Cyclization. The chalcones were refluxed in aqueous alcoholic hydrochloric acid (3%) solution or suspension. The amounts of alcohol and hydrochloric acid used varied with the solubility of the chalcone and are given in Table II.

Different methods were adopted for isolating the flavanone depending on the nature of the chalcone.

Groups I and II. The reaction mixture was cooled well and the chalcone that had separated was filtered. The filtrate was concentrated under reduced pressure till turbidity appeared. It was then cooled and diluted. The solid obtained was fractionally crystallized from benzene to get the flavanone. In the case of Chalcone Ia, the reaction mixture was diluted and the mixture of chalcone and flavanone separated by virtue of the higher solubility of the chalcone in alcohol. The mixture was triturated with cold alcohol and filtered. The white residue was crystallized from alcohol when the pure flavanone separated.

Group III. The reaction mixture was cooled to about 45° and the yellow chalcone that had separated was filtered. The filtrate was cooled in ice when the crude flavanone separated which was crystallized from benzene.

Group IV. The reaction mixture was cooled and the solid that separated was recrystallized from a mixture of alcohol and ethylacetate to get the pure flavanone. All the flavanones were white or very pale yellow in color. They did not give the magnesium-hydrochloric acid test and many of them gave colors other than yellow with concentrated sulfuric acid (see Table II). Groups I and III flavanones gave pale brown colors with alcoholic ferric chloride, while the isomeric chalcones gave deep brownish red colors. Both the chalcones and flavanones of group IV gave red colors with alcoholic ferric chloride.

Tests for stability of flavanones. (a) The flavanone (0.1 g.) was warmed with sodium hydroxide solution (10 cc.; 5%) for 10 min. and acidified. All the flavanones gave back the chalcone when thus treated. (b) The flavanone (0.1 g.) was refluxed in alcohol (10 cc.) with concentrated hydrochloric acid (10 cc.). Flavanone Ia was completely converted into the chalcone in 15 min. Only part of flavanone IIIa had reverted to the chalcone even after refluxing for an hour. Flavanone IVa was unaffected.

Acknowledgments. The authors wish to express their thanks to Dr. G. V. Jadhav for his keen interest in the work.

BOMBAY, INDIA

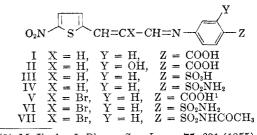
[Contribution from the Research Laboratory, Lepetit S.p.A., Milan]

## **Cinnamic and 2-Thienylacrylic Derivatives**

## ALBERTO VECCHI AND GAETANO MELONE

## Received May 16, 1957

As a further development of previous studies on two exceptionally active antibacterial substances,  $\beta$ -(5-nitro-2-thienyl)acrolein and its  $\alpha$ -bromo derivative, the effects of introducing a 5-cyano group instead of the 5-nitro group and of a nitro instead of the aldehyde group were studied. Similar substitutions were tried in the benzene analogs. Furthermore, 4-cyanocinnamylidene acetaldehyde and 4-methylsulfonyl derivatives of the benzene series have been prepared. Outstanding antifungal activity was displayed by  $\alpha$ -bromo- $\beta$ -(5-cyano-2-thienyl)acrolein,  $\alpha$ -bromo-4-cyanocinnamaldehyde, and their Schiff's bases with p-aminobenzoic acid, as well as by 1-(5-nitro-2-thienyl)-2-nitroethylene and 1-(5-nitro-2-thienyl)-2-bromo-2nitroethylene. Other members of the described classes were also highly active.


In continuation of our previous work on cinnamic and 2-thienylacrylic derivatives,<sup>1-3</sup> which was suggested by a consideration of the marked biological interest of aromatic aeroleins<sup>4</sup> and confirmed by a paper of Affonso and Khorana<sup>5</sup> on halogenated derivatives of cinnamic and *p*-nitrocinnamic acid, we have now synthesized a series of new compounds having structural resemblance to the acroleins already described.

The considerable interest aroused by the prior work is shown by several publications of Japanese scientists concerning furan analogs of the series.<sup>6-12</sup>

- (6) T. Toda and I. Mifuchi, Tuberculosis, 28, 19 (1953).
- (7) T. Sasaki, Pharm. Bull. (Japan), 2, 123 (1954).
- (8) M. Ikeda, J. Pharm. Soc. Japan, 75, 628 (1955).

Strict furan analogs of the thiophene compounds described in our previous papers have been recorded, such as  $\beta$ -(5-nitro-2-furyl)acrolein<sup>6</sup> and many functional derivatives thereof.

In view of the slight water solubility of the  $\beta$ -(5-nitro-2-thienyl)acroleins,<sup>1</sup> which prevented their use by the parenteral route and their absorption by the gastro-enteric tract, we have prepared functional derivatives of the following formula:



(9) M. Ikeda, J. Pharm. Soc. Japan, 75, 631 (1955).
(10) A. Ohyama, Bull. Inst. Chem. Research Kyoto Univ.,

- 34, 25 (1956).
  (11) M. Ikeda, Ann. Rept. Fac. Pharm. Kanazawa Univ.,
  3, 25 (1953).
- (12) S. Yasuda, Ann. Rept. Fac. Pharm. Kanazawa Univ., 3, 30 (1953).

G. Carrara, R. Ettorre, F. Fava, G. Rolland, E. Testa and A. Vecchi, J. Am. Chem. Soc., 76, 4391 (1954).
 G. Rolland and M. T. Timbal, Atti VI Congresso Int.

<sup>(2)</sup> G. Rolland and M. T. Timbal, Atti VI Congresso Int. Microbiologia Roma, 1953, vol. I, sect. 2, p. 629.

<sup>(3)</sup> G. Carrara, E. Ginoulhiac, G. Rolland, and M. T. Timbal, *Il Farmaco, Sci. ed.*, 9, 39 (1954).

<sup>(4)</sup> E. Keeser and J. Houben, Fortschritte der Heilstoffchemie, 2 Abt., Berlin, Leipzig, 1932, p. 254.

<sup>(5)</sup> A. Affonso and M. L. Khorana, *Indian J. Pharm.*, 14, 3 (1952).

Unfortunately, no substantial improvement in solubility was achieved, so we tried to overcome this difficulty by forming salts with hydrophilic bases, such as hydroxyethylamine, piperazine, and morpholine. These salts, however, when dissolved in water quickly hydrolyzed (in some instances after a few minutes) with precipitation of the acidic moiety.

The antibacterial activity on a molar basis of the compounds of this class was generally slightly lower than that of the corresponding aldehydes. Table I is representative of these and all results obtained in vitro with the compounds of the present paper.

Another untoward feature of the free nitroaldehydes is the brown coloration they impart to the tissue proteins, which impaired also their topical use in ointments and alcohol solutions. Since this property could be attributed to the simultaneous presence of bromine, nitrothiophene, and aldehyde groups in the molecule, an attempt was made to prepare analogs bearing a cyano instead of a nitro group. The cyano group being electronegative, the polarity of the molecule should not be markedly different, and the antibacterial activity should be maintained. The same substitution was tried also for the benzene analogs for the purpose of comparison; the following series of compounds were thus prepared:

$$CN \xrightarrow{} S \xrightarrow{} CH=CX-CH=Y$$
VIII X = H, Y = 0  
IX X = Br, Y = 0  
X X = Br, Y = NC<sub>6</sub>H<sub>4</sub>COOH-p  
CN \xrightarrow{} CH=CX-CH=Y
XI X = H, Y = 0  
XIII X = H, Y = 0  
XIII X = H, Y = CH-CH0  
XIV X = H, Y = CH-CH0  
XIV X = Br, Y = NNHCSNH<sub>2</sub>  
XV X = Br, Y = NC<sub>6</sub>H<sub>4</sub>COOH-p

The expected equivalence of cyano and nitro analogs was substantially confirmed for the simplest members of the benzene series, since the antibacterial activity of compounds XI and XII paralleled that of 4-nitrocinnamaldehyde and  $\alpha$ -bromo-4nitrocinnamaldehyde. In the thiophene series, however, the cyano compounds were somewhat less active, although this disadvantage was balanced by the fact that skin coloration was almost totally eliminated. More extensive details on this subject will be published elsewhere.<sup>13</sup>

Compound XIII does not properly belong to the present class, and was only prepared for the purpose of ascertaining whether a lengthening of chain with the insertion of a second double bond would improve antibacterial activity. However XIII was practically devoid of activity. The thiosemicarbazones, as expected, were only active on Mycobacterium tuberculosis var. hominis H37Rv.

As a further development of the present study, in view of the interesting antibacterial and antifungal properties of  $\beta$ -nitrostyrenes,  $\beta$ -nitrovinylfurans, and  $\beta$ -nitrovinylthiophenes as described in several works, 14-22 1-(5-nitro-2-thienyl)-2-nitroethylene (XVII) and 1-(5-nitro-2-thienyl)-2-bromo-2-nitroethylene (XVIII) were prepared and compared with the corresponding known benzene analogs (XIX and XX).23

$$O_2N - CH = CX - NO_2$$
 XVII X = H  
XVIII X = Br

Whereas in any case the halogenated compounds were generally more active, it can be observed that benzene derivatives were superior for their antibacterial activity (except for H37Rv), while thiophene compounds reached higher values of antifungal effectiveness, XVII being of the utmost interest in this respect.

Moreover, analogs of these last compounds in which the ring nitro group was substituted by a cyano group were prepared, giving compounds XXI-XXIV

$$CN \xrightarrow{Y} CH = CX - NO_2$$

$$CN \xrightarrow{i} CH = CX - NO_2$$

$$XXI \quad X = H \quad Y = H \quad XXIII \quad X = H$$

$$XXII \quad X = Br \quad Y = H \quad XXIV \quad X = Br$$

$$XXV \quad X = Br \quad Y = NO_2$$

where *t* y a slightly higher antibacterial and antifungal activity of the kenzenes was ascertained.

The introduction of a ring nitro group in XXII (compound XXV) gave a fairly active compound; also compound XXVI,

(14) J. C. McGowan, P. W. Brian, and H. G. Hemming, Ann. Applied Biol., 35, 25 (1948).

- (15) P. W. Brian, J. F. Grove and J. C. McGowan, Nature, 158, 876, 1946.
  - (16) O. Dann and E. F. Moeller, Ber., 82, 76 (1949).
- (17) O. Schales and H. A. Graefe, J. Am. Chem. Soc., 74, 4486 (1952)
- (18) F. C. Bocobo, A. C. Curtis, W. D. Block, and E. R. Harrell, Proc. Soc. Exptl. Biol. Med., 85, 220 (1954).
- (19) A. C. Curtis, F. C. Bocobo, E. R. Harrel and W. D.
- Block, Arch. Dermatol. and Syphilol., 70, 786 (1954).
  (20) A. C. Huitric, R. Pratt, Y. Okano, and W. D.
  Kumbler, Antibiotics & Chemotherapy, 6, 290 (1956).
- (21) F. C. Bocobo, A. C. Curtis, W. D. Block, E. R. Ha"rel, E. E. Evans, and R. F. Haines, Antibiotics & Chemotherapy, 6, 385 (1956).
- (22) E. E. Evans, R. F. Haines, A. C. Curtis, F. C. Bocobo, W. D. Block, and E. R. Harrell, J. Invest. Dermatol., 28, 43(1957)

(23) T. Posner, Ber., 31, 657 (1898); R. Flürscheim, J. prakt. Chem. [2] 66, 16 (1902).

<sup>(13)</sup> M. T. Timbal, unpublished results.

obtained as an intermediate of the preparation of XXII, retained a good order of activity.

Our work has been concluded with the synthesis of compounds XXVII and XXVIII, structurally related to the derivatives, made by Affonso and Khorana,<sup>5</sup> but bearing a methylsulfonyl group at position 4. This substitution has been suggested by the considerable activity of the p-methylsulfonyl analog of chloramphenicol.<sup>23,24</sup>

$$CH_{3}SO_{2} \longrightarrow CH = CX - CHO$$

$$XXVIII \qquad X = H$$

$$XXVIII \qquad X = Br$$

While XXVII was practically devoid of any *in vitro* activity, the introduction of the bromine atom brought a marked degree of antibacterial and antifungal activity.

From an inspection of a generic formula embracing most of the componds prepared in this and in the other papers it can be concluded with respect to the antibacterial and antifungal activity:

$$\mathbf{R} - \left\langle \mathbf{X} \right\rangle - \mathbf{C} \mathbf{H} = \mathbf{C} \mathbf{Y} - \mathbf{R}$$

1. The carbon atom at position  $\beta$  from the ring must be totally substituted, since where Y is hydrogen a considerable decrease of activity results. The presence of a bromine atom at  $\beta$  is of great importance; however, a methyl group<sup>17</sup> or chlorine may be substituted for it thus obtaining fairly active compounds.

2. Compounds in which  $\mathbf{R}'$  is a nitro group are generally slightly more active than in the case of R' being an aldehyde carbonyl. Also in this case the  $\beta$ carbon atom must be totally substituted, as stated in item 2.

3. No substantial difference in activity is found when R is a cyano instead of a nitro group.

4. In any case, thiophene compounds, except in some isolated instances, have somewhat superior activity when compared with the benzene analogs.

## EXPERIMENTAL

 $N-[\gamma-(5-Nitro-2-thienyl)acrylidene]-p-aminobenzoic acid$ (I). A mixture of 2 g.  $\beta$ -(5-nitro-2-thienyl)acrolein<sup>1</sup> and 100 ml. anhydrous ethanol was refluxed on a steam bath in a 250-ml. round bottom flask to complete solution, then 1.5 g. p-aminobenzoic acid were quickly added in one portion and refluxing was continued. After a few minutes complete solution occurred followed by precipitation of brick red crystals. After 10 min. the mixture was filtered hot by suction, and the solid on the filter was washed with hot anhydrous ethanol and dried. The yield was 2.65 g. (67%) m.p. 221-23°

 $N-[\gamma-(5-Nitro-2)thienyl)$  acrylidene]-4-aminosaliculic acid (II). Yield, 75%; m.p. 187-188° (dec.).

Anal. Calcd. for C14H10N2O5S: N, 8.80; S, 10.07. Found: N, 8.32; S, 9.65.

 $N-[\gamma-(5-Nitro-2-thienyl)acrylidene]sulfanilic acid (III).$ Yield, 64%; m.p. above 300°.

Anal. Calcd. for C13H10N2O5S2: N, 8.28; S, 18.95. Found: N, 7.99; S, 18.20.

 $N^{4}$ -[ $\gamma$ -(5-Nitro-2-thienyl)acrylidene]sulfanilamide (IV). Yield, 52%; m.p. 198-199°

Anal. Caled. for C13H11N3O4S2: N, 12.45; S, 19.00. Found: N, 12.10; S, 19.50.

 $N^4$ -[ $\beta$ -Bromo- $\gamma$ -(5-nitro-2-thienyl)acrylidene]sulfanilamide (VI). From  $\alpha$ -bromo- $\beta$ -(5-nitro-2-thienyl)acrolein<sup>1</sup> and sulfanilamide. Yield, 47%; m.p. 163-164°.

Anal. Calcd. for C<sub>13</sub>H<sub>10</sub>BrN<sub>3</sub>O<sub>4</sub>S<sub>2</sub>: N, 10.09; S, 15.40. Found: N, 9.82; S, 15.25.

 $N^1$ -Acetyl- $N^4$ -[ $\beta$ -bromo- $\gamma$ -( $\delta$ -nitro-2-thienyl)acrylidene]sulfanilamide (VII). Acetic acid was used as a solvent in this case. Yield, 36%; m.p. 217° (dec.).

Anal. Caled. for C<sub>15</sub>H<sub>12</sub>BrN<sub>3</sub>O<sub>5</sub>S<sub>2</sub>: N, 9.16; Br, 17.43; S, 13.99. Found: N, 8.95; Br, 17.62; S, 14.02.

In addition, the hydroxyethylamine (V), piperazine (Va), and morpholine (Vb) salts of N-[ $\beta$ -bromo- $\gamma$ -(5-nitro-2thienyl)acrylidene]-p-aminobenzoic acid, a compound already described in our previous work,<sup>1</sup> were prepared. Va and Vb could not be subjected to microbiological experimentation in view of their insolubility.

2-Methyl-5-cyanothiophene (XXIX). A mixture of 255 ml. anhydrous pyridine, 26.2 g. cuprous cyanide, and 34.9 g. 2methyl-5-iodothiophene<sup>25</sup> were refluxed in a round bottom flask on an oil bath under vigorous stirring for 8 hr. Pyridine was then removed by distillation in vacuo, and the residual dark mixture of oil and crystals was extracted with four 150-ml. portions of hot ethyl acetate. The combined organic extracts were washed with water and dried over anhydrous sodium sulfate. The solvent was removed in vacuo and the dark oily residue was distilled from a Claisen flask to yield a light orange liquid, b.p.  $87-90^{\circ}/10 \text{ mm}$ .  $n_{\rm D}^{20}$  1.5512. Yield, 14 g. (73%). Anal. Calcd. for C<sub>6</sub>H<sub>5</sub>NS: N, 11.38; S, 26.03. Found: N,

10.96; S. 25.78.

5-Cyano-2-thiophenecarboxaldehyde diacetate. Into a well stirred mixture of 14.0 g. of 2-methyl-5-cyanothiophene, 175 ml. acetic anhydride, and 175 ml. glacial acetic acid, previously cooled to below 20°, 25 ml. concd. sulfuric acid were added dropwise taking care that the temperature did not exceed 25°. The mixture was then cooled to below 5° and 31.2 g. chromium trioxide were added in small portions with stirring for 2 hr. without exceeding 8°. Stirring was continued for an additional 30 min. between 10 and 12°, and the mixture was poured into 400 ml. of ice water. The precipitated crystals were collected by suction, washed with cold water, and dried in vacuo at 40° to yield, 15.3 g. (56%)of material, m.p. 74-75°

Anal. Calcd. for C10H9NO4S: N, 5.85. Found: N, 5.90.

5-Cyano-2-thiophenecarboxaldehyde (XXX). The above product (15.3 g.) was suspended in a mixture of 60 ml. water, 60 ml. 95% ethanol, and 4.5 ml. concd. sulfuric acid and refluxed for 20 min. The solution was treated with charcoal and filtered when hot. On cooling, long white needles separated, which were collected by suction, washed with water, and dried in vacuo at 40°. An additional crop was obtained on concentration of the mother liquor; yield, 8.45 g. (51.5%calculated on 2-methyl-5-cyanothiophene); m.p. 96-97°

Anal. Calcd. for C6H3NOS: N, 10.21; S, 23.38. Found: N, 10.25; S, 23.15.

The antibacterial activity of the intermediate compounds XXIX and XXX are also tabulated in Table I.

 $\beta$ -(5-Cyano-2-thienyl)acrolein (VIII). This product was

Anal. Calcd. for C14H10N2O4S: N, 9.26; S, 10.60. Found: N, 9.22; S, 10.61.

By strictly analogous procedures the following compounds were prepared.

<sup>(24)</sup> R. A. Cutler, R. J. Stenger, and C. M. Suter, J. Am. Chem. Soc., 74, 5475 (1952).

<sup>(25)</sup> E. Grischkewitsch-Trochimowski, J. Russ. Phys. Chem. Soc., 43, 804 (1911).

| $\label{eq:relation} \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |                        |                           | TABLE I             | I                   |                           |                          |                        |                                |                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------|---------------------------|---------------------|---------------------|---------------------------|--------------------------|------------------------|--------------------------------|-----------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                        | MINIMAL INH               | UBITORY CONC        | ENTRATION           | $\gamma/ML$ .             |                          |                        |                                |                             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Compound                                               | M icrococcus<br>aureus | Streptococcus<br>faecalis | Escherichia<br>coli | Proteus<br>vulgaris | Pseudomonas<br>aeruginosa | Klebsiella<br>pneumoniae | H37 Rv<br>(With Serum) | Trichophyton<br>mentagrophytes | Candida<br>albica <b>ns</b> |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | 10                     | 20                        | 20                  | 5                   | >100                      | 10                       | 6                      |                                | ļ                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                     | 10                     | 20                        | 20                  | 10                  | >100                      | 9                        | ی<br>م                 | о <u>с</u>                     | 29                          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | III                                                    | 10                     | 50                        | 20                  | 10                  | >100                      | 202                      | 10.01                  | 01                             | 01                          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 71                                                     | 10                     | 20                        | 20                  | S                   | >100                      | 20                       | 9 <b>2</b>             | 5 v                            | 07                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V<br>111                                               | ວ                      | 10                        | 10                  | ъ                   | 50                        | 10                       | 10                     | 5 14                           |                             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | <b>یں</b>              | 10                        | 10                  | 10                  | 20                        | 10                       | , rc                   | 000                            | 2 K                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | <u>،</u>               | 10                        | 10                  | Ω                   | 10                        | 10                       | ) <b>1</b> 0           | <b>,</b>                       | 5 14                        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | 100                    | >100                      | >100                | 100                 | >100                      | 100                      | 50                     | 100                            | Ϋ́Ο                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | 5<br>2                 | 20                        | 20                  | 10                  | 10                        | 202                      | , ro                   | 2                              | 5 <b>1</b> .                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | 10                     | 100                       | 50                  | Ŋ                   | 20                        | 20                       | 5                      |                                | 2                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | 10                     | 100                       | 50                  | 10                  | 20                        | 20                       | л.                     |                                | 2.1                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | 100                    | 100                       | 100                 | 50                  | >100                      | 100                      | 10                     |                                | 50                          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | 10                     | 20                        | 10                  | ŋ                   | 20                        | 10                       | Ъ.                     | -0.5                           | ) <b>1</b> .                |
| $\sum_{\substack{n=1\\ n \neq n}}^{n} \sum_{\substack{n=1\\ n \neq n}}^{n$ |                                                        | 100                    | >100                      | >100                | >100                | >100                      | >100                     | 10                     | 20                             | 50                          |
| $\sum_{i=1}^{100} \sum_{i=1}^{100} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | >100                   | >100                      | >100                | >100                | >100                      | >100                     | 10                     | >100                           | >100                        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | >100                   | >100                      | >100                | >100                | >100                      | >100                     | л<br>С                 | 50                             | >100                        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | 10                     | 10                        | 10                  | ъ                   | 50                        | 10                       | 10                     | 0.2                            | 10                          |
| $\sum_{i=1}^{20} \sum_{j=1}^{20} \sum_{i=1}^{20} \sum_{j=1}^{20} \sum_{i=1}^{20} \sum_{j=1}^{20} \sum_{i=1}^{20} \sum_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        | 10                     | 10                        | 50                  | ŝ                   | >100                      | 20                       | 20                     | 0.5                            | 20                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | XVIII                                                  | 07                     | 001                       | 50                  | 20                  | 100                       | 50                       | Г                      | 0.3                            | 0.5                         |
| $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        | 01                     | 50                        | 20                  | ខ្ល                 | 50                        | 50                       | 63                     | 0.5                            | 1                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | 2 K                    | 001                       | 20                  | 3"                  | >100<br>,                 | ຊີ                       | 20                     | 61                             | 12                          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | 10<br>10               | 2                         | 01                  | <u>,</u>            | 0.001                     | 02                       | 07                     | (                              | 01                          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IIXX                                                   | 5                      | 20                        | 99                  | 10                  | 2                         | 07                       | 0.7                    | N -                            |                             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IIIXX                                                  | 50                     | 20                        | 50                  | 20                  | >100                      | 88                       | Q [                    |                                | Nu                          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XXIV                                                   | 10                     | 20                        | 10                  | 10                  | 10                        | 50<br>50                 | 2 10                   |                                | с и                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | XXV                                                    | 10                     | 50                        | 20                  | 10                  | 20                        | 80                       | •                      | a                              |                             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | 50                     | 50                        | 10                  | 10                  | 2                         | 50<br>50                 | <br>20                 | • 6                            | 40                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | 100                    | >100                      | >100                | 100                 | >100                      | >100                     | 20                     | 100                            | >100<br>>                   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | 10                     | 50                        | 20                  | 'n                  | >100                      | 20                       | 50                     | 20                             | 5                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | >100                   | >100                      | >100                | >100                | >100                      | >100                     | >100                   | >100                           | >100                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hyde                                                   | >100                   | >100                      | / 100               | /100                | 100                       | 100                      | 0                      | 0                              |                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\alpha$ -Bromo- $\beta$ -(5-nitro-2-thienyl)-acroleín | 10                     | 20                        | 6<br>1              | 3                   |                           | 001                      | 00T                    | 100                            | 001<br>1                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a-Bromo-5-nitrocinnamaldehyde                          | ъ                      | 10                        | 10                  | i rð                | 50                        | ય મ્લ                    | -1 ,                   | -4                             | о и                         |
| >100 $>100$ $>100$ $>100$ $>100$ $>100$ $>100$ $100$ $100$ $100$ $100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chloramphenicol                                        | ю.                     | 5                         | ъ                   | -                   | >100                      | ) I.,                    |                        | ~100<br>~100                   | 7100                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4-Amino-salicylic acid                                 | >100                   | >100                      | >100                | >100                | >100                      | >100                     |                        | 2100<br>2100                   |                             |

prepared with the same technique as described for  $\beta$ -(5nitro-2-thienyl)acrolein.1 Yield, 43%; m.p. 128-130°.

Anal. Calcd. for C<sub>8</sub>H<sub>5</sub>NOS: N, 8.58; S, 19.64. Found: N, 8.26; S, 19.48.

 $\alpha$ -Bromo- $\beta$ -(5-cyano-2-thienyl)acrolein (IX) was prepared as described for  $\alpha$ -bromo-(5-nitro-2-thienyl)acrolein.<sup>1</sup> Yield, 77%; m.p. 152–154°.

Anal. Caled. for C<sub>8</sub>H<sub>4</sub>BrNOS: 5.78; Br, 33.00. Found: N, 5.62; Br, 33.10.

4-[ $\beta$ -Bromo- $\gamma$ -(5-cyano-2-thienyl)acrylideneamino]benzoic acid (X). A suspension of 12.3 g. of IX in 230 ml. anhydrous ethanol was refluxed until complete solution was obtained, then 8 g. 4-aminobenzoic acid were added in one portion under stirring. Heating was continued for some minutes, whereby complete solution occurred followed by gradual precipitation of yellow needles. After cooling in ice bath the crystals were collected by suction and dried on a steam bath. Yield, 7.3 g. (41%); m.p. 298° (dec.).

Anal. Caled. for C15H9BrN2O2S: N, 7.75; Br, 22.12. Found: N, 7.70; Br, 22.06.

The hydroxyethylamine salt had m.p. 173-175° (dec.).

4-Cyanocinnamaldehyde (XI). This product was prepared starting from 4-cyanobenzaldehyde as described for 4-nitrocinnamaldehyde.<sup>26</sup> Yield, 41%; m.p. 136-138°

Anal. Calcd. for C<sub>10</sub>H<sub>7</sub>NO: N, 8.91. Found: N, 9.10.

Thiosemicarbazone (XIV), m.p. 218° (dec.).

 $\alpha$ -Bromo-4-cyanocinnamaldehyde XII was prepared starting from XI as described for  $\alpha$ -bromo-4-nitrocinnamaldehyde.<sup>27</sup> Yield, 82%; m.p. 158-159°.

Anal. Calcd. for C<sub>10</sub>H<sub>6</sub>BrNO: N, 5.93; Br, 33.85. Found: N, 5.93; Br, 33.81.

Thiosemicarbazone (XV), m.p. 207-208° (dec.).

4-(β-Bromo-4-cyanocinnamylideneamino)benzoic acid (XVI) was prepared as described above for X. M.p. 217° (dec.).

Anal. Calcd. for C<sub>17</sub>H<sub>11</sub>BrN<sub>2</sub>O<sub>2</sub>: N, 7.88; Br, 22.49. Found: N, 7.68; Br, 22.27.

Hydroxyethylamine salt, m.p. 152-155°

4-Cyanocinnamylideneacetaldehyde (XIII). A mixture of  $3.8~{\rm g}.$  XI and 15 ml. acetal dehyde was cooled to about  $6\text{--}8^\circ,$ then 0.6 ml. 25% potassium hydroxide solution in methano was added, whereby the temperature rose to about 30°. After cooling 10 ml. acetic anhydride was added and the mixture was refluxed for 1 hr. After cooling, addition of 30 ml. water and 3.5 ml. concd. hydrochloric acid, refluxing for 0.5 hr. and cooling, the precipitated product was collected by suction and recrystallized from 50% ethyl alcohol. Yield

(after 2 recrystallizations), 1.2 g. (27.2%). m.p. 153-155°. Anal. Calcd. for C<sub>12</sub>H<sub>9</sub>NO: N, 7.64. Found: N, 7.41. Bromometric assay: 98.3%.

1-(5-Nitro-2-thienyl)-2-nitroethylene (XVII). To a wellstirred and cooled mixture of 5.82 g. 5-nitro-2-thiophenecarboxaldehyde and 3.7 ml. nitromethane, 1.2 ml. 25% potassium hydroxide solution in methanol were added, whereby the temperature reached 30°. It was cooled to 15°, 21 ml. acetic anhydride was added, and the mixture was refluxed for 30 min. After cooling a solution of 7.5 ml. concd. hydrochloric acid in 60 ml. water was added, the mixture was refluxed for 10 min., cooled, and filtered by suction. The solid was recrystallized from water. Yield, 1.1 g. M.p. 102-104°. Anal. Calcd. for  $C_6H_4N_2O_4S$ : N, 13.99; S, 16.01. Found:

N, 13.27; S, 15.84. 1-(5-Nitro-2-thienyl)-2-bromo-2-nitroethylene (XVIII). This

compound was prepared as described for  $\alpha$ -bromo- $\beta$ -(5-nitro-2-thienyl)acrolein,<sup>1</sup> starting from XVII. M.p. 172-174°

Anal. Caled. for C6H3BrN2O4S: N, 10.03; Br, 28.63; S, 11.48. Found: N, 9.83; Br, 28.42; S, 11.30.

4-Cyano-\beta-nitrostyrene (XXI). This compound was prepared as described for XVII, except that refluxing with diluted hydrochloric acid was avoided. Yield, 47%; m.p. 186-188°.

(26) H. Techt, Ber., 40, 3898 (1907).

(27) A. Einhorn and F. Gehrenbeck, Ann., 253, 351 (1886).

Anal. Caled. for C<sub>9</sub>H<sub>6</sub>N<sub>2</sub>O<sub>2</sub>: C, 62.06; H, 3.47; N, 16.08. Found: C, 61.92; H, 3.80; N, 15.96.

1-(4-Cyanophenyl)-2-nitro-1,2-dibromoethane (XXVI). A mixture of 2 g. XXI and 1.84 g. bromine was sealed in a glass tube and heated in a water bath at 100° for 1.5 hr. After cooling and opening of the tube the thick brown-red liquid was taken up in 10 ml. glacial acetic acid, whereby thin yellowish crystals separated which were collected by suction, washed with acetic acid, then with water, and recrystallized from anhydrous ethanol. Yield, 2.1 g. (55%); m.p. 141-143°

Anal. Caled. for C<sub>9</sub>H<sub>6</sub>Br<sub>2</sub>N<sub>2</sub>O<sub>2</sub>: N, 8.38; Br, 47.85. Found: N, 8.38; Br, 48.00.

4-Cyano-β-bromo-β-nitrostyrene (XXII). Two grams XXVI were dissolved in hot glacial acetic acid (6 ml.), then 0.415 g. anhydrous potassium carbonate were added in portions. The mixture was heated on a boiling water bath for 15 min., then cooled, whereby a yellow precipitate formed which was collected by suction, washed well with water, and dried in an oven. Yield, 1.2 g. (79%); m.p. 148-150° (from anhydrous ethanol).

Anal. Calcd. for C<sub>9</sub>H<sub>5</sub>BrN<sub>2</sub>O<sub>2</sub>: N, 11.07; Br, 31.57. Found: N, 10.80; Br, 30.95.

4-Cyano-2, β-dinitrostyrene. This compound was prepared as described for XVII; m.p. 133-135°

Anal. Calcd. for C<sub>9</sub>H<sub>5</sub>N<sub>3</sub>O<sub>4</sub>: N, 19.17. Found: N, 18.86.

4-Cyano- $\beta$ -bromo- $2,\beta$ -dinitrostyrene (XXV). The above compound (0.3) was admixed with 0.22 g. bromine in a sealed glass tube and heated for 1 hr. at 100° in a boiling water bath. The resulting brown-reddish residue was dissolved in 3 ml. hot glacial acetic acid and mixed with 0.1 g. anhydrous potassium carbonate. After heating to 100° for an additional 15 min. the mixture was cooled, filtered from some insoluble material, and diluted with an equal volume of water. The flocculent yellow precipitate was dissolved by heating and the solution allowed to cool. The precipitate was collected by suction and recrystallized from 95% ethanol. Yield, 0.22 g. (54%); m.p. 103-104°

Anal. Caled. for C<sub>9</sub>H<sub>4</sub>BrN<sub>8</sub>O<sub>4</sub>: N, 14.09. Found: N, 12.95. 1-(5-Cyano-2-thienyl)-2-nitroethylene (XXIII). This com-

pound was prepared as described for XXI, starting from XXX. Yield, 77%; m.p. 181-182°

Anal. Calcd. for C<sub>7</sub>H<sub>4</sub>N<sub>2</sub>O<sub>2</sub>S: N, 15.54; S, 17.79. Found: N, 15.45; S, 17.48.

1-(5-Cyano-2-thienyl)-2-bromo-2-nitroethylene (XXIV). A mixture of 8.2 g. XXIII and 7.7 g. bromine was heated for 20 min. on a boiling water bath in a round-bottom flask fitted with a reflux condenser. After cooling and addition of 45 ml. glacial acetic acid the preparation was carried on as described for XXV using 3.2 g. anhydrous potassium carbonate. Yield, 8.8 g. (75%) of light yellow crystals melting at 151-153° (from 95% ethanol)

Anal. Calcd. for C7H3BrN2O2S: N, 10.81; Br, 30.84. Found: N, 10.82; Br, 30.60.

4-Methylsulfonylcinnamaldehyde (XXVII). This product was prepared as described for 4-nitrocinnamaldehyde,<sup>26</sup> except that refluxing with dilute hydrochloric acid was avoided; the product crystallizing directly from acetic anhydride. M.p. 207-208°

Anal. Calcd. for C10H10O3S: C, 57.12; H, 4.79. Found: C, 57.37; H, 4.97.

 $\alpha$ -Bromo-4-methylsulfonylcinnamaldehyde (XXVIII) was prepared starting from XXVII as described for  $\alpha$ -bromo-4nitrocinnamaldehyde.<sup>27</sup> Yield, 75%; m.p. 102-104°.

Anal. Caled. for C10H9BrO3S: Br, 27.63; S, 11.08. Found: Br, 27.68; S, 10.87.

Acknowledgments. The authors wish to acknowledge the valuable microbiological work of Dr. Maria Teresa Timbal, of which Table I is a result, and the valuable technical assistance of Dr. Mario Bellenghi in the preparation of the paper.

MILAN, ITALY