \& $176-177$
118.5 \& \& 3340 \& 1640 \& 1520 \& 1615, 1583

\hline VIe \& $\mathrm{C}_{20}^{20} \mathrm{H}_{16}^{16} \mathrm{ClNO}$ \& 321/323 \& 79^{e} \& 118.5
$163-164$ \& \& 3305
3310 \& 1643
1642 \& 1548
1515 \& 1605
1590

\hline VIf \& $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClNO}$ \& 321/323 \& 88 \& 220 \& \& 3325 \& 1640 \& 1515 \& 1593

\hline VIg \& $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$ \& 332 \& 65 \& 203-204 \& \& 3300 \& 1634 \& 1520 \& 1570 sh

\hline
\end{tabular}

$$
\begin{array}{ll}
1515 & 1603,1538 \\
1522 & 1598,1584 \\
& \\
1530 & 1598,1584 \\
1530 & 1600 \mathrm{sh} \\
1529 & 1600,1585 \\
1522 & 1610 \mathrm{sh}, 1584 \\
1543,1535 & 1608 \mathrm{sh}, 1508 \\
1523 \mathrm{sh}, 1510 & 1597 \\
1530 & 1594 \\
1545 & 1602 \\
1528 & 1603 \mathrm{sh}, 1583
\end{array}
$$

223-224(20)
$161.2-162.4(19), 164-165$
(20)
$250-251$
$162-163$
174
193
$147-148$
$125-127$
175
152
185
163
$164-165$
71^{e}
80^{e}

60^{e}
89^{e}
76^{e}
66^{h}
70^{e}
d, h
80^{e}
85^{e}
78^{e}

 benzene. ${ }^{f}$ From acetone-petroleum ether.
Model 137 .

Table II. ${ }^{1} H$ NMR Spectral Data of Some Substituted Benzamides and Phenylacetamides ${ }^{a}$

compd	chemical shifts, δ
Ia	$7.77(\mathrm{~m}, 2, \mathrm{ArH}), 7.33(\mathrm{~m}, 3, \mathrm{ArH} ;+1 \mathrm{NH}), 2.88(\mathrm{~m}, 1$, methine $), 0.80(\mathrm{~m}, 1$, methylene), $0.63(\mathrm{~m}, 3$, methylene)
Ib	$7.70(\mathrm{~d}, 2, J=8, \mathrm{ArH}), 7.20(\mathrm{~d}, 2, J=8, \mathrm{ArH}), 6.65(\mathrm{br}, 1, \mathrm{NH}), 2.87(\mathrm{~m}, 1, \text { methine }), 2.83\left(\mathrm{~s}, 3, \mathrm{ArCH}_{3}\right), 0.87$ (m, 1, methylene), 0.70 (m, 3 , methylene)
Ic	7.77 (d, $2, J=8, \mathrm{ArH}), 6.83(\mathrm{~d}, 2, J=8, \mathrm{ArH} ;+1 \mathrm{NH}), 3.78\left(\mathrm{~s}, 3, \mathrm{ArOCH}_{3}\right), 2.87(\mathrm{~m}, 1$, methine $), 0.80(\mathrm{~m}, 1$, methylene), 0.63 ($\mathrm{m}, 3$, methylene)
Id	$7.80-8.30(\mathrm{~m}, 1, \mathrm{ArH}), 6.50-7.70(\mathrm{~m}, 3, \mathrm{ArH} ;+1 \mathrm{NH}), 2.93(\mathrm{~m}, 1$, methine), $0.90(\mathrm{~m}, 1$, methylene), 0.70 ($\mathrm{m}, 3$, methylene)
Ie	7.97 (br, 1, NH), 6.80-7.80 (m, 4, ArH), 2.87 (m, 1, methine), 0.73 (m, 4, methylene)
If	$7.50-8.10(\mathrm{~m}, 2, \operatorname{ArH}), 6.70-7.50(\mathrm{~m}, 2, \mathrm{ArH} ;+1 \mathrm{NH}), 2.87(\mathrm{~m}, 1$, methine), $0.82(\mathrm{~m}, 1$, methylene) 0.70 (m, 3, methylene)
Ig	$7.00-7.80$ (m, 4, ArH), 6.70 (br, 1, NH), 2.90 ($\mathrm{m}, 1$, methine), 0.88 (m, 1, methylene), 0.70 ($\mathrm{m}, 3$, methylene)
In	$7.77(\mathrm{~d}, 2, J=8, \mathrm{ArH}), 7.30(\mathrm{~d}, 2, J=8, \mathrm{ArH} ;+1 \mathrm{NH}), 2.87(\mathrm{~m}, 1$, methine), 0.82 ($\mathrm{m}, 1$, methylene), 0.70 (m, 3, methylene)
Ii	7.23 (m, 4, ArH), 6.46 (br, 1, NH), 2.90 ($\mathrm{m}, 1$, methine), 0.87 ($\mathrm{m}, 1$, methylene), 0.70 ($\mathrm{m}, 3$, methylene)
Ij	$7.82(\mathrm{~d}, 1, J=8, \mathrm{ArH}), 6.70-7.50(\mathrm{~m}, 3, \mathrm{ArH}), 6.23(\mathrm{br}, 1, \mathrm{NH}), 2.87$ (m, 1, methine), 0.87 ($\mathrm{m}, 1$, methylene), 0.73 (m, 3, methylene)
Ik	$8.67(\mathrm{br}, 1, \mathrm{NH}), b 8.00(\mathrm{~d}, 1, J=8, \mathrm{ArH}), 7.30-7.87(\mathrm{~m}, 3, \mathrm{ArH}), 2.87(\mathrm{~m}, 1, \text { methine }), 0.77(\mathrm{~m}, 1, \text { methyl- }$ ene), 0.58 ($\mathrm{m}, 3$, methylene)
Il	8.73 (br, 1, NH), ${ }^{b} 8.33(\mathrm{~d}, 2, J=8, \mathrm{ArH}), 8.03(\mathrm{~d}, 2, J=8, \mathrm{ArH}$), 2.87 ($\mathrm{m}, 1$, methine), 0.80 ($\mathrm{m}, 1$, methylene), 0.67 ($\mathrm{m}, 3$, methylene)
IIa	$\begin{aligned} & 7.72(\mathrm{~d}, 2, J=8, \mathrm{ArH}), 7.12(\mathrm{~d}, 2, J=8, \mathrm{ArH}), 6.76(\mathrm{br}, 1, \mathrm{NH}), 5.73(\mathrm{~m}, 1,=\mathrm{CH}), 5.23\left(\mathrm{~d}, J=8,=\mathrm{CH}_{2}\right), \\ & 5.03\left(\mathrm{~m},=\mathrm{CH}_{2}\right), 4.03(\mathrm{t}, 2, J=5, \mathrm{NCH} 2-\mathrm{C}=), 2.73\left(\mathrm{~s}, 3, \mathrm{ArCH}_{3}\right) \end{aligned}$
IIb	$6.80-8.00(\mathrm{~m}, 4, \mathrm{ArH} ;+1 \mathrm{NH}), 5.74(\mathrm{~m}, 1,=\mathrm{CH}), 5.30\left(\mathrm{~d}, J=8,=\mathrm{CH}_{2}\right), 5.08\left(\mathrm{~m},=\mathrm{CH}_{2}\right), 4.07(\mathrm{t}, 2, J=5$, $\mathrm{NCH}_{2}-\mathrm{C}=$)
IIc	6.80-8.10 (m, 4, ArH), $7.47(\mathrm{br}, 1, \mathrm{NH}), 5.67(\mathrm{~m}, 1,=\mathrm{CH}), 5.22\left(\mathrm{~d}, J=8,=\mathrm{CH}_{2}\right), 5.00\left(\mathrm{~m},=\mathrm{CH}_{2}\right), 4.00(\mathrm{t}, 2$, $\left.J=5, \mathrm{NCH}_{2}-\mathrm{C} \Rightarrow\right)$
IId	$\begin{aligned} & 7.20(\mathrm{~m}, 4, \mathrm{ArH} ;+1 \mathrm{NH}), 5.63(\mathrm{~m}, 1,=\mathrm{CH}), 5.22\left(\mathrm{~d}, J=10,=\mathrm{CH}_{2}\right), 5.00\left(\mathrm{~m},=\mathrm{CH}_{2}\right), 3.89(\mathrm{t}, 2, J=5, \\ & \mathrm{NCH}-\mathrm{C}=) \end{aligned}$
IIe	$6.80-8.20(\mathrm{~m}, 4, \mathrm{ArH} ;+1 \mathrm{NH}), 5.70(\mathrm{~m}, 1,=\mathrm{CH}), 5.27\left(\mathrm{~d}, J=8,=\mathrm{CH}_{2}\right), 5.03\left(\mathrm{~m},=\mathrm{CH}_{2}\right), 4.00(\mathrm{t}, 2, J=5$, $\mathrm{NCH}_{2}-\mathrm{C}=$)
IIf	$\begin{aligned} & 7.77(\mathrm{~d}, 2, J=8, \mathrm{ArH}), 7.30(\mathrm{~d}, 2, J=8, \mathrm{ArH} ;+1 \mathrm{NH}), 5.68(\mathrm{~m}, 1,=\mathrm{CH}), 5.25\left(\mathrm{~d}, J=6,=\mathrm{CH}_{2}\right), 5.03(\mathrm{~m}, \\ & \left.=\mathrm{CH}_{2}\right), 4.02\left(\mathrm{t}, 2, J=5, \mathrm{NCH}_{2}-\mathrm{C}=\right) \end{aligned}$
IIg	$\begin{aligned} & 7.25(\mathrm{~m}, 4, \mathrm{ArH}), 6.68(\mathrm{br}, 1, \mathrm{NH}), 5.68(\mathrm{~m}, 1,=\mathrm{CH}), 5.28\left(\mathrm{~d}, J=10,=\mathrm{CH}_{2}\right), 5.07\left(\mathrm{~m},=\mathrm{CH}_{2}\right), 3.95(\mathrm{t}, 2, J= \\ & \left.5, \mathrm{NCH}_{2}-\mathrm{C}=\right) \end{aligned}$
IIh	$7.20-8.30(\mathrm{~m}, 4, \mathrm{ArH}), 6.98(\mathrm{br}, 1, \mathrm{NH}), 5.63(\mathrm{~m}, 1,=\mathrm{CH}), 5.27\left(\mathrm{~d}, J=8,=\mathrm{CH}_{2}\right), 5.03\left(\mathrm{~m},=\mathrm{CH}_{2}\right), 3.88(\mathrm{t}, 2$, $\left.J=5, \mathrm{NCH}_{2}-\mathrm{C}=\right)$
IIi	$8.23(\mathrm{~d}, 2, J=8, \mathrm{ArH}), 7.90(\mathrm{~d}, 2, J=8, \mathrm{ArH}), 6.87(\mathrm{br}, 1, \mathrm{NH}), 5.72(\mathrm{~m}, 1,=\mathrm{CH}), 5.30\left(\mathrm{~d}, J=8,=\mathrm{CH}_{2}\right), 5.07$ $\left(\mathrm{m},=\mathrm{CH}_{2}\right), 4.07\left(\mathrm{t}, 2, J=5, \mathrm{NCH}_{2}-\mathrm{C}=\right.$)
IIIa	$7.37(\mathrm{~d}, 2, J=8, \mathrm{ArH}), 7.17(\mathrm{~d}, 2, J=8, \mathrm{ArH}), 5.65(\mathrm{~m}, 2,=\mathrm{CH}), 5.30\left(\mathrm{~s},=\mathrm{CH}_{2}\right), 5.08\left(\mathrm{~d}, J=6,=\mathrm{CH}_{2}\right), 4.00$ (d, $\left.4, J=5, \mathrm{~N}\left(\mathrm{CH}_{2}-\mathrm{C}=\right)_{2}\right), 2.35\left(\mathrm{~s}, 3, \mathrm{ArCH}_{3}\right)$
IIIb	$7.37(\mathrm{~d}, 2, J=8, \mathrm{ArH}), 6.80(\mathrm{~d}, 2, J=8, \mathrm{ArH}), 5.60(\mathrm{~m}, 2,=\mathrm{CH}), 5.22\left(\mathrm{~s},=\mathrm{CH}_{2}\right), 5.00\left(\mathrm{~d}, J=6,=\mathrm{CH}_{2}\right), 3.92$ (d, $\left.4, J=5, \mathrm{~N}\left(\mathrm{CH}_{2}-\mathrm{C}=\right)_{2}\right), 3.65\left(\mathrm{~s}, 3, \mathrm{ArOCH}_{3}\right)$
HIIc	$7.33(\mathrm{~m}, 4, \mathrm{ArH}), 5.62(\mathrm{~m}, 2,=\mathrm{CH}), 5.28\left(\mathrm{~s},=\mathrm{CH}_{2}\right), 5.07\left(\mathrm{~d}, J=9,=\mathrm{CH}_{2}\right), 3.95\left(\mathrm{br}, 4, \mathrm{~N}(\mathrm{CH}-\mathrm{C}=)_{2}\right)$
IIId	$\begin{aligned} & 8.18(\mathrm{~d}, 1, J=6, \mathrm{ArH}), 7.20-7.90(\mathrm{~m}, 3, \mathrm{ArH}), 4.70-6.40\left(\mathrm{~m}, 6,=\mathrm{CH}+=\mathrm{CH}_{2}\right), 4.18\left(\mathrm{~d}, J=5, \mathrm{~N}\left(\mathrm{CH}_{2}-\mathrm{C}=\right)_{2}\right), \\ & 3.70\left(\mathrm{~d}, J=5, \mathrm{~N}\left(\mathrm{CH}_{2}-\mathrm{C}=\right)_{2}\right) \end{aligned}$
IVa	$6.50-8.20$ (m, 9, ArH, A and B; +1 NH), 4.62 (d, J=6, $\left.\mathrm{NCH}_{2}-\mathrm{Ar}\right)$
IVb	$7.00-8.20$ (m, 9, ArH, A and B), 6.87 (br, 1, NH), 4.42 ($\left.\mathrm{d}, 2, J=6, \mathrm{NCH}_{2}-\mathrm{Ar}\right)$
Vb	$6.80-7.70$ (m, 14, ArH, A and B), 4.57 ($\mathrm{brs}, 4, \mathrm{~N}\left(\mathrm{CH}_{2}-\mathrm{Ar}\right)_{2}$), 2.32 (s, 3, ArCH_{3})
Ve	$6.70-7.70\left(\mathrm{~m}, 14, \mathrm{ArH}, \mathrm{A}\right.$ and B), ${ }^{\text {c }} 4.52\left(\mathrm{brs}, 4, \mathrm{~N}\left(\mathrm{CH}_{2}-\mathrm{Ar}\right)_{2}\right)$
Vf	6.70-7.70 (m, 14, ArH, A and B), 4.53 ($\left.\mathrm{br} \mathrm{s}, 4, \mathrm{~N}\left(\mathrm{CH}_{2}-\mathrm{Ar}\right)_{2}\right)$
VIa	7.00-8.00 (m, 15, ArH, A and B; $+1 \mathrm{NH}), 6.48$ (d, $1, J=8, \mathrm{NCHAr}_{2}$)
VIb	$7.80(\mathrm{~d}, 2, J=8, \mathrm{ArH}, \mathrm{A}), 7.28$ (m, 10, ArH, B), 6.90 (d, $2, J=8, \mathrm{ArH}, \mathrm{A} ;+1 \mathrm{NH}$), 6.43 (d, $1, J=8$, NCHAr_{2}), 3.83 (s, $3, \mathrm{ArOCH}_{3}$)
VIc	8.07 (m, 1, ArH, A) , 7.27 (m, 13, ArH, A and B; +1 NH), 6.50 (d, $1, J=8, \mathrm{NCHAr}_{2}$)
VId	7.83 (m, 2, ArH, A), 6.80-7.40 (m, 12, ArH, A and B; +1 NH), 6.40 (d, $1, J=8, \mathrm{NCHAr})^{\text {}}$)
VIe	7.65 (m, 1, ArH, A), 7.28 ($\mathrm{m}, 13, \mathrm{ArH}, \mathrm{A}$ and $\mathrm{B} ;+1 \mathrm{NH}), 6.43$ ($\mathrm{d}, 1, J=8, \mathrm{NCHAr}_{2}$)
VIf	7.73 (d, 2, J=8, ArH, A $), 7.27$ (m, 12, ArH, A and B$), 6.73$ ($\mathrm{br}, \mathrm{NH}), 6.37\left(\mathrm{~d}, 1, J=8, \mathrm{NCHAr}_{2}\right.$)
VIh	9.67 (d, $1, J=8, \mathrm{NH}),{ }^{\text {b }} 8.27(\mathrm{~m}, 4, \mathrm{ArH}, \mathrm{A}), 7.33(\mathrm{~m}, 10, \mathrm{ArH}$
VIIa	$6.80-7.60$ (m, 15, ArH, A and B; + 1 NH), 6.23 ($\mathrm{s}, 1, \mathrm{NCHAr}_{2}$), 3.55 ($\mathrm{s}, 2, \mathrm{ArCH}_{2}-\mathrm{CO}$)
VIIb	$8.93(\mathrm{~d}, 1, J=8, \mathrm{NH}),{ }^{b} 6.80-7.60(\mathrm{~m}, 14, \mathrm{ArH}, \mathrm{A}$ and B$), 6.17\left(\mathrm{~d}, 1, J=8, \mathrm{NCHAr}_{2}\right), 3.62\left(\mathrm{~s}, 2, \mathrm{ArCH}_{2}-\mathrm{CO}\right)$, 2.25 ($\mathrm{s}, 3, \mathrm{ArCH}_{3}$)
VIIc	$8.97(\mathrm{~d}, 1, J=8, \mathrm{NH}),{ }^{b} 6.80 \sim 7.60(\mathrm{~m}, 14, \mathrm{ArH}, \mathrm{A}$ and B$), 6.12\left(\mathrm{~d}, 1, J=8, \mathrm{NCHAr}_{2}\right), 3.50\left(\mathrm{~s}, 2, \mathrm{ArCH}_{2}-\mathrm{CO}\right)$, 2.23 ($\mathrm{s}, 3, \mathrm{ArCH}_{3}$)
VIId	$8.77(\mathrm{~d}, 1, J=8, \mathrm{NH}){ }^{b}{ }^{b} 6.70-7.70(\mathrm{~m}, 14, \mathrm{ArH}, \mathrm{A}$ and B$), 6.20\left(\mathrm{~d}, 1, J=8, \mathrm{NCHAr}_{2}\right), 3.72\left(\mathrm{~s}, 3, \mathrm{ArOCH}_{3}\right)$, 3.58 (s, 2, $\mathrm{ArCH}_{2}-\mathrm{CO}$)
VIIe	$\begin{aligned} & 9.02(\mathrm{~d}, 1, J=8, \mathrm{NH}),^{b} 6.50-7.60(\mathrm{~m}, 14, \mathrm{ArH}, \mathrm{~A} \text { and } \mathrm{B}), 6.20\left(\mathrm{~d}, 1, J=8, \mathrm{NCHAr}_{2}\right), 3.67\left(\mathrm{~s}, 3, \mathrm{ArOCH}_{3}\right) \text {, } \\ & 3.58(\mathrm{~s}, 2, \mathrm{ArCH}-\mathrm{CO}) \end{aligned}$
VIIf	$6.70-7.50(\mathrm{~m}, 14, \mathrm{ArH}, \mathrm{A}$ and $\mathrm{B} ;+1 \mathrm{NH}),{ }^{c} 6.23\left(\mathrm{~s}, 1, \mathrm{NCHAr}_{2}\right), 3.77\left(\mathrm{~s}, 3, \mathrm{ArOCH}_{3}\right), 3.50\left(\mathrm{~s}, 2, \mathrm{ArCH}_{2}-\mathrm{CO}\right)$
VIIg	$9.00(\mathrm{~d}, 1, J=8, \mathrm{NH}),{ }^{b} 7.27(\mathrm{~m}, 14, \mathrm{ArH}, \mathrm{A}$ and B$), 6.18\left(\mathrm{~d}, 1, J=8, \mathrm{NCHAr}_{2}\right), 3.60\left(\mathrm{~s}, 2, \mathrm{ArCH}_{2}-\mathrm{CO}\right)$ $9.00(\mathrm{~d}, 1, J=8, \mathrm{NH})^{b}$
VIIi	
VIIj	
$\begin{aligned} & a^{2} \mathrm{Symf}^{2} \\ & \left.\mathrm{D}_{3}\right)_{2} \mathrm{SC} \end{aligned}$	ls: $\mathrm{br}=$ broad signal $; \mathrm{br} \mathrm{s}=$ broad singlet $; \mathrm{d}=$ doublet $; \mathrm{m}=$ multiplet; $\mathrm{s}=$ singlet; $\mathrm{t}=$ triplet. ${ }^{b}$ Measured in ${ }^{c}$ Spectrum obtained from a Varian Associates EM-390 instrument.

(to whom I am grateful). Unless otherwise mentioned, melting points were determined on a Kofler hot stage and are uncorrected. Infrared (IR) spectra were obtained on a Perkin-Elmer 257 grating spectrometer in Nujol mulls. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were measured on a Varian Associates T-60 instrument, in CDCl_{3}. All peak positions were measured in ppm relative to tetramethylsilane $\left(\mathrm{Me}_{4} \mathrm{Si}\right)$ as an internal standard ($\delta_{\mathrm{me}_{4} \mathrm{~s} \mid}=0$). The J values are recorded in hertz. Yields were based on crystallization from benzene.
Acld Chlorlde Method. Typlcal Procedure 1. N-Allyl-3chlorobenzamide (IIe). To a $50-\mathrm{mL}$ dry benzene solution of 3-chlorobenzoyl chloride ($17.5 \mathrm{~g}, 0.1 \mathrm{~mol}$) was added cautiously, with stirring and cooling (ice bath), allylamine ($11.4 \mathrm{~g}, 0.2 \mathrm{~mol}$) in 50 mL of benzene over 0.5 h ; the final solution was allowed to stir for 18 h . Workup as usual gave 19.1 g of crude and 15.8 g from benzene. (This procedure was used in the synthesis of the N-allyl and N-cyclopropyl compounds.)

Typlcal Procedure 2. \mathbf{N}-Benzhydrylbenzamide (VIa). Benzoyl chloride ($14.1 \mathrm{~g}, 0.1 \mathrm{~mol}$) in 50 mL of dry benzene was treated likewise, as above, with benzhydrylamine ($18.3 \mathrm{~g}, 0.1$ mol) and 15.0 g of triethylamine dissolved in 50 mL of benzene. Workup as usual gave 30.1 of crude and 26.3 g from ace-tone-benzene.

Thermal Method. Typlcal Procedure. N-Benzhydryl-4chlorophenylacetamide (VIII). A mixture of 4-chlorophenylacetic acid ($8.5 \mathrm{~g}, 0.05 \mathrm{~mol}$), benzhydrylamine $(9.2 \mathrm{~g}$, 0.05 mol), and 50 mL of 0 -xylene was placed in a $100-\mathrm{mL}$ round-bottomed flask equipped with a reflux condenser and a Dean-Stark apparatus and heated in an electrical heating mantle for 6 h when distillation of water ceased. Workup as usual gave 14.5 g of crude and 13.4 g from acetone-benzene.

Acknowledgment

I thank Mrs. Margaret Adams of the Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, and the Microanalytical Laboratory, University of Illinois, Urbana, for the microanalyses. I also thank Professor Peter Beak for granting technical facilities.

Reglstry No. Ia, 15205-35-3; Ib, 88229-12-3; Ic, 88229-13-4; Id, 88229-14-5; Ie, 88229-15-6; If, 88229-16-7; Ig, 88229-17-8; Ih,

39887-35-9; II, 88229-18-9; Ij, 88229-19-0; Ik, 88229-20-3; II, 88229-21-4; IIa, 88229-22-5; IIb, 88229-23-6; IIc, 39887-14-4; IId, 66896-68-2; IIe, 35306-52-6; IIf, 5866-99-9; IIg, 88229-24-7; IIh, 88229-25-8; III, 88229-26-9; IIIa, 39108-89-9; IIIb, 39108-80-0; IIIc, 5867-01-6; IIId, 88229-27-0; IVa, 724-37-8; IVb, 52745-10-5; Va, 23825-35-6; Vb, 88229-28-1; Vc, 57409-26-4; Vd, 57409-28-6; Ve, 88229-29-2; Vf, 7465-70-5; Vg, 57409-24-2; Vh, 7461-37-2; VI, 57409-27-5; Vj, 2585-27-5; VIa, 1485-72-9; VIb, 69790-46-1; VIc, 88229-30-5; VId, 88229-31-6; VIe, 69790-47-2; VIf, 88229-32-7; VIg, 88229-33-8; VIh, 88229-34-9; VIIa, 10254-16-7; VIIb, 88229-35-0; VIIc, 88229-36-1; VIId, 88229-37-2; VIIe, 88229-38-3; VIIf, 88229-39-4; VIIg, 88229-40-7; VIIh, 88229-41-8; VIIi, 88229-42-9; VIIj, 88229-43-0; 3-chlorobenzoyl chloride, 618-46-2; benzoyl chloride, 98-88-4; 4-chlorophenylacetic acid, 1878-66-6; allylamine, 107-11-9; benzhydrylamine, 91-00-9.

Literature CIted

(1) Agwada, V. C. J. Chem. Eng. Data 1982, 27, 479-81 (paper 1). (2) Agwada, V. C. J. Chem. Eng. Data 1982, 27, 481-3 (paper 2).
(3) Roberts, J. D.; Chambers, V. C. J. Am. Chem. Soc. 1951, 73, 3176-9.
(4) Hass, H. B.; Schechter, H. J. Am. Chem. Soc. 1953, 75, 1382-4.
(5) Schlesinger, A. H.; Prill, E. J. J. Am. Chem. Soc. 1956, 78, 6123-7.
(6) Shapiro, S. L.; Parrino, V. A.; Freedman, L. J. Am. Chem. Soc. 1959, 81, 3728-36.
(7) Pagani, G.; Berutfini, A.; Caccialanza, G.; Calderara, G. Farmaco, Ed. Sci. 1971, 26, 821-43.
(8) Behrens, O. K.; Corse, J.; Huff, D. E.; Jones, R. G.; Soper, Q. F.; Whitehead, C. W. J. Biol. Chem. 1948, 175, 771-92.
(9) Joshi, K. C.; Giri, S. J. Ind. Chem. Soc. 1980, 37, 423-4.
(10) Ragini, A.; Khara, S. S. Can . J. Chem. 1960, 38, 746-8.
(11) Wittig, G.; Ludwig, H. Justus Lieblgs Ann. Chem. 1954, 589, 55-76.
(12) Chlerici, L.; Passerini, R. J. Chem. Soc. 1954, 3249-50.
(13) Prasnar, B.; Troszkiewicz, C. Rocz. Chem. 1962, 36, 1029-38.
(14) Lewin, A. H.; Frucht, M. Org. Magn. Reson . 1975, 7, 206-25.
(15) Cohen, T.; Moran, R. M.; Sowinski, G. J. Org. Chem. 1981, 26, 1-5.
(16) Zinner, G. Arch. Pharm. Chem. 1963, 296, 420-6.
(17) Hohenlohe-Oehringen, K. Monatsh. Chem. 1962, 93, 639-44.
(18) Skulski, L.; Palmer, G. C.; Calvin, M. Rocz. Chem. 1984, 38, 789-809.
(19) Sanguigni, J. A.; Levine, R. J. Med. Chem. 1964, 7, 573-4.
(20) Cheeseman, G. W. H.; Poller, R. C. Analyst (London) 1962, 87, 366-8.
(21) Christol, H.; Laurent, A.; Solladie, G. Bull. Soc. Chim. Fr. 1963, 877-81.

Received for review April 4, 1983. Revised manuscript received July 19, 1983. Accepted August 9, 1983. I am indebted to the Unlversity of Nigeria, Nsukka, for financial assistance.

Potential Central Nervous System Active Agents. 4. Synthesis of \boldsymbol{N}-Isobutylbenzamides

Vincent C. Agwada*
Department of Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria

Peter Beak
School of Chemical Sciences, Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801

Abstract

The preparation and spectral properties (IR, ${ }^{1} \mathrm{H}$ NMR) are given for 11 N -isobutylbenzamides, variously substituted on the acyl part with halo, methoxyl, methyl, or nitro groups, including two new ones. The amides were synthesized by the Schotten-Baumann method In anhydrous benzene.

In the preceding communications (1-3), the synthesis and the spectroscopic data (IR, mass spectra, ${ }^{1} \mathrm{H}$ NMR) of some
substituted benzamides and phenylacetamides were reported. As part of a general study of the structure-activity relationship in the central nervous system active compounds, 11 N -isobutyibenzamides, variously substituted on the acyl part with halo, methoxyl, methyl, or nitro groups, were synthesized by the Schotten-Baumann method in anhydrous benzene. Compounds 4 and 9 are new. The spectroscopic data (IR, ${ }^{1} \mathrm{H}$ NMR) not hitherto described in the literature are reported in this communication.

The experimental and IR data on all of the compounds are summarized in Table I, and those of the ${ }^{1} \mathrm{H}$ NMR spectral data

