

Asymmetric double aldol reaction of chiral acetyloxazolidinone

Hiroshi Furuno, Tadashi Inoue and Atsushi Abiko*

Venture Laboratory, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan Received 22 August 2002; accepted 13 September 2002

Abstract—Treatment of chiral oxazolidinone with Bu_2BOTf (2.5 equiv.) and Et_3N (3.0 equiv.) quantitatively produced the doubly borylated enolate, which afforded the double aldol products with high diastereoselectivity after reaction with aldehydes. © 2002 Elsevier Science Ltd. All rights reserved.

Recently, we have reported a new asymmetric boronmediated double aldol reaction.¹ From an extensive spectroscopic investigation of the double aldol reaction of acetate esters, we found and characterized carbonbound boron enolates (1a) as equilibrium mixtures of oxygen-bound enolates (1b) for the first time.² Furthermore, the novel doubly borylated enolates (2) were identified as intermediates of the double aldol reaction (Scheme 1).³ We also found that the corresponding doubly borylated enolates could be prepared from a variety of carbonyl compounds, such as N,N-dimethylacetamide, acetic acid, methoxyacetone, and phenyl thioacetate.²

Further investigation of the boron mediated aldol reaction of acetyl derivatives unexpectedly led us to discover that 3-acetyl-2-oxazolidinone produced the corresponding doubly borylated enolate and was actually a substrate of the double aldol reaction. Herein, we report preliminary results of the asymmetric double aldol reaction of a chiral acetyl oxazolidinone (Evans' auxiliary).

Undoubtedly, the chiral 2-oxazolidinone auxiliaries are the most useful and reliable reagents in the boron-mediated aldol reaction.⁴ Besides the well-established asymmetric aldol reaction of the propionate derivative of chiral oxazolidinones, a few examples of asymmetric aldol reaction of acetyl oxazolidinones have been reported to afford the corresponding mono aldol products under the 'standard conditions'.⁵ Contrary to the reported normal aldol reactions, we have found that both the conventionally assumed mono enolates and the doubly borylated enolate species could be produced depending on the enolization reagent and the amount of the boron triflate.

When 4 was treated with 1 equiv. of n-Bu₂BOTf and 1.2 equiv. of Et₃N in CDCl₃ at 0°C, formation of both mono enolate 5a (R' = n-Bu; 42%) and doubly borylated enolate **6a** ($\mathbf{R'} = n$ -Bu; 15%) was observed (Table 1, entry 1). Enolization at the lower temperature $(-65^{\circ}C)$ made 5a predominate over 6a (entry 2). The use of i-Pr₂EtN did not affect the result very much (entries 3 and 4). Similarly, with 1 equiv. of c-Hex₂BOTf and 1.2 equiv. of a base, 4 afforded a mixture of 5b and 6b favoring 5b (entries 5 and 6). The mixtures of 5 and 6 were quantitatively converted to the doubly borylated enolate 6 with an additional 1.5 equiv. of the corresponding boron triflate. With 2.5 equiv. of *n*-Bu₂BOTf and 3 equiv. of triethylamine, 6a formed as a sole product irrespective of the reaction conditions (entry 7). The doubly borylated enolates **6b** and **6c** were prepared

Scheme 1.

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)02021-X

Keywords: aldol reaction; boron-mediated aldol reaction; double aldol reaction; asymmetric aldol reaction; oxazolidinone; doubly borylated enolate; boron triflate.

^{*} Corresponding author.

a R'= n-Bu, b R'= c-Hex, c BR'₂= 9-BBN

Entry	Enolization reagents (equiv.)	Temp. (°C) ^a	Yield% (ratio of 5:6:4)
1	<i>n</i> -Bu ₂ BOTf (1.0), Et ₃ N (1.2)	0	5a:6a:4 =42:15:43
2	$n-Bu_2BOTf$ (1.0), Et ₃ N (1.2)	-65	5a:6a:4 =61:12:27
3	n-Bu ₂ BOTf (1.0), <i>i</i> -Pr ₂ EtN (1.2)	0	5a:6a:4 = 57:3:40
4	<i>n</i> -Bu ₂ BOTf (1.0), <i>i</i> -Pr ₂ EtN (1.2)	-65	5a:6a:4 =60:18:22
5	<i>c</i> -Hex ₂ BOTf (1.0), Et ₃ N (1.2)	0	5a:6b:4 =76:8:15
6	c-Hex ₂ BOTf (1.0), <i>i</i> -Pr ₂ EtN (1.2)	0	5a:6b:4=80:8:12
7	<i>n</i> -Bu ₂ BOTf (2.5), Et ₃ N (3.0)	0	6a , 100
8	c-Hex ₂ BOTf (2.5), Et ₃ N (3.0)	0	6b , 100
9	9-BBN-OTf ^b (3.8), Et ₃ N (4.5)	0	6c , 100

^a Enolization was conducted at the indicated temperature for 5 min, then the ratio was measured by ¹H NMR spectroscopy at 23°C. ^b Commercial solution of 9-BBN-OTf in hexane from Aldrich was used as received.

in the same manner with *c*-Hex₂BOTf and 9-BBN-OTf, respectively (entries 8 and 9). The doubly borylated enolates showed a characteristic singlet (**6a** 4.26 ppm, **6b** 4.00 ppm, **6c** 4.27 ppm) of the olefinic proton in the ¹H NMR spectra, and the structure was determined on the basis of NMR spectroscopies (¹H, ¹³C, ¹¹B, [¹³C–¹H] COSY, and [¹H–¹³C] HMBC).⁶

The asymmetric double aldol reaction of (R)-7 with benzaldehyde was investigated. The chiral auxiliary exhibited excellent stereocontrol ability even at room temperature to afford (S,S)-diol **9** as a major product (>95% ds).⁷ The doubly borylated enolates derived from *c*-Hex₂BOTf and 9-BBN-OTf were rather unreactive and 14 h of the reaction time was necessary for completion. Naturally, *n*-Bu₂BOTf and Et₃N were selected as enolization reagents. It is important to note that the reaction of **8b** (R'=*c*-Hex), prepared from 7 with *c*-Hex₂BOTf (2.5 equiv.) and Et₃N (3 equiv.), proceeded 24% after 1.5 h with recovery of 7 (71%). This result implies the rate determining step of this double aldol reaction is the reaction of the doubly borylated enolate (**8**) with aldehyde.

The relative stereochemistry of the double aldol product 9 was determined from the analysis of the coupling constants of the acetonide derivative 10^8 and the further transformation. The absolute stereochemistry was established after conversion to the known alcohol 11^1 with LiAlH₄ reduction (Scheme 2). The stereochemical outcome shows that the sense of diastereofacial selectivity is same as that of the conventional asymmetric aldol reaction of the corresponding propionate derivative. The high Z(O)-enolate preference of the boron-enolate of propionyloxazolidinone strongly suggests that **9** was produced from the Z(O)enolate at the both first and second aldol reactions under the stereochemical control by the auxiliary.

The asymmetric double aldol reaction of 7 with various aldehydes proceeded with excellent selectivities (ds > 95%) (Table 2). With most of aromatic aldehydes, the double aldol products (9)⁹ could be isolated in high yields. With certain electron rich aldehydes, however, such as *p*-anisaldehyde or 1-naphthaldehyde, elimination products (12) also formed as side products (entries 3 and 5). Isobutyraldehyde and methacrolein afforded the double aldol products with high selectivity as major products (70–80%), and the mono aldols (13) with low selectivities and/or elimination products (12) as minor products (entries 8 and 9). The reaction of 8b (R'=*c*-Hex) with isobutyraldehyde afforded diastereomers of the mono aldol products as sole products in 3.3:1 (Table 2, entry 10).¹⁰

In summary, contrary to the reported normal mono aldol reaction, we have discovered that the acetyloxazolidinone caused the double aldol reaction. The excellent diastereoselectivities were achieved with a variety of aldehydes using a conventional chiral oxazolidinone. The present results made a variety of chiral triols of C_3 -symmetry more accessible.¹¹

Scheme 2. Reagents and conditions: (1) R'₂BOTf, Et₃N; (2) PhCHO; (3) 2,2-dimethoxypropane, PTS, CH₂Cl₂, rt; (4) LiAlH₄, ether.

Table 2. Asymmetric double aldol reaction of (R)-7 with aldehydes

^a 12c (11%).

^b 12e (22%).

° 12h (8%).

^d 12i (6%), 13i (20%).

^e c-Hex₂BOTf/Et₃N were used as enolization reagents.

Acknowledgements

This work was supported by a grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant-in-Aid 10640578 and 13640533).

References

- 1. Abiko, A.; Liu, J.-F.; Buske, D. C.; Moriyama, S.; Masamune, S. J. Am. Chem. Soc. **1999**, *121*, 7168.
- Abiko, A.; Inoue, T.; Masamune, S. J. Am. Chem. Soc. 2002, 124, 10759.
- Abiko, A.; Inoue, T.; Furuno, H.; Schwalbe, H.; Fieres, C.; Masamune, S. J. Am. Chem. Soc. 2001, 123, 4605.
- (a) Evans, D. A. Aldrichim. Acta 1982, 15, 23; (b) Cowden, C. J.; Paterson, I. Org. React. 1997, 51, 1.
- (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127; (b) Loubinoux, B.; Sinnes, J.-L.; O'Sullivan, A. C.; Winkler, T. Tetrahedron 1995, 51, 3549; (c) Yan, T.-H.; Hung, A.-W.; Lee, H.-C.; Chang, C.-S.; Liu, W.-H. J. Org. Chem. 1995, 60, 3301.
- Compound **6b** shows the following spectroscopic properties: ¹H NMR: δ 4.00 (1H, s), 4.11 (2H, t, J=8.5 Hz), 4.65 (2H, t, J=8.5 Hz), 8.16 (2H, s, NH); ¹³C NMR: δ 33.4, 44.4, 64.8, 85.0, 156.6, 159.4; ¹¹B NMR: δ 50.5, 70.4; [¹³C, ¹H] COSY 33.4–1.7, 44.4–4.11, 64.8–4.65, 85.0–4.00; [¹H, ¹³C] HMBC ~1.7–85.0, 4.00–33.4, 4.00–156.6, 4.11–64.8, 4.11–159.4, 4.65–44.4, 4.65–159.4.
- Typical reaction procedure: Commercial solution of n-Bu₂BOTf in CH₂Cl₂ (Aldrich, 1 M, 100 ml) was transferred to CH₂Cl₂ (200 ml) via cannula and then Et₃N (120 mmol) was added dropwise. To this solution, (*R*)-7 (8.80 g, 40 mmol) in CH₂Cl₂ (20 ml) was added at 0°C

during 20 min, and the mixture was stirred at 0°C for 15 min. Benzaldehyde (12.7 g, 120 mmol) was added dropwise, and the reaction was let to warm to room temperature and stirred for 1.5 h. A pH 7 buffer solution (200 ml) was added and the organic layer was separated. Aqueous layer was extracted with CH_2Cl_2 (2×100 ml) and the combined organic extracts were concentrated under vacuum. The residue was diluted with MeOH (150 ml) and tartaric acid (30 g) was added. To the mixture, 30% H_2O_2 solution (100 ml) was carefully added with cooling in an ice-water bath. After exothermic reaction subsided, the mixture was stirred at room temperature for 1 h and concentrated. Usual extractive workup afforded **9** (16.0 g, 37 mmol, 93%) after crystallization from ethyl acetate and hexane.

- 8. H_A appeared at δ 5.14 as a double doublet (J=8.2, 10.0 Hz).
- 9. The absolute stereochemistry of the double aldol products were assigned on the analogy of that of 9a.
- 10. ¹H NMR showed the increase of the enolate of isobuyraldehyde was accompanied with the consumption of **8b** and isobutyraldehyde, and formation of the (mono) aldolate. Thus, the mono aldol product is attributed to the reversion of **8b** to the mono enolate by proton transfer. See Ref. 2.
- The following chiral triols of C₃-symmetry [HC(CH(OH)-R)₃] have been synthesized: R=4-Me-C₆H₄, mp 119–120°C, [α]_D²²=131.8 (*c* 1.24); R=4-MeO-C₆H₄, mp 203–204°C, [α]_D²²=119.4 (*c* 0.50); R=4-Br-C₆H₄, mp 172–173°C, [α]_D²²=177.9 (*c* 1.00); R=4-CF₃-C₆H₄, mp 130–131°C, [α]_D²²=39.8 (*c* 0.50); R=1-naphthyl, mp 233–234°C, [α]_D²²=-407.3 (*c* 1.00); R=2-naphthyl, mp 156–157°C, [α]_D²²=342.6 (*c* 1.00). Details of the synthesis will be reported elsewhere.