Palladium-Nanoparticles-Catalyzed Oxidative Annulation of Benzamides with Alkynes for the Synthesis of Isoquinolones

Nidhi Sharma, ${ }^{\text {a }}$ Rajib Saha, ${ }^{a}$ Naziya Parveen, ${ }^{\text {a }}$ and Govindasamy Sekar ${ }^{\text {a, }, ~}$
a Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu - 600036, India Fax: (+) 91442257 4202; e-mail: gsekar@iitm.ac.in

Received: October 13, 2016; Revised: March 1, 2017; Published online: ■■ II, 0000

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc. 201601137

Abstract

A novel method to synthesize isoquinolones via oxidative annulation of N-alkoxy benzamides and alkynes using binaphthyl-stabilized palladium nanoparticles (Pd-BNP) as catalyst has been developed. This methodology affords various isoquinolone derivatives in good to excellent yields with high regioselectivities in the presence of air as oxidant. N-Methoxybenzothioamide was also found to undergo oxidative annulation with alkyne successfully and provided a sulfur analogue of isoquinolones in moderate yields. The Pd-BNP catalyst was easily recovered and reused up to four times without any apparent agglomeration.

Keywords: Palladium-nanoparticles; Oxidative annulation; Benzamides; Alkynes; Isoquinolones

The importance of nitrogen-containing heterocycles in medicinal chemistry has motivated many research groups to develop new and efficient protocols for their synthesis. ${ }^{[1-3]}$ The conventional methods for the synthesis of these molecules involve prior fabrication of the coupling partners. ${ }^{[3,4]}$ In this context, direct $\mathrm{C}-\mathrm{N}$ bond formation through $\mathrm{C}-\mathrm{H}$ functionalization has emerged as an efficient and alternative pathway towards their synthesis. ${ }^{[5]}$ The main advantage of the $\mathrm{C}-\mathrm{H}$ activation approach lies in its step- and atomeconomical process. ${ }^{[6]}$

Isoquinolone is an important N-containing scaffold, present in many alkaloids and pharmacologically important molecules (Figure 1). ${ }^{[7,8]}$ Among the reported synthetic protocols for its synthesis, chelationassisted direct $\mathrm{C}-\mathrm{H}$ bond activation through metal catalyzed cyclization of aromatic amides with alkynes is widely used. ${ }^{[9]}$

In recent years, the substantial growth has been made by utilizing metal nanoparticles for the synthesis of fine-chemicals and currently, a large number of synthetic protocols using nanocatalysts have been

Figure 1. Representative example of biologically active molecules containing the isoquinolin- $1(2 \mathrm{H})$-one skeleton.
developed. ${ }^{[10]}$ Though the nanocatalyst owns various properties ${ }^{[11]}$ such as high surface area, easy recovery and reusability etc., most of the earlier methods to synthesize isoquinolones are homogeneous in nature. Development of new synthetic approaches where catalyst can be recovered and reused is still in demand. Li and Wang recently showed Pd / C catalyzed synthesis of isoquinolones through $\mathrm{C}-\mathrm{H}$ functionalization of benzamides and alkynes. ${ }^{[12]}$

As a part of our ongoing research towards the application of our Pd-BNP in organic transformations, ${ }^{[13]}$ herein we report Pd-BNP (stabilized by Pd$\mathrm{C}_{(\mathrm{SP}} 2$) covalent bond) ${ }^{[13 \mathrm{a}, 14]}$ catalyzed synthesis of isoquinolones through direct annulation of N-alkoxy benzamides and alkynes via $\mathrm{C}-\mathrm{H}$ functionalization (Scheme 1).

Scheme 1. General representation of Pd-BNP catalyzed direct annulation reaction.

The preliminary investigation was started by choosing N-methoxy benzamide 1a and diphenylethyne 2a as model substrates with Pd-BNP 4 catalyst ($2 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (2 equiv.) at $110^{\circ} \mathrm{C}$ under air. The desired
annulated product 3a was isolated in 23% yield after 24 h . Using NaI (0.5 equiv.) as an additive, the yield of 3a was improved to 51% (Scheme 2). When, Pdnanoparticles stabilized with other aryl backbones (57) were examined, inferior results than 4 were obtained.

Scheme 2. Pd-nanoparticles catalyzed annulation reaction.

Further, various reaction parameters were examined to improve the yield using Pd-BNP 4 as catalyst and results are summarized in Table 1. Increasing the quantity of NaI , the yield of the product 3a was increased to 65% (Table 1, entry 2). Then, various additives were screened and KI was found to be the best, yielding 70\% of $\mathbf{3 a}$ (entry 6). Then, various bases were screened, except $\mathrm{Na}_{2} \mathrm{CO}_{3}$ none of them given good yield (entries 7 to 11). Surprisingly, when the reaction was conducted in the absence of $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathbf{3 a}$ was obtained in 86% yield, which shows that KI alone with Pd-BNP is effective to catalyze this reaction (entry 12).

Then the reaction was carried out in presence of various ligands such as triphenylphosphine and 1,10phenanthroline; however, they were unable to improve the yield of product (entries 13 and 14). In the case of 1,10 -phenanthroline not even a trace amount of product formation was observed which could be due to the strong co-ordination of N atoms present in the ligands to the active sites of palladium-BNP. When the reaction was carried out in the presence of KF instead of KI or without KI, no product formation was observed (entries 15 to 16) which could be due the iodide ion acting as a soft ligand. When the reaction was conducted with KBr , the reaction gave only 39% yield of product (entry 17). To find out the actual role of KI in the annulation reaction, various oxidizing agents as well as a reducing agent were screened. In presence of an oxidizing agent, the reaction is unable to give the corresponding annulation product; however, the reducing agent $\mathrm{Ph}_{3} \mathrm{SiH}$ gave only 43% yield of product (entries 19 to 22).

Solvents such as dioxane, dicholoroethane and toluene suppressed the product formation, but polar aprotic solvents like dimethyl acetamide (DMA) and

Table 1. Optimization of reaction parameters ${ }^{[2]}$.

			Pd-BNP 4 (mol \%) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (2 equiv) Additive (1.5 equiv) air, DMF, temp. $\left({ }^{\circ} \mathrm{C}\right)$ 24 h	
Entry	Base	Additive	Temp (${ }^{\circ} \mathrm{C}$)	Yield (\%) ${ }^{\text {[b] }}$
1	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	NaI	110	$53^{\text {[c] }}$
2	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	NaI	110	65
3	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	I_{2}	110	trace
4	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	TBAI	110	10
5	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	NIS	110	00
6	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	KI	110	70
7	$\mathrm{K}_{2} \mathrm{CO}_{3}$	KI	110	41
8	KOH	KI	110	12
9	NaOH	KI	110	15
10	$\mathrm{KO}^{t} \mathrm{Bu}$	KI	110	00
11	$\mathrm{Et}_{3} \mathrm{~N}$	KI	110	40
12	-	KI	110	86
13	-	KI	110	$33^{[d]}$
14	-	KI	110	$00^{\text {[e] }}$
15	-	KF	110	00
16	-	-	110	00
17	-	KBr	110	39
18	-	KI	100	$00^{[f]}$
19	-	KI	100	$00^{[8]}$
20	-	KI	100	$00^{[\mathrm{h}]}$
21	-	KI	100	$00^{[i]}$
22		KI	100	$43^{[j]}$
23	-	KI	100	93
24	-	KI	90	70
25	-	KI	100	$71^{[k]}$
26	-	KI	100	$94^{[1]}$
27	-	KI	100	$90^{[1, \mathrm{~m}]}$
28	-	KI	100	$11^{[1, \mathrm{n}]}$
29	-	KI	100	$90^{[1,0]}$
30	-	KI	100	$77^{[p]}$

${ }^{[a]}$ Reaction conditions: 1a (0.5 mmol), 2a (3 equiv.), 10.6 mg of Pd-BNP ($2 \mathrm{~mol} \%, 10 \mathrm{wt} \%$ by ICP-OES analysis) in 2 mL DMF.
${ }^{[b]}$ Isolated yield.
${ }^{[d]} 1$ equiv. of NaI was used.
${ }^{[d]} 10 \mathrm{~mol} \%$ of PPh_{3} was used.
${ }^{[\text {[e] }} 10 \mathrm{~mol} \%$ of 1,10 -phenanthroline was used.
${ }^{[7]}$ Without Pd-BNP.
${ }^{[8]} 1.5$ equiv. of $\operatorname{TBHP}(10 \%$ in water $)$ was used.
${ }^{[h]} 1.5$ equiv. of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ was used.
${ }^{[i]} 1.5$ equiv. of oxone was used.
${ }^{[j]} 1.5$ equiv. of $\mathrm{Ph}_{3} \mathrm{SiH}$ was used
${ }^{[k]} 1.5 \mathrm{~mol} \%$ of Pd-BNP was used.
${ }^{[1]} 2.5$ equiv. of $\mathbf{2 a}$ was used.
${ }^{[\mathrm{m}]} \mathrm{O}_{2}$ balloon was used.
${ }^{[n]}$ Under N_{2} atmosphere
${ }^{[0]} \mathbf{1 a}(7.0 \mathrm{mmol}, 1 \mathrm{~g})$ was used.
${ }^{[p]} 2 \mathrm{~mol} \%$ of Palladium nanopowder (Pd, $99 \%,<12 \mathrm{~nm}$) was used.

DMSO gave good yield, however, the yield was less than the DMF ${ }^{[15]}$ Lowering the temperature to $100{ }^{\circ} \mathrm{C}$, led to an increase in the yield (93\%) (entry 23) and further reduction in temperature resulted in decrease of yield (entry 18). The progress of the reaction was also hindered when less quantity of Pd-BNP 4 was used (entry 19) and without 4, formation of 3a was not observed (entry 20).

Product 3a was obtained in 94\% yield when 2.5 equiv. of $2 \mathbf{2}$ was used (entry 26). When the reaction was carried out under O_{2} atmosphere $\left(\mathrm{O}_{2}\right.$ balloon), the result is similar to open air conditions (entries 26 and 27). Reaction under N_{2} atmosphere gave 11% yield of $\mathbf{3 a}$ which suggests that air is necessary for the annulation reaction (entry 28). To probe the practical utility and efficacy of the Pd-BNP catalyzed annulation reaction, a gram scale reaction was conducted under the optimized condition and product 3a was isolated with 90% yield within 24 h (entry 29). Then the reaction was conducted with commercially available palladium nanopowder (Pd , $99 \%,<12 \mathrm{~nm}$), and the reaction gave only 73% yield of product (entry 30).

After establishing the optimized reaction conditions, the efforts toward the scope of the annulation reaction were established and the results are summarized in Table 2. Initially N-methoxybenzamides $\mathbf{1}$ containing various substituents such as alkyl-, aryl-, nitro- and halide- on the phenyl ring were reacted with 1,2-diphenylethyne $\mathbf{2 a}$ for the synthesis of various isoquinolone derivatives (3a-r). It was observed that annulation reaction for electron-rich N-methoxybenzamides with $2 \mathbf{a}$, provided corresponding products in good yields ($\mathbf{3 a} \mathbf{a}-\mathbf{f}$ and 31-n) whereas electron-withdrawing substituents such as para-nitro group was present on phenyl ring of N-methoxybenzamide, even trace amount of product formation was not observed and para-chloro-substituted N-methoxybenzamide gave only 22% yield for the product $\mathbf{3 g}$.

This Pd-BNP catalyzed annulation protocol was found to be highly regioselective when meta-substituted N-methoxybenzamide and 3,4-disubsituted N methoxybenzamides were employed. Annulation progressed toward the less sterically hindered side of the phenyl ring of N-methoxybenzamides and exclusively, single regioisomeric products ($\mathbf{3} \mathbf{h}-\mathbf{k}$) with excellent yields were isolated. Interestingly, ortho-substitution on phenyl ring of N-methoxybenzamides had no adverse effect on this reaction and afforded various products (31-n) in good yields. When N-ethoxy and N benzyloxy benzamides were utilized, corresponding isoquinolone $3 \mathbf{o}$ and $\mathbf{3 p}$ were obtained in 93% and 76% yields, respectively. Employing N-substituted benzamides such as N -methyl, N -COOEt, N -benzyl and free- $N \mathrm{H}$ as substrates, even trace amount of corresponding isoquinolone derivatives formation was
not observed. These results show that N-alkoxy group is necessary for this transformation.
N-(Benzyloxy)-4-methylbenzamide and N-(benzyloxy)-3,4-dimethoxybenzamide were also provided good yields of their corresponding products ($\mathbf{3 q}-\mathbf{r}$). The heteroaromatic amides $v i z$. N-methoxy-thiophene-2-carboxamide, N-benzyloxythiophene-2carboxamide and N -methoxyfuran-2-carboxamide were also underwent annulation with $\mathbf{2 a}$ and gave $\mathbf{3 s}$, $\mathbf{3 t}$ and $\mathbf{3 a e}$ in $78 \%, 73 \%$ and 68% yields, respectively. However, the annulation of nitrogen containing heteroaromatic amides such as N-methoxypyrol-2-carboxamide, N-methoxypyridine-2-carboxamide, N-methox-yindole-2-carboxamide and 1-methyl-1,4-dihydro- N -methoxy-4-oxo-3-quinolinecarboxamide, with $\mathbf{2 a}$ under the optimized reaction conditions did not succeed.

Subsequently, the scope of the annulation reaction with respect to symmetrical tolane derivatives 2 was studied. When methyl-, methoxy- and fluoro-substituted tolanes were treated with $\mathbf{1 a}$, moderate to good yields of various isoquinolones ($\mathbf{3} \mathbf{u}-\mathbf{y}$) were obtained. Also, N-(benzyloxy)benzamide on reaction with 1,2-bis(4-fluorophenyl)ethyne yielded 69% of the product $\mathbf{3 z}$. Aliphatic alkyne such as 4-octyne on treatment with $\mathbf{1 a}$ provided 49% yield of the isoquinolone 3aa. Employing unsymmetrical tolanes such as para-anisylphenylacetylene and para-tolylphenylacetylene as precursors for annulation with $\mathbf{1 a}$, regioisomeric mixture with combined yield of 51% and 45% for $\mathbf{3 a b}$ and $\mathbf{3 a c}$ was obtained, respectively. ${ }^{[16]}$ Isoquinolone $\mathbf{3 a d}$ was formed in 45% yield on reaction of 1-phenyl-1propyne with 1a. ${ }^{[17]}$ When the annulation of N -(benzyloxy)-4-methoxybenzamide was carried out with 2-butyne, it gave 32\% the product 3af. The annulation reaction of others alkynes, such as phenylacetylene, trimethylsilylacetylene, di-tert-butylethyne and di-isopropylethyne, with $1 \mathbf{1 a}$ under the optimized reaction conditions failed to give the corresponding products.

Further, the study towards the Pd-BNP catalyzed direct annulation was extended by exploring the reactivity of N -methoxybenzothioamide $\mathbf{8}$ with symmetrical tolanes 2 (Scheme 3). The $\mathrm{C}-\mathrm{H} / \mathrm{N}-\mathrm{H}$ bond functionalization progressed smoothly and provided

Scheme 3. Pd-BNP catalyzed direct annulation reaction of $\mathbf{8}$ with alkynes.

Table 2. Pd-BNP catalyzed oxidative annulation of benzamides and alkynes ${ }^{[a, b]}$.

	$R^{1} \frac{\pi}{4}$	1 2			
$\begin{gathered} 3 \mathrm{a} \\ 94 \%, 24 \mathrm{~h} \end{gathered}$	$\begin{gathered} 3 \text { b } \\ 85 \%, 28 \mathrm{~h} \end{gathered}$	$\begin{gathered} 3 \mathrm{c} \\ 79 \%, 32 \mathrm{~h} \end{gathered}$	$\begin{gathered} \text { 3d } \\ 80 \%, 32 \text { h } \end{gathered}$	$\begin{gathered} 3 \mathrm{e} \\ 81 \%, 32 \mathrm{~h} \end{gathered}$	$\begin{gathered} \mathbf{3 f} \\ 78 \%, 38 \mathrm{~h} \end{gathered}$
$\begin{gathered} 3 \mathrm{~g} \\ 22 \%, 48 \mathrm{~h} \end{gathered}$	$\begin{gathered} 3 \mathrm{~h} \\ 81 \%, 34 \mathrm{~h} \end{gathered}$	$\begin{gathered} \mathbf{3 i} \\ 83 \%, 34 \mathrm{~h} \end{gathered}$	$\begin{gathered} \mathbf{3 j} \\ 80 \%, 34 \mathrm{~h} \end{gathered}$	$\begin{gathered} \mathbf{3 k} \\ 83 \%, 34 \mathrm{~h} \end{gathered}$	$\begin{gathered} 31 \\ 79 \%, 44 \mathrm{~h} \end{gathered}$
		 30 $93 \%, 24$ h			
 3s $78 \%, 32$ h				 3w $61 \%, 48 \mathrm{~h}$	
 3y $61 \%, 48$ h		 3aa $49 \%, 48$ h	 $3 \mathrm{ab}(1: 1.6)^{[\mathrm{cc}}$ $51 \%, 48$ h		 3ad $45 \%, 48 \mathrm{~h}$
 $3 a \mathrm{e}$ $68 \%, 32$ h	 3af $32 \%, 48$ h				

${ }^{[a]}$ Reaction conditions: 0.5 mmol of $\mathbf{1}, 2.5$ equiv. of $\mathbf{2}, 10.6 \mathrm{mg}$ of Pd-BNP and 2 mL DMF were used. ${ }^{[b]}$ Isolated yield. ${ }^{[c]}$ Two regioisomers were separated in a mixture and the regiosiomeric ratio of these compounds was determined using ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis. ${ }^{[15-17]}$
moderate yields for the desired sulfur analogue of isoquinolones (9a-d).

Intermolecular competitive reactions were conducted to study the mode of reactivity of N -methoxybenzamides and tolanes (Scheme 4). Reaction of 4-ethoxy- N-methoxybenzamide $1 \mathbf{d}$ and 4 -chloro- N-me-
thoxybenzamide $\mathbf{1 g}$ under the optimized conditions gave exclusively $\mathbf{3 d}$ with 74% yield and even trace amount of $\mathbf{3 g}$ was not observed (Scheme 4, eq. 1). This result implies that electron-donating ethoxysubstituted benzamide $\mathbf{1 d}$ is more reactive towards the annulation reaction. Furthermore, when $1 \mathbf{1 a}$ was

Scheme 4. Intermolecular competitive reactions.
treated with $2 \mathbf{b}$ and $2 \mathbf{c}$, the corresponding products $\mathbf{3 u}$ and $\mathbf{3 x}$ were isolated in 35% and 53% yield, indicating that $\mathbf{2 c}$ is more reactive than $\mathbf{2 b}$ (Scheme 4, eq. 2). Similarly, treatment of N-methoxybenzamide 1a and N-methoxybenzothioamide 8 with 2a under the standard conditions provided products $\mathbf{3 a}$ and $9 \mathbf{9}$ in 60% and 12% yields (Scheme 4, eq. 3). This result clearly connotes that $\mathbf{1 a}$ greatly favors the annulation reaction.

In addition, a one-pot annulation- N -demethoxylation ${ }^{[9 h]}$ reaction was carried out employing NaH as demethoxylating agent. NaH (1.5 equiv.) was added after the completion of the annulation and this resulted in 35% and 23% yields for 10 and 11, respectively. When only N -demethoxylation reaction was conducted on isoquinolones $\mathbf{3 a}$ and $\mathbf{3 i}$, good yields for the products $\mathbf{1 0}$ and $\mathbf{1 1}$ were obtained (Scheme 5). ${ }^{[18]}$

Scheme 5. N-Demethoxylation of $\mathbf{3 a}$ and $\mathbf{3 i}$.

Attempts were made to investigate the reusability and recoverability of the Pd-BNP catalyst. The annulation reaction of $\mathbf{1 a}$ was carried out at 2 mmol scale under the standard conditions. The catalyst was recovered and reused up to four catalytic cycles and the desired product 3 a was isolated in yields of 92%, $90 \%, 87 \%$ and 84% in successive runs. HR-TEM image of recovered Pd-BNP catalyst shows that there was no major change in the size of the nanoparticles. The average size of Pd-BNP was consistently around $5-6 \mathrm{~nm}$ (Figure 2). ${ }^{[19]}$ ICP-OES analysis revealed that the very less $\mathrm{Pd}(0.48 \mathrm{wt} \%)$ was present in the solution withdrawn from filtrate after performing the hot filtration test. Hg poisoning test ${ }^{[14 \mathrm{dd}]}$ suggested that the reaction is catalyzed by both soluble Pd and $\mathrm{Pd}-\mathrm{BNP}$ catalyst, but the main catalyst responsible for accel-

Figure 2. HR-TEM images of Pd-BNP catalyst: before (left) and after fourth (right) catalytic cycle.
erating the annulation reaction is the heterogeneous Pd-BNP.

In conclusion, an efficient method for the synthesis of isoquinolones employing Pd-BNP as catalyst through oxidative annulation of benzamides and alkynes has been developed. Electron-donating group substituted benzamides and alkynes produced various isoquinolones in good to excellent yield. For the first time, N-methoxybenzothioamide was utilized for the cyclization with tolanes and various sulfur analogues of isoquinolones were isolated in moderate yield. The Pd-BNP was easily recovered and reused up to four times without any apparent agglomeration. Filtration test and mercury poisoning experiments confirmed that the active catalyst for the annulation reaction is heterogeneous Pd-BNP.

Experimental Section

General Consideration

All reactions were carried out in reaction tubes under open to air atmosphere. All the solvents used to carry out the reactions were obtained from Fischer Scientific, India Pvt. Ltd. The reactions were monitored by thin-layer chromatography (TLC) using Merck silica gel $60 \mathrm{~F}_{254}$ precoated plates $(0.25 \mathrm{~mm})$ and visualized by UV fluorescence quenching using appropriate mixture of ethyl acetate and hexanes. Silica gel (particle size: 100-200 mesh) was purchased from Avra and used for column chromatography using hexanes and ethyl acetate mixture as eluent. $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ (98%), aryl iodides, diphenylacetylene, 4-octyne, 1-phenyl-1-propyne, and 2-butyne were purchased from Sigma-Aldrich Company and Alfa-aesar. Palladium nanopowder (Pd, $99 \%,<12 \mathrm{~nm}$) was purchased from NANOSHEL LLC. Other chemicals like $\mathrm{NaBH}_{4}, \mathrm{KI}, \mathrm{NaI}$, TBAI and iodine were purchased from Avra and Spectrochem Pvt. Ltd., India. Rec.-BINAM was purchased from Gerchem Pvt. Ltd, Hyderabad, India and used as received. $1,1^{\prime}$-Binaphthyl,- $2,2^{\prime}$ bis(diazoniumtetrafluoroborate) was prepared using literature reported procedure. ${ }^{[20]}$ Calcium carbide was purchased from Merck Pvt. Ltd. Nanopure water was obtained from Barnstead nanopure water system. All the reactions were carried out in temperature controlled IKA magnetic stirrers. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker 400 and 500 instruments. ${ }^{1} \mathrm{H}$ NMR spectra were reported relative to $\mathrm{Me}_{4} \mathrm{Si}(\delta 0.0 \mathrm{ppm})$ or residual $\mathrm{CDCl}_{3}(\delta 7.26 \mathrm{ppm})$ and ${ }^{13} \mathrm{C}$ NMR were reported relative to CDCl_{3} ($\delta 77.16 \mathrm{ppm}$). FTIR spectra were recorded on a Nicolet 6700 spectrometer and were reported in frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. High resolution mass spectra (HRMS) were recorded on Q-Tof Micro mass spectrometer.

Experimental procedure for the synthesis of isoquinolones 3

N-alkoxy benzamide $\mathbf{1}(0.5 \mathrm{mmol}, 1$ equiv.), alkyne $\mathbf{2}$ ($1.25 \mathrm{mmol}, 2.5$ equiv.), Pd-BNP ($10.6 \mathrm{mg}, 2 \mathrm{~mol} \%$) and KI ($0.75 \mathrm{mmol}, 1.5$ equiv.) were taken in a dry reaction tube equipped with a magnetic pellet. To this reaction mixture,

2 mL DMF was added and stirred at $100^{\circ} \mathrm{C}$ in open to air until completion. The reaction was monitored using TLC and after completion, the reaction mixture was then allowed to cool to room temperature and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$, followed by brine solution. Then the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The resulting reaction mixture was purified by column chromatography on silica gel (hexanes: ethyl acetate) to get isoquinolone as a desired product 3 .
2-Methoxy-3,4-diphenylisoquinolin-1(2H)-one (3a): ${ }^{[12 a]}$ Yield 94%; 154 mg ; white solid; mp. 186-188 ${ }^{\circ} \mathrm{C}$ [lit. 188- $\left.190^{\circ} \mathrm{C}\right]$; ${ }^{[9 \mathrm{k}]}$ $\mathrm{R}_{f} 0.20\left(20 \%\right.$ ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}, \mathrm{ppm}) \delta 8.59(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.49$ (m, 2H), 7.28-7.19 (m, 9H), $7.10(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 158.3$, 136.7, 135.6, 132.4, 131.81, 131.77, 130.8, 128.4, 128.2, 128.0, 127.6, 127.3, 126.9, 125.9, 118.5, 63.6; FTIR (KBr) 3010, 2978, 1662, 1560, 1508, 1073, 766, 727, 700, $679 \mathrm{~cm}^{-1} ; \operatorname{HRMS}(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{2}$ 328.1333; found: 328.1334.
2-Methoxy-6-methyl-3,4-diphenylisoquinolin-1(2H)-one
(3b): ${ }^{[12 a]}$ Yield 85%; 145 mg ; white solid; mp. 194- $196^{\circ} \mathrm{C}$ [lit. $\left.196-198^{\circ} \mathrm{C}\right] ;{ }^{[\text {¢k] }]} \mathrm{R}_{f} 0.35$ (20% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right) \delta 8.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.34(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.17(\mathrm{~m}, 8 \mathrm{H}), 7.12-7.06(\mathrm{~m}$, $2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}, \mathrm{ppm}) \delta 158.3,143.1,140.1,136.7,135.7,131.9$, $131.8,130.8,128.6,128.3,128.2,127.9,127.6,127.2,125.5$, 124.3, 118.3, 63.6, 22.1; FTIR (KBr) 3079, 3052, 2752, 1655, 1610, 1560, 1443, 1330, 1298, 1164, 875, 766, $721 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{2}$ 342.1505; found: 342.1494.

2,6-Dimethoxy-3,4-diphenylisoquinolin-1(2H)-one (3c): ${ }^{[9]}$ Yield $79 \% ; 141 \mathrm{mg}$; white solid; mp. $218-220^{\circ} \mathrm{C}$ [lit. 220$\left.221{ }^{\circ} \mathrm{C}\right] ;{ }^{[9]]} \mathrm{R}_{f} 0.50$ (30% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right) \delta 8.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.17$ $(\mathrm{m}, 8 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.61(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-$ $3.69(\mathrm{~m}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 162.9$, 158.1, 140.7, 138.7, 135.6, 131.9, 131.7, 130.7, 130.0, 128.4, 128.3, 127.6, 127.3, 120.3, 118.0, 115.8, 107.7, 63.6, 55.4; FTIR (KBr) 3079, 3058, 2957, 1657, 1609, 1561, 1485, 1443, 1378, 1282, 1229, 1170, 1101, 763, 726, $694 \mathrm{~cm}^{-1}$; HRMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{3} 358.1443$; found: 358.1439.

6-Ethoxy-2-methoxy-3,4-diphenylisoquinolin-1 (2H)-one

(3d): Yield $80 \% ; 149 \mathrm{mg}$; white solid; mp. $220-222^{\circ} \mathrm{C} ; \mathrm{R}_{f} 0.60$ (30% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, ppm) $\delta 8.49(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.17$ (m, 8H), 7.11-7.05 (m, 3H), $6.59(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.71 (s, 3H), 1.34 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $100 \mathrm{MHz}, \mathrm{ppm}) \delta 162.3,158.1,140.6,138.7,135.7,131.9$, 131.7, 130.7, 130.0, 128.4, 128.3, 127.6, 127.3, 120.2, 118.0, 108.4, 63.7, 63.6, 14.7; FTIR (KBr) 3058, 3020, 2983, 2817, 1662, 1606, 1555, 1469, 1443, 1282, 1212, 1111, 1042, 763, $694 \mathrm{~cm}^{-1}$; HRMS (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{Na}$ 394.1419; found: 394.1395 .

6-(Tert-butyl)-2-methoxy-3,4-diphenylisoquinolin-1 (2H)-one (3e): Yield 81%; 155.3 mg ; white solid; mp. $206-208^{\circ} \mathrm{C}$ [lit. 203-205 $\left.{ }^{\circ} \mathrm{C}\right] ;{ }^{[10 \mathrm{k}]} \mathrm{R}_{f} 0.43$ (20\% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right) \delta 8.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$,
7.59 (dd, $J=8.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.25-7.17 (m, 9H), 7.13-7.08 $(\mathrm{m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $100 \mathrm{MHz}, \mathrm{ppm}) \delta 158.2,156.0,140.0,136.5,135.6,131.9$, 131.7, 130.9, 128.3, 128.1, 127.7, 127.6, 127.2, 125.1, 124.2, 121.9, 118.8, 63.6, 35.4, 31.1; FTIR (KBr) 3064, 2962, 2862, 1662, 1614, 1582, 1480, 1443, 1314, 1181, $1095 \mathrm{~cm}^{-1}$; HRMS $(m / z):[M+H]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{2}$ 384.1960; found: 384.1940.

2-Methoxy-3,4,6-triphenylisoquinolin-1(2H)-one (3f): Yield 78%; 157.3 mg ; white solid; mp. $196-198^{\circ} \mathrm{C}$ [lit. 195$\left.197^{\circ} \mathrm{C}\right] ;{ }^{[9 \mathrm{kk}]} \mathrm{R}_{f} 0.50$ (40% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right) \delta 8.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dd}$, $J=8.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H})$, 7.49-7.44 (m, 2H), 7.43-7.37 (m, 1H), 7.35-7.25 (m, $8 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}, \mathrm{ppm}) \delta 158.2,145.2,140.5,140.3,137.1,135.5$, $131.78,131.75,130.8,129.0,128.6,128.4,128.30$, 128.25, 127.7, 127.6, 127.4, 126.2, 125.4, 124.1, 118.6, 63.7; FTIR (KBr) 3056, 3026, 2926, 1663, 1560, 1528, 1496, 1478, 1379, $1265,1176,1075,759 \mathrm{~cm}^{-1}$; HRMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{NO}_{2}$ 404.1653; found: 404.1643.

6-Chloro-2-methoxy-3,4-diphenylisoquinolin-1(2H)-one (3g): Yield 22%; 39.8 mg ; yellow solid; mp. $216-214^{\circ} \mathrm{C}$ [lit. 216$\left.218{ }^{\circ} \mathrm{C}\right] ;{ }^{[9]} \mathrm{R}_{f} 0.50\left(20 \%\right.$ ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right) \delta 8.55(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}$, $\mathrm{J}=8.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 9 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H})$, 3.73 (s, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 157.3$, 140.4, 135.2, 135.1, 133.1, 132.8, 131.6, 131.4, 130.7, 128.6, 128.4, 127.7, 127.6, 127.5, 127.3, 118.0, 63.7; FTIR (KBr) 3052, 2924, 1662,1604, 1479, 1325, 1255, 1159, $1038 \mathrm{~cm}^{-1}$; HRMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NClO}_{2}$ 362.0947; found: 362.0949 .

2-Methoxy-7-methyl-3,4-diphenylisoquinolin-1(2H)-one

(3h): Yield 81%; 138.3 mg ; white solid; mp. $192-194^{\circ} \mathrm{C}$; R_{f} $0.32\left(20 \%\right.$ ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}, \mathrm{ppm}) \delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25-7.19$ (m, 8H), 7.15 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.07$ $(\mathrm{m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}, \mathrm{ppm}) \delta 158.3,139.1,137.1,135.7$, 134.4, 133.9, $131.8,131.7,130.9,128.3,128.2,127.6,127.5,127.2,126.4$, 125.9, 118.5, 63.5, 21.4; FTIR (KBr) 3064, 2993, 2928, 1659, 1491, 1448, 1329, 1213, $1111 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{2} 342.1448$; found: 342.1453 .

2,7-Dimethoxy-3,4-diphenylisoquinolin- $\mathbf{1 (2 H}$)-one (3i): ${ }^{[9]}$ Yield 83%; 148.3 mg ; white solid; mp. $190-192^{\circ} \mathrm{C}$ [lit. 189$\left.190{ }^{\circ} \mathrm{C}\right] ;{ }^{[9]]} \mathrm{R}_{f} 0.36$ (30% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.97(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.15$ (m, 10H), 7.12-7.06 (m, 2H), 3.96 (s, 3H), 3.73 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 158.8,157.9,137.7,135.8$, $131.8,131.7,131.0,128.3,128.2,127.8,127.63,127.59,127.3$, $122.9,118.8,107.6,63.5,55.9$; FTIR (KBr) 3074, 3026, 2926, 1641, 1582, 1508, 1260, 1119, 778, $691 \mathrm{~cm}^{-1}$; HRMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{3} 358.1445$; found: 358.1457.

2-Methoxy-6,7-dimethyl-3,4-diphenylisoquinolin-1(2H)-one

 (3j): ${ }^{[9]]}$ Yield $80 \% ; 142.2 \mathrm{mg}$; light brown solid; mp. 220-222 [lit. 220-222 $\left.{ }^{\circ} \mathrm{C}\right]$, ${ }^{[9]]} \mathrm{R}_{f} 0.32$ (20% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right) \delta 8.33(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}$, $8 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}$,3H), $2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 158.2$, 142.4, 139.2, 136.6, 135.9, 134.8, 132.0, 131.8, 130.9,, 128.2, 128.1, 128.0, 127.5, 127.1, 126.1, 124.6, 118.2, 63.5, 20.5, 19.9; FTIR (KBr) 3100, 3064, 2963, 1661, 1589, 1488, 1216, 1090, $770 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{2}$ 356.1651; found: 356.1663 .

2,6,7-Trimethoxy-3,4-diphenylisoquinolin-1(2H)-one (3k): ${ }^{[9]}$ Yield 83%; 160.7 mg ; light brown solid; mp. 196-198 ${ }^{\circ} \mathrm{C}$; R_{f} $0.36\left(40 \%\right.$ ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}, \mathrm{ppm}) \delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 8 \mathrm{H}), 7.13-7.07$ $(\mathrm{m}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 157.6,153.4,149.4$, $138.6,135.9,132.0,131.9,131.6,130.9,128.3,127.6,127.3$, 120.5, 118.0, 107.7, 106.2, 63.6, 56.6, 55.9; FTIR (KBr) 3111, 3052, 2924, 1657, 1614, 1587, 1137, 1116, $726 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{K}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~K}$ 426.1090; found: 426.1108.

2-Methoxy-8-methyl-3,4-diphenylisoquinolin-1(2H)-one (31): Yield $79 \% ; 134.8 \mathrm{mg}$; white solid; mp. $190-192^{\circ} \mathrm{C}$ [lit. $187-$ $\left.189{ }^{\circ} \mathrm{C}\right] ;{ }^{[\text {[k] }]} \mathrm{R}_{f} 0.54\left(20 \%\right.$ ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.37(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.17$ $(\mathrm{m}, 9 \mathrm{H}), 7.12-7.03(\mathrm{~m}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 158.3$, 139.1, 137.1, 135.7, 134.3, 133.9, 131.8, 131.7, 130.9, 128.3, 128.2, 127.6, 127.5, 127.2, 126.4, 125.9, 118.5, 63.5, 21.4; FTIR (KBr) 3074, 3016, 2978, 1646, 1593, 1560, 1489, 1443, 1325, $1165 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{Na} 364.1313$; found: 364.1296.

2,8-Dimethoxy-3,4-diphenylisoquinolin- $\mathbf{1 (2 H}$)-one (3m): Yield 78%; 139.4 mg ; white solid; mp. $194-196^{\circ} \mathrm{C} ; \mathrm{R}_{f} 0.30$ (60% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, $\mathrm{ppm}) \delta 7.42(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 8 \mathrm{H}), 7.10-7.04$ $(\mathrm{m}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right.$, $\mathrm{ppm}) \delta 161.3,156.9,141.0,139.7,136.2,132.8,132.0,131.9$, $130.5,128.3,128.2,127.5,127.2,118.2,117.4,116.0,108.5$, 63.5, 56.6; FTIR (KBr) 3064, 3020, 2930, 1662, 1587, 1558, 1457, 1265, 1154, $1096 \mathrm{~cm}^{-1}$; HRMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{3} 358.1443$; found: 358.1459 .
2-Methoxy-3,4-diphenylbenzo[h]isoquinolin-1(2H)-one (3n): Yield $80 \% ; 150.9 \mathrm{mg}$; light black solid; mp. $160-162^{\circ} \mathrm{C}$ [lit. $\left.165-167{ }^{\circ} \mathrm{C}\right] ;{ }^{[9 \mathrm{kk}]} \mathrm{R}_{f} 0.45$ (20% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right) \delta 10.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.88-7.81 (m, 2H), 7.78-7.72 (m, 1H), 7.63-7.57 (m, 1H), 7.25-7.16 (m, 9H), 7.14-7.06 (m, 2H), 3.79 (s, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 158.7,141.6,137.8,136.1,133.6$, 132.2, 132.1, 132.0, 131.8, 130.6, 128.7, 128.5, 128.32, 128.26, 127.8, 127.7, 127.4, 126.8, 123.6, 120.1, 118.4, 63.7; FTIR (KBr) 3047, 3020, 2957, 1652, 1610, 1582, 1541, 1502, 1441, 1362, 1261, 1074, 767, 734, $698 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{NO}_{2}$ 378.1496; found: 378.1488.
2-Ethoxy-3,4-diphenylisoquinolin-1(2H)-one (30): Yield 93%; 158.7 mg ; white solid; mp. 190-192 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f} 0.67$ (30% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right)$ $\delta 8.60-8.55(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.17(\mathrm{~m}, 9 \mathrm{H})$, $7.14-7.08(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H})$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 158.5,140.4$, 136.6, 135.6, 132.3, 131.9, 131.8, 130.9, 128.3, 128.2, 127.9,
127.5, 127.3, 126.8, 126.5, 125.8, 118.2, 72.0, 13.0; FTIR (KBr) 3099, 3062, 2985, 2865, 1662, 1608, 1552, 1477, 1386, 1322, $1180,1020 \mathrm{~cm}^{-1}$.

2-(Benzyloxy)-3,4-diphenylisoquinolin-1(2H)-one (3p): Yield $76 \% ; 153.3 \mathrm{mg}$; white solid; mp. $208-210^{\circ} \mathrm{C} ; \mathrm{R}_{f} 0.46$ (15% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right)$ $\delta 8.64-8.60(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.16(\mathrm{~m}, 13 \mathrm{H})$, 7.15-7.10 (m, 2H), 6.89-6.82 (m, 2H), $4.95(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 158.5,140.5,136.7,135.6,133.6$, $132.4,132.0,131.8,131.2,130.0,129.0,128.4,128.3,127.9$, 127.7, 127.3, 127.0, 126.6, 126.0, 118.4, 77.7; FTIR (KBr) 3117, 3057, 2957, 2865, 1663, 1604, 1560, 1508, 1477, 1457, 1375, 1170, $1105 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for C_{28} $\mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Na} 426.1470$; found: 426..1467.
2-(Benzyloxy)-6-methyl-3,4-diphenylisoquinolin-1(2H)-one (3q): Yield $66 \% ; 137.6 \mathrm{mg}$; white solid; mp. 208- $210^{\circ} \mathrm{C} ; \mathrm{R}_{f}$ 0.46 (15% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}, \mathrm{ppm}) \delta 8.51(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (dd, $J=$ $6.4 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 9 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 2 \mathrm{H})$, $7.15-7.11(\mathrm{~m} .2 \mathrm{H}), 6.87-6.82(\mathrm{~m}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 158.5,143.1,140.4$, 136.8, 135.7, 133.6, 132.1, 131.8, 129.4, 128.9, 128.6, 128.4, $128.3,128.2,127.9,127.6,127.2,125.6,124.3,118.2,77.2,22.2$; FTIR (KBr) 3073, 3060, 2982, 2853, 1662, 1614, 1554, 1481, 1441, 1330, 1170, $1076 \mathrm{~cm}^{-1}$.

2-(Benzyloxy)-6,7-dimethoxy-3,4-diphenylisoquinolin-1(2H)one (3r): Yield 63%; 146 mg ; white solid; mp. $200-202{ }^{\circ} \mathrm{C}$; R_{f} 0.36 (30% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}, \mathrm{ppm}) \delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.11(\mathrm{~m}, 13 \mathrm{H}), 6.90-6.83$ $(\mathrm{m}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 157.8,153.4,149.4$, $139.0,135.9,133.7,132.12,132.08,131.7,131.3,130.0,129.0$, $128.4,128.3,127.6,127.3,120.5,117.8,107.7,106.2,77.7,56.4$, 56.0; FTIR (KBr) 3106, 3072, 3025, 2990, 2843, 1668, 1608, $1583,1481,1332,1170,1118 \mathrm{~cm}^{-1}$.

6-Methoxy-4,5-diphenylthieno[2,3-c]pyridin-7(6H)-one

(3s): ${ }^{\left[9{ }^{[9]}\right]}$ Yield $78 \% ; 130 \mathrm{mg}$; white solid; mp. 202-204 ${ }^{\circ} \mathrm{C}$ [lit. 205-207 $\left.{ }^{\circ} \mathrm{C}\right] ;{ }^{[9]} \mathrm{R}_{f} 0.47$ (30% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right) \delta 7.65(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.30-7.17 (m, 8H), 7.13-7.06 (m, 2H), $6.97(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 154.6$, 145.1, 141.1, 136.1, 133.3, 131.3, 131.1, 130.9, 129.8, 128.6, 128.3, 127.8, 127.3, 125.0, 116.8, 63.9; FTIR (KBr) 3057, 3026, 2733, 1662, 1600, 1578, 1518, $1166 \mathrm{~cm}^{-1}$; HRMS (m / z): $[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NSO}_{2} 334.0902$; found: 334.0899 .

6-(Benzyloxy)-4,5-diphenylthieno[2,3-c]pyridin-7(6H)-one

(3t): Yield 73%; 149.5 mg ; white solid; mp. 176-178; $\mathrm{R}_{f} 0.48$ (20% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, ppm) $\delta 7.76(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.15(\mathrm{~m}, 13 \mathrm{H}), 7.09(\mathrm{~d}$, $\mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 154.8, ~ ‘ 45.1,141.4, ~ ' 36.1$, $133.4,133.3,131.6,131.4,130.9,130.1,129.9,129.0,128.6$, 128.4, 128.3, 127.8, 127.3, 125.1, 116.6, 78.1; FTIR (KBr) 3059, 3036, 2831, 1664, 1598, 1573, 1522, 1176, $1126 \mathrm{~cm}^{-1}$; HRMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{NSO}_{2}$ 410.1215; found: 410.1219.

2-Methoxy-3,4-di-p-tolylisoquinolin-1(2H)-one (3u): Yield 70%; 124.4 mg ; white solid; mp. $150-152^{\circ} \mathrm{C}$ [lit. 152-
$\left.154{ }^{\circ} \mathrm{C}\right] ;{ }^{[9 k]} \mathrm{R}_{f} 0.53$ (20% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right) \delta 8.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.62$ (m, 2H), $7.41(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.23-7.17 (m, 4H), $7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.48-$ $2.44(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 158.3$, 140.1, 138.1, 136.9, 136.8, 132.6, 132.3, 131.5, 130.6, 128.94, $128.85,128.3,127.8,126.7,126.4,125.9,118.4,63.5,21.4,21.3$; FTIR (KBr) 3047, 3020, 2972, 1657, 1605, 1542, 1509, 1476, 1323, 1261, 1175, 1101, $817 \mathrm{~cm}^{-1}$; HRMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{2} 356.1652$; found: 356.1642 .

2-Methoxy-3,4-bis(4-methoxyphenyl)isoquinolin-1(2H)-one

 (3v): ${ }^{[12 a]}$ Yield 51%; 98.8 mg ; white solid; mp. 196-198 ${ }^{\circ} \mathrm{C}$ [lit. $\left.193-195{ }^{\circ} \mathrm{C}\right]\left[{ }^{[9 k]} \mathrm{R}_{f} 0.30\right.$ (40% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right) \delta 8.55(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83-6.72(\mathrm{~m}, 4 \mathrm{H}), 3.81-$ $3.75(\mathrm{~m}, 6 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right)$ $\delta 159.3,158.6,158.4,140.0,137.0,132.8,132.3,132.2,127.94$, 127.86, 127.2, 126.7, 125.9, 124.1, 118.2, 113.1, 63.5, 55.28, 55.25; FTIR (KBr) 3078, 3046, 2972, 2924, 1642, 1602, 1575, $1559,1522,1485,1383,1260,1209,1135,1096,853,803 \mathrm{~cm}^{-1}$; HRMS (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na} 410.1395$; found: 410.1396 .2-Methoxy-3,4-di-m-tolylisoquinolin-1(2H)-one (3w): Yield 61%; 108.4 mg ; white solid; mp. $186-188^{\circ} \mathrm{C}$; $\mathrm{R}_{f} 0.30(20 \%$ ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right)$ $\delta 8.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.10-6.90(\mathrm{~m}$, $7 \mathrm{H}), 6.87-6.76(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.15(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 158.3,137.7,137.1,135.5$, 132.4, 132.3, 131.7, 131.5, 129.1, 128.8, 127.99, 127.95, 127.9, 127.8, 127.4, 126.8, 126.4, 118.5, 63.6, 21.4; FTIR (KBr) 3020, 2925, 1657, 1600, 1519, 1481, 1164, 766, $705 \mathrm{~cm}^{-1} ;$ HRMS ($\mathrm{m} /$ z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{2} 356.1640$; found: 356.1651 .

3,4-Bis(4-fluorophenyl)-2-methoxyisoquinolin-1(2H)-one

(3x): Yield 83%; 150.8 mg ; white solid; mp. $206-208^{\circ} \mathrm{C}$ [lit. $\left.205-207{ }^{\circ} \mathrm{C}\right]\left[{ }^{[9]]} \mathrm{R}_{f} 0.30\right.$ (20% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right) \delta 8.57(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.02(\mathrm{~m}$, $2 \mathrm{H}), 7.00-6.91(\mathrm{~m}, 4 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}, \mathrm{ppm}) \delta 162.5\left(\mathrm{~d}, J_{c . f}=248.0 \mathrm{~Hz}\right), 162.0\left(\mathrm{~d}, J_{c . f}=\right.$ $245.0 \mathrm{~Hz}), 158.2,139.9,136.4,133.2\left(\mathrm{~d}, J_{c . f}=8.0 \mathrm{~Hz}\right), 132.61$ $\left(\mathrm{d}, J_{c . f}=8.0 \mathrm{~Hz}\right), 132.62,131.3\left(\mathrm{~d}, J_{c . f}=3.0 \mathrm{~Hz}\right), 128.0,127.5$ $\left(\mathrm{d}, J_{c . f}=4.0 \mathrm{~Hz}\right), 127.2,126.5,125.7,117.7,115.5\left(\mathrm{~d}, J_{c . f}=\right.$ 21.0 Hz), $115.0\left(\mathrm{~d}, J_{c . f}=22.0 \mathrm{~Hz}\right.$), 63.6; FTIR (KBr) 3069 , 3052, 2983, 1657, 1609, 1544, 1507, 1485, 1223, 1154, 1101, $833,780 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{NO}_{2}$ $\mathrm{F}_{2} \mathrm{Na} 386.0969$; found: 386.0966.

3,4-Bis(3-fluorophenyl)-2-methoxyisoquinolin-1(2H)-one

 (3y): Yield $61 \% ; 110.8 \mathrm{mg}$; white solid; mp. $198-200^{\circ} \mathrm{C} ; \mathrm{R}_{f} 0$. 48 (30% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}, \mathrm{ppm}) \delta 8.57(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.50$ $(\mathrm{m}, 2 \mathrm{H}), 7.28-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.08-6.78(\mathrm{~m}, 6 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 162.6\left(\mathrm{~d}, J_{c . f}=246.0 \mathrm{~Hz}\right)$, $162.0\left(\mathrm{~d}, J_{c . f}=246.0 \mathrm{~Hz}\right), 158.1,138.9,137.4\left(\mathrm{~d}, J_{c . f}=8.0 \mathrm{~Hz}\right)$, $136.0,133.4\left(\mathrm{~d}, J_{c . f}=8.0 \mathrm{~Hz}\right), 132.7,130.0,129.5\left(\mathrm{~d}, J_{c . f}=\right.$ $9.0 \mathrm{~Hz}), 128.1,127.5\left(\mathrm{~d}, J_{c . f}=3.0 \mathrm{~Hz}\right), 126.3,126.62,126.56(\mathrm{~d}$, $\left.J_{c . f}=4.0 \mathrm{~Hz}\right), 125.6,118.6\left(\mathrm{~d}, J_{c . f}=21.0 \mathrm{~Hz}\right), 117.8\left(\mathrm{~d}, J_{c . f}=\right.$ $23.0 \mathrm{~Hz}), 117.4,115.9\left(\mathrm{~d}, J_{c . f}=21.0 \mathrm{~Hz}\right), 114.7\left(\mathrm{~d}, J_{c . f}=\right.$20.0 Hz), 63.8; FTIR (KBr) 3085, 3068, 2933, 1660, 1687, $1473,132.6,1228,1160,1054 \mathrm{~cm}^{-1}$.

2-(Benzyloxy)-3,4-bis(4-fluorophenyl)isoquinolin-1(2H)-

 one (3z): Yield $69 \% ; 151.6 \mathrm{mg}$; white solid; mp. $210-212^{\circ} \mathrm{C}$; $\mathrm{R}_{f} 0.30\left(15 \%\right.$ ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}, \mathrm{ppm}) \delta 8.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.80(\mathrm{~m}$, $2 \mathrm{H}), 7.59-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.16(\mathrm{~m}$, $6 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 162.6$ $\left(\mathrm{d}, J_{c . f}=247.0 \mathrm{~Hz}\right), 162.0\left(\mathrm{~d}, J_{c . f}=246.0 \mathrm{~Hz}\right), 158.4,139.8$, $136.5,133.5,133.3\left(\mathrm{~d}, J_{c . f}=8.0 \mathrm{~Hz}\right), 133.0\left(\mathrm{~d}, J_{c . f}=8.0 \mathrm{~Hz}\right)$, 132.6, 131.4 ($\mathrm{d}, J_{c . f}=4.0 \mathrm{~Hz}$), 129.9, 129.1, 128.5, 128.0, 127.9 $\left(\mathrm{d}, J_{c . f}=4.0 \mathrm{~Hz}\right), 127.2,126.6,125.7,117.5,115.5\left(\mathrm{~d}, J_{c . f}=\right.$ $21.0 \mathrm{~Hz}), 114.9\left(\mathrm{~d}, J_{c . f}=22.0 \mathrm{~Hz}\right), 77.8$; FTIR (KBr) 3074 , 3031, 2854, 1655, 1609,1578, 1508, 1479, 1326,, 1223, 1158, 1095, 775, 750, $731 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~F}_{2} \mathrm{Na} 440.1462$; found: 440.1441.2-Methoxy-3,4-dipropylisoquinolin-1(2H)-one (3aa): Yield 49%; 63.5 mg ; yellow liquid; $\mathrm{R}_{f} 0.30$ (10% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right) \delta 8.47$ (d, $J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~s}$, $2 \mathrm{H}), 2.80-2.65(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.06(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 158.4$, $140.0,136.1,132.2,128.1,126.4,125.9,123.2,113.4,63.9,29.9$, 29.7, 23.8, 23.2, 14.5, 14.4; FTIR (DCM) 3089, 2958, 2981, $2854,1661,1564,1461,1182,1002 \mathrm{~cm}^{-1}$.
2-Methoxy-3-(4-methoxyphenyl)-4-phenyl isoquinolin-1 (2 H)-one and 2-methoxy-4-(4-methoxyphenyl)-3-phenyliso-quinolin-1(2H)-one (1:1.6) ${ }^{[15]}$ (3ab): Yield $45 \% ; 91.1 \mathrm{mg}$; white solid; mp. $174-176^{\circ} \mathrm{C} ; \mathrm{R}_{f} 0.37(30 \%$ ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right) \delta 8.54$ (d, $J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 10 \mathrm{H}), 7.13(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.72(\mathrm{t}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 3.71-3.66(\mathrm{~m}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 159.4,158.6,158.4$, 136.7, 135.8, 132.8, 132.4, 132.2, 131.8, 130.8, 128.33, 128.29, 127.9, 127.7, 127.2, 126.9, 126.8, 126.5, 126.4, 125.9, 125.8, 123.9, 118.6, 113.7, 113.0, 63.6, 63.5, 55.2; FTIR (KBr) 3178, 3172, 3062, 2933, 1664, 1610, 1511, 1442, 1324, 1290, 1247, $1176 \mathrm{~cm}^{-1}$.
2-Methoxy-4-phenyl-3-(p-tolyl) isoquinolin-1(2H)-one and 2-methoxy-3-phenyl-4-(p-tolyl)isoquinolin- $\mathbf{1 (2 H}$)-one
(1:1) ${ }^{[15]}$ (3ac): Yield $51 \% ; 76.8 \mathrm{mg}$; light brown solid; mp. $152-154{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f} 0.28\left(20 \%\right.$ ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right) \delta 8.60-8.55(\mathrm{~m}, 2 \mathrm{H}), 7.58-$ $7.48(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 4 \mathrm{H}), 7.05-$ $6.95(\mathrm{~m}, 6 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 2.31-2.27(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 158.4,158.3,140.2,140.1,138.2$, 136.9, 136.7, 135.8, 132.4, 132.3, 131.9, 131.8, 131.5, 130.8, 130.7, 129.0, 128.7, 128.4, 128.2, 127.9, 127.6, 127.2, 126.83, 126.78, 126.51, 126.45, 126.0, 125.8, 118.4, 63.6, 21.4, 21.3; FTIR (KBr) 3120, 3079, 2985, 2954, 1650, 1594, 1509, 1440, $1359,1278,1182,1120,1070 \mathrm{~cm}^{-1}$.

2-Methoxy-4-methyl-3-phenylisoquinolin-1(2H)-one (3 ad): Yield $45 \% ; 59.7 \mathrm{mg}$; light brown solid; $\mathrm{mp} .176-178^{\circ} \mathrm{C} ; \mathrm{R}_{f} 0$. $45\left(20 \%\right.$ ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}, \mathrm{ppm}) \delta 8.58-8.25(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.68(\mathrm{~m}, 2 \mathrm{H})$, 7.57-7.52 (m, 1H), 7.51-7.46 (m, 3H), 7.42-7.38 (m, 2H), 3.68 (s, 3H), $2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta$
158.2, 139.3, 136.6, 132.5, 132.4, 131.2, 130.3, 128.9, 128.3, 128.2, 126.8, 123.7, 110.5, 63.5, 14.5; FTIR (KBr) 3147, 3049, 2937, 1648, 1569, 1509, 1440, 1186, $1105 \mathrm{~cm}^{-1}$.
6-Methoxy-4,5-diphenylfurano[2,3-c]pyridin-7(6H)-one
(3ae): ${ }^{[9]}$ Yield 68%; 108 mg ; white solid; mp. $140-141^{\circ} \mathrm{C} \mathrm{R}_{f}$ 0.37 (30% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $500 \mathrm{MHz}, \mathrm{ppm}) \delta 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.16$ $(\mathrm{m}, 3 \mathrm{H}), 7.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}, \mathrm{ppm}\right) \delta 149.9$, 148.7, 142.6, 140.4, 135.2, 133.2, 131.2, 131.1, 130.3, 128.7, 128.3, 127.8, 127.2, 113.4, 107.6, 64.0; FTIR (KBr) 3401, 2968, 2927, 1684, 1625, 1586, 1440, 1194, $1128 \mathrm{~cm}^{-1}$. HRMS $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{3}$ 317.3440; found: 318.1147.
2-(benzyloxy)-6-methoxy-3,4-dimethylisoquinolin-1(2H)-one (3af): Yield 32%; 50.0 mg ; white solid; mp. $100-102^{\circ} \mathrm{C}$; R_{f} 0.56 (30% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}, \mathrm{ppm}) \delta 8.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H})$, $7.43-7.37$ (m, 3H), 7.06 (dd, $J=2.4 \mathrm{~Hz}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, $2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 162.9$, 158.4, 138.7, 136.7, 134.4, 130.1, 129.9, 1129.2, 128.8, 119.8 , 114.7, 107.7, 104.9, 55.6, 14.2, 13.8; FTIR (KBr) 3019, 2922, 2791, 2373, 2347, 1589, 1528, 1429, $1170 \mathrm{~cm}^{-1}$; HRMS (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na}$ 332.3650; found: 332.1262.

Experimental procedure for the annulation of \boldsymbol{N}-Methoxybenzothioamide 8 with alkyne 2

N-Methoxybenzothioamide $\mathbf{8}$ (0.5 mmol , 1 equiv.), alkyne $\mathbf{2}$ ($1.25 \mathrm{mmol}, 2.5$ equiv.), Pd-BNP ($10.6 \mathrm{mg}, 2 \mathrm{~mol} \%$) and KI ($0.75 \mathrm{mmol}, 1.5$ equiv.) were taken in a dry reaction tube equipped with a magnetic pellet. To this reaction mixture, 2 mL of DMF was added and stirred at $100^{\circ} \mathrm{C}$ in open to air until completion. The reaction was monitored using TLC. After completion, the reaction mixture was then allowed to cool to room temperature and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$, followed by brine solution. Then the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The resulting reaction mixture was purified by column chromatography on silica gel (hexanes: ethyl acetate) to get isoquinolone as a desired product 9 .
2-Methoxy-3,4-diphenylisoquinoline-1(2H)-thione (9a): Yield 55%; 94.4 mg ; white solid; mp. $188-190^{\circ} \mathrm{C} ; \mathrm{R}_{f} 0.27$ (20% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, $\mathrm{ppm}) \delta 8.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.18$ $(\mathrm{m}, 9 \mathrm{H}), 7.10(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 158.3,140.1,136.6,135.6,132.4$, 131.7, 130.8, 128.4, 128.2, 127.9, 127.6, 127.3, 126.9, 126.5, 125.9, 118.5, 63.6; FTIR (KBr) 3100, 3031, 1662, 1603, 1576, 1550, 1475, 1368, 1320, 1175, 1122, 967, $694 \mathrm{~cm}^{-1} ;$ HRMS ($\mathrm{m} /$ z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NSONa} 366.0929$; found: 366.0941 .

2-Methoxy-3,4-di-m-tolylisoquinoline-1(2H)-thione (9b): Yield 60%; 111.3 mg ; light brown solid; mp. $194-196^{\circ} \mathrm{C} ; \mathrm{R}_{f}$ $0.35\left(20 \%\right.$ ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}, \mathrm{ppm}) \delta 8.59-8.55(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.47(\mathrm{~m}, 2 \mathrm{H})$, 7.28-7.24 (m, 1H), 7.14-6.98 (m, 6H), 6.95-6.86 (m, 2H), 3.74 $(\mathrm{s}, 3 \mathrm{H}), 2.28-2.21(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right.$,
ppm) $\delta 158.3,140.2,137.7,137.1,136.8,135.5,132.4,132.3$, 131.7, 131.5, 129.1, 128.8, 127.99, 127.95, 127.9, 127.8, 127.4, $126.8,126.5,126.0,118.5,63.6,21.4$; FTIR (KBr) 3096, 3047, 2983, 1665, 1605, 1552, 11691036, 999, 773, $756 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NSONa} 394.1242$; found: 394.1260.

3,4-Bis(3-fluorophenyl)-2-methoxyisoquinoline-1 (2H)-thione
(9c): Yield 49%; 92.9 mg ; white solid; mp. $166-168^{\circ} \mathrm{C} ; \mathrm{R}_{f} 0.48$ (30% ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, $\mathrm{ppm}) \delta 8.64-8.54(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.17(\mathrm{~m}$, $3 \mathrm{H}), 7.10-6.75(\mathrm{~m}, 6 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $100 \mathrm{MHz}, \mathrm{ppm}) \delta 163.9\left(\mathrm{~d}, J_{c . f}=246.0 \mathrm{~Hz}\right), 163.5\left(\mathrm{~d}, J_{c . f}=\right.$ $246.0 \mathrm{~Hz}), 158.2,138.9,137.4\left(\mathrm{~d}, J_{c . f}=8.0 \mathrm{~Hz}\right), 136.0,133.4(\mathrm{~d}$, $\left.J_{c . f}=8.0 \mathrm{~Hz}\right), 132.7,130.0,129.5,129.4,128.1,127.5\left(\mathrm{~d}, J_{c . f}=\right.$ $3.0 \mathrm{~Hz}), 127.4,126.64,126.57\left(\mathrm{~d}, J_{c . f}=4.0 \mathrm{~Hz}\right), 118.6\left(\mathrm{~d}, J_{c . f}=\right.$ $21.0 \mathrm{~Hz}), 117.8\left(\mathrm{~d}, J_{c . f}=22.0 \mathrm{~Hz}\right), 117.4,115.9\left(\mathrm{~d}, J_{c . f}=\right.$ 21.0 Hz), 114.7 (d, $J_{c . f}=21.0 \mathrm{~Hz}$), 63.8; FTIR (KBr) 3064, $2931,1668,1633,1596,1475,1438,1336,1197,1091 \mathrm{~cm}^{-1}$.

3,4-Bis(4-fluorophenyl)-2-methoxyisoquinoline-1(2H)-thione
(9d): Yield 61%; 115.7 mg ; white solid; mp. $198-200^{\circ} \mathrm{C}$; R_{f} $0.35\left(20 \%\right.$ ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}, \mathrm{ppm}) \delta 8.59-8.55(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.24$ $7.18(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.91(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 162.6\left(\mathrm{~d}, J_{c . f}=\right.$ $247.0 \mathrm{~Hz}), 162.0\left(\mathrm{~d}, J_{c . f}=246.0 \mathrm{~Hz}\right), 158.2,139.4,136.5,133.3$ $\left(\mathrm{d}, J_{c . f}=8.0 \mathrm{~Hz}\right), 132.63\left(\mathrm{~d}, J_{c . f}=8.0 \mathrm{~Hz}\right), 132.61,131.3\left(\mathrm{~d}, J_{c . f}=\right.$ $3.0 \mathrm{~Hz}), 128.1,127.6\left(\mathrm{~d}, J_{c . f}=4.0 \mathrm{~Hz}\right), 127.2,126.6,125.5,117.7$, $115.5\left(\mathrm{~d}, J_{c . f}=22.0 \mathrm{~Hz}\right), 115.1\left(\mathrm{~d}, J_{c . f}=21.0 \mathrm{~Hz}\right), 63.6$; FTIR (KBr) 3065, 3026, 2925, 1663, 1609, 1560, 1508, 1477, 1326, 1159, 1095, 929, 836, $775 \mathrm{~cm}^{-1}$; HRMS (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{NSOF}_{2} \mathrm{Na} 402.0740$; found: 402.0738 .

Experimental procedure for \boldsymbol{N}-demethoxylation of 3 a and $3 i$

To a stirred solution of N-methoxyisoquinolone $\mathbf{3 a}$ or $\mathbf{3 i}$ ($0.25 \mathrm{mmol}, 1$ equiv.) in 2 mL DMF, NaH ($0.375 \mathrm{mmol}, 60 \%$ in mineral oil, 1.5 equiv.) was added and resulted reaction mixture was stirred at $120^{\circ} \mathrm{C}$ until completion and monitored by TLC. After completion, the reaction mixture was allowed to cool to room temperature and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$, followed by brine solution. Then the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The resulting reaction mixture was purified by column chromatography on silica gel (hexanes: ethyl acetate) to get the desired product.
3,4-Diphenylisoquinolin-1(2H)-one (10): Yield $89 \% ; 66.1 \mathrm{mg}$; white solid; mp. $240-242^{\circ} \mathrm{C}\left[\right.$ lit. $\left.242-246^{\circ} \mathrm{C}\right]\left[{ }^{[21]} \mathrm{R}_{f} 0.45(50 \%\right.$ ethyl acetate in hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right)$ $\delta 9.31(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.62(\mathrm{~m}$, $1 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.28(\mathrm{~m}, 10 \mathrm{H}), 7.27-7.23(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 162.9,138.8,137.2$, $135.9,135.2,132.8,132.0,129.3,128.8,128.5,127.6,127.5$, 126.8, 125.8, 125.3, 117.4; FTIR (KBr) 3038, 3010, 2972, 1643, 1583, 1563, 1548, 1498, 1418, $1259 \mathrm{~cm}^{-1}$; HRMS (m / z): [M+ $\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NO}$ 298.1239; found: 298.1235.
7-Methoxy-3,4-diphenylisoquinolin-1(2H)-one (11): Yield $70 \% ; 62.5 \mathrm{mg}$; white solid; mp. $248-250^{\circ} \mathrm{C}$ [lit. $\left.246-248^{\circ} \mathrm{C}\right] ;{ }^{[22]}$ $\mathrm{R}_{f} 0.36\left(40 \%\right.$ ethyl acetate in hexanes); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$,
$400 \mathrm{MHz}, \mathrm{ppm}) \delta 9.31(\mathrm{~s}, 1 \mathrm{H}), 7.88$ (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-$ $7.27(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \mathrm{ppm}\right) \delta 162.5,158.7,136.0$, $135.3,134.8,132.8,131.9,129.4,128.54,128.49,128.5,127.6$, 127.4, 126.4, 123.2, 117.4, 55.8; FTIR (KBr) 3058, 3026, 2967, $1638,1578,1560,1524,1484,1445,1260,1121,1031 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{Na} 350.1156$; found: 350.1144.

Experimental procedure for recovery of the Pd-BNP catalyst

For recyclability of Pd-BNP, the reaction was repeated with N -methoxybenzamide $\mathbf{1 a}$ as substrate in 2.0 mmol scale retaining the same conditions such as 1,2-diphenylethyne $2 \mathbf{2 a}$ (2.5 equiv.), KI (1.5 equiv.), and 3 mL DMF under open to air condition at $100^{\circ} \mathrm{C}$, except using the recovered Pd-BNP catalyst rather than fresh catalyst. After completion of the annulation reaction, the reaction mixture was allowed to cool to room temperature. Ethyl acetate (5 mL) was added to the reaction mixture and centrifuged. The liquid then decanted to a 50 mL conical flask. Again ethyl acetate $(5 \mathrm{~mL})$ was added and centrifuged and decanted to the same conical flask, this procedure was repeated up to two to three times. After that the catalyst was washed with nano pure water (5 mL) and ethanol (5 mL) two to three times. Finally, the resulting solid black coloured particles (Pd-BNP) dried under vacuum. The dried catalyst was reused for further catalytic cycle. The collected liquid was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$, followed by brine solution. Then the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The resulting reaction mixture was purified by column chromatography on silica gel (hexanes: ethyl acetate) to afford 2-methoxy-3,4-diphenylisoquinolin-1 $(2 \mathrm{H})$-one $\mathbf{3 a}$ as desired product.

Filtration Test

To determine the leaching of Pd-BNP catalyst in the Pd-BNP catalyzed annulation reaction, a filtration test was carried out under the standard reaction condition.
N-methoxybenzamide 1a ($1.0 \mathrm{mmol}, 1.0$ equiv.)), 1,2-diphenylethyne 2a (2.5 equiv.), Pd-BNP catalyst (21.2 mg , $2 \mathrm{~mol} \%$), KI (1.5 equiv.) and 1,2,4,5-tetramethylbenzene (internal standard) (1 equiv.) in 4 mL DMF were taken in oven dried reaction tube equipped with magnetic pellet and stirred at $100^{\circ} \mathrm{C}$ in open to air conditions. After 4 h of reaction, reaction mixture was centrifuged; filtered and PdBNP catalyst was separated from the reaction mixture. From the mother liquid (filtrate), 1.5 mL of filtrate was taken and extracted with ethylacetate and ${ }^{1} \mathrm{H}$ NMR showed that 28% yield of $\mathbf{3 a}$ was obtained. From the remaining mother liquid i.e., Pd-BNP free-reaction mixture, a small amount of aliquot was withdrawn for ICP-OES analysis and rest amount of filtrate was then used for annulation reaction under the similar conditions and continued up to 24 h and 35% yield of 3a was obtained (yield was determined by ${ }^{1} \mathrm{H}$ NMR).

Mercury Poisoning Experiment

Mercury poisoning experiment was performed to support that the annulation reaction of N-methoxybenzamides and alkynes was accelerated by Pd-BNP catalyst not by the leached Pd. Three sets of reactions were conducted:
In first set of reaction, Hg (30 equiv.) and Pd - BNP ($2 \mathrm{~mol} \%$) in DMF in presence of air were stirred at room temperature for 2 h , then other reagents: $\mathbf{1 a}$ ($2 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{2 a}$ (2.5 equiv.), Pd-BNP ($2 \mathrm{~mol} \%$), KI (1.5 equiv.) and $1,2,4,5-$ tetramethylbenzene (internal standard) (1.0 equiv.) were added and stirred at $100^{\circ} \mathrm{C}$. Even trace amount of product 3a was not detected in the reaction, even continue the reaction for 48 h .

In second set of reaction, Hg (30 equiv.) was added at a time with all other reagents: 1a ($2 \mathrm{mmol}, 1.0$ equiv.), $2 \mathbf{2 a}$ (2.5 equiv.), Pd-BNP ($2 \mathrm{~mol} \%$), KI (1.5 equiv.) and 1,2,4,5tetramethylbenzene (internal standard) (1.0 equiv.) in presence of air in DMF solvent and stirred at $100^{\circ} \mathrm{C}$ up to 48 h . Complete inhibition in the product 3a formation was observed.
In third set of reaction, Hg (30 equiv.) was added after continuing the standard reaction for 4 h at 29% yield for $\mathbf{3 a}$, slight progress in the reaction was observed and 38% yield of 3a was obtained and yield was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra.These results displayed that leached Pd and Pd-BNP catalyst catalyzed the annulation reaction. But heterogeneous Pd-BNP is more effective toward this reaction.

Acknowledgements

We thank DST nano mission (SR/NM/NS-1034/2012(G) for financial support. NS thanks CSIR for senior research fellowship, RS thanks IIT Madras for senior research fellowship and NP thanks UGC for junior research fellowship.

References

[1] a) J. A. Joule, K. Mills, Heterocyclic Chemistry; 4th ed.; Blackwell: Oxford, 2000; b) T. Eicher, S. Hauptmann, The Chemistry of Heterocycles; Wiley-VCH: Weinheim, 2003; c) P. A. Gale, Acc. Chem. Res. 2006, 39, 465-475.
[2] a) W. R. Gutekunst, R. Gianatassio, P. S. Baran, Angew. Chem., Int. Ed. 2012, 51, 7507-7510; b) F. Frebault, N. Maulide, Angew. Chem., Int. Ed. 2012, 51, 2815-2817; c) Y. Feng, G. Chen, Angew. Chem., Int. Ed. 2010, 49, 958-961; d) K. R. Campos, Chem. Soc. Rev. 2007, 36, 1069-1084.
[3] a) N. Umeda, H. Tsurugi, T. Satoh, M. Miura, Angew. Chem., Int. Ed. 2008, 47, 4019-4022; b) K.-S. Ha, G. Kwak, K.-W. Jun, J. Hwang, J. Lee, Chem. Commun. 2013, 49, 5141-5143; c) D. R. Stuart, M. BertrandLaperle, K. M. N. Burgess, K. Fagnou, J. Am. Chem. Soc. 2008, 130, 16474-16475; d) W. C. P. Tsang, N. Zheng, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 14560-14561; e) F. W. Patureau, J. Wencel-Delord, F. Glorius, Aldrichimica Acta 2012, 45, 31-41; f) N. Guimond, K. Fagnou, J. Am. Chem. Soc. 2009, 131,

12050-12051; g) K. Inamoto, T. Saito, M. Katsuno, T. Sakamoto, K. Hiroya, Org. Lett. 2007, 9, 2931-2934; h) M. Yamamoto, S. Matsubara, Chem. Lett. 2007, 36, 172-173; i) J. A. Jordan-Hore, C. C. C. Johansson, M. Gulias, E. M. Beck, M. J. Gaunt, J. Am. Chem. Soc. 2008, 130, 16184-16186; j) G. Brasche, S. L. Buchwald, Angew. Chem., Int. Ed. 2008, 47, 1932-1934; k) T.-S. Mei, X. Wang, J.-Q. Yu, J. Am. Chem. Soc. 2009, 131, 10806-10807.
[4] a) J. Wencel-Delord, F. Glorius, Nat. Chem. 2013, 5, 369-375; b) A. V. Gulevich, A. S. Dudnik, N. Chernyak, V. Gevorgyan, Chem. Rev. 2013, 113, 3084-3213; c) M. Yamamoto, S. Matsubara, Chem. Lett. 2007, 36, 172173; d) C. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215-1292; e) L. Grigorjeva, O. Daugulis, Angew. Chem., Int. Ed. 2014, 53, 10209-10212; f) D. Balcells, E. Clot, O. Eisenstein, Chem. Rev. 2010, 110, 749-823; g) S. A. Girard, T. Knauber, C.-J. Li, Angew. Chem., Int. Ed. 2014, 53, 74-100.
[5] a) J. C. Lewis, R. G. Bergman, J. A. Ellman, Acc. Chem. Res. 2008, 41, 1013-1025. b) H. M. F. Viart, A. Bachmann, W. Kayitare, R. Sarpong, J. Am. Chem. Soc. 2017, 139, 1325-1329. с) H.-B. Zhao, Z.-W. Hou, Z.-J. Liu, Z.-F. Zhou, J. Song, H.-C. Xu, Angew. Chem., Int. Ed. 2017, 56, 587-590. d) S. Hazra, B. Mondal, H. Rahaman, B. Roy, Eur. J. Org. Chem. 2014, 2014, 28062812. e) E. M. Beccalli, G. Broggini, A. Fasana, M. Rigamonti, J. Organomet. Chem. 2010, 696, 277-295. f) W. C. P. Tsang, R. H. Munday, G. Brasche, N. Zheng, S. L. Buchwald, J. Org. Chem. 2008, 73, 7603-7610.
[6] L. Ackermann, S. Fenner, Org. Lett. 2011, 13, 65486551 and references there in.
[7] a) K. Bhadra, G. S. Kumar, Mini-Rev. Med. Chem. 2010, 10, 1235-1247; b) K. W. Bentley, Nat. Prod. Rep. 2005, 22, 249-268; c) A. Capasso, S. Piacente, N. De Tommasi, L. Rastrelli, C. Pizza, Curr. Med. Chem. 2006, 13, 807812; d) P. Giri, G. S. Kumar, Mini-Rev. Med. Chem. 2010, 10, 568-577; e) F. Bagirici, H. Genc, F. Tan, S. Demir, Neurosci. Res. Commun. 2001, 29, 99-105; f) K. W. Bentley, Nat. Prod. Rep. 1992, 9, 365-391; g) B. D. Krane, M. Shamma, J. Nat. Prod. 1982, 45, 377384.
[8] a) J. R. Butler, C. Wang, J. Bian, J. M. Ready, J. Am. Chem. Soc. 2011, 133, 9956-9959; b) G. E. Keck, T. T. Wager, J. F. D. Rodriquez, J. Am. Chem. Soc. 1999, 121, 5176-5190.
[9] a) S. Mochida, N. Umeda, K. Hirano, T. Satoh, M. Miura, Chem. Lett. 2010, 39, 744-746; b) D.-G. Yu, F. de Azambuja, F. Glorius, Angew. Chem., Int. Ed. 2014, 53, 2754-2758 and references there in; c) N. J. Webb, S. P. Marsden, S. A. Raw, Org. Lett. 2014, 16, 4718-4721; d) S. Allu, K. C. K. Swamy, J. Org. Chem. 2014, 79, 3963-3972 and references there in; e) H. Shiota, Y. Ano, Y. Aihara, Y. Fukumoto, N. Chatani, J. Am. Chem. Soc. 2011, 133, 14952-14955; f) L. Grigorjeva, O. Daugulis, Angew. Chem., Int. Ed. 2014, 53, 10209-10212; g) M. Cardellini, G. M. Cingolani, F. Claudi, U. Gulini, F. Cantalamessa, F. Venturi, Eur. J. Med. Chem. 1987, 22, 1-4. h) H. Zhong, D. Yang, S. Wang, J. Huang, Chem. Commun. 2012, 48, 3236-3238; i) W. Xie, B. Li, S. Xu, H. Song, B. Wang, Organometallics 2014, 33, 2138-2141;
j) Z.-W. Chen, Y.-Z. Zhu, J.-W. Ou, Y.-P. Wang, J.-Y. Zheng, J. Org. Chem. 2014, 79, 10988-10998; k) S. Manna, A. P. Antonchick, Angew. Chem., Int. Ed. 2014, 53, 7324-7327; 1) G. Sivakumar, A. Vijeta, M. Jeganmohan, Chem. - Eur. J. 2016, 22, 5899-5903.
[10] a) M. G.. Clerici, O. A. Kholdeeva, Liquid Phase Oxidation via Heterogeneous Catalysis: Organic Synthesis and Industrial Applications. Wiley, Hoboken, 2013; b) R. A. Sheldon, H. Van Bekkum, Fine Chemicals through Heterogeneous Catalysis, Wiley-VCH, Weinheim, 2001; c) M. Pagliaro, V. Pandarus, R. Ciriminna, F. Beland, P. Demma Cara, ChemCatChem 2012, 4, 432-445.
[11] a) V. Polshettiwar, R. S. Varma, Green Chem. 2010, 12, 743-754; b) D. Actruc, Nanoparticle and catalysis, VCH. Weinheim, 2007.
[12] Z. Shu, W. Li, B. Wang, ChemCatChem 2015, 7, 605608.
[13] a) D. Ganapathy, G. Sekar, Catal. Commun. 2013, 39, $50-54 . ;$ b) N. Sharma, G. Sekar, RSC $A d v$. 2016, 6 , 37226-37235; c) S. S. Kotha, N. Sharma, G. Sekar, $A d v$. Synth. Catal. 2016, 358, 1694-1698; d) N. Sharma, G. Sekar, Adv. Synth. Catal. 2016, 358, 314-320; e) D. Ganapathy, S. S. Kotha, G. Sekar, Tetrahedron Lett. 2015, 56, 175-178; f) D. Ganapathy, G. Sekar, Org. Lett. 2014, 16, 3856-3859.
[14] a) D. Ghosh, S. Chen, Chem. Phys. Lett. 2008, 465, 115119. b) Y. Zhang, J. Zhu, Y.-T. Xia, X.-T. Sun, L. Wu, Adv. Synth. Catal. 2016, 358, 3039-3045. c) W. Chen, S. Pradhan, S. W. Chen, Nanoscale 2011, 3, 2294-2300. d) P. Hu, L. Chen, X. Kang, S. Chen, Acc. Chem. Res. 2016, 49, 2251-2260. e) M. Hashimoto, H. Toshima, T. Yonezawa, K. Kawai, T. Narushima, M. Kaga, K. Endo, J. Biomed. Mater. Res., Part A 2014, 102A, 1838-1849. f) F. Mirkhalaf, J. Paprotny, D. J. Schiffrin, J. Am. Chem. Soc. 2006, 128, 7400-7401. g) V. K. R. Kumar, K. R. Gopidas, Chem Asian J 2010, 5, 887-896. h) M.

Hashimoto, H. Toshima, T. Yonezawa, K. Kawai, T. Narushima, M. Kaga, K. Endo, Dent Mater J 2013, 32, 725-733.
[15] See the supporting information for details.
[16] Due to very less polarity difference, regioisomeric mixtures of $\mathbf{3} \mathbf{a b}$ and $\mathbf{3 a c}$ were inseparable. Regioisomeric ratio of these compounds was determined by using deconvolution technique. Resolving the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ peaks at range between $367-3.62 \mathrm{ppm}$ for $\mathbf{3 a b}$ and $2.32-$ 2.27 ppm for $\mathbf{3 a c}$, shows that the presence of 1:1.6 and 1:1 ratio for regioisomers in these compounds.
[17] The structure of $\mathbf{3 a d}$ was determined by single crystal XRD analysis. CCDC-1503957 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif.
[18] To examine the effect of KI and Pd-BNP, demethoxylation was carried out using pure 3a with the addition of NaH (1.5 equiv.), KI (1.5 equiv.) and Pd-BNP ($2 \mathrm{~mol} \%$). The reaction gave only a trace amount of product 3a. Then the reaction was carried out in the presence of 3 equiv. of NaH , KI (1.5 equiv.) and PdBNP ($2 \mathrm{~mol} \%$). Surprisingly, the yield of the demethoxylation product was 47%. This result shows that KI and Pd-BNP play a role in reducing the yield of demethoxylation product in the one-pot reaction.
[19] After the annulation reaction, the Pd-BNP has similar particle size, shapes and reactivity. It shows that Pd does not disconnect from the aryl back bond.
[20] M. Barbero, S. Bazzi, S. Cadamuro, S. Dughera, C. Magistris, P. Venturello, Synlett 2010, 1803-1806.
[21] N. Guimond, S. I. Gorelsky, K. Fagnou, J. Am. Chem. Soc. 2011, 133, 6449-6457.
[22] B. Li, H. Feng, S. Xu, B. Wang, Chem.-Eur. J. 2011, 17, 12573-12577.

Palladium-Nanoparticles-Catalyzed Oxidative Annulation of Benzamides with Alkynes for the Synthesis of Isoquinolones

Adv. Synth. Catal. 2017, 359, 1-13N. Sharma, R. Saha, N. Parveen, G. Sekar*

