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a b s t r a c t

Expeditious syntheses of cis-1-methyl-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo-[3,2h]isoquinoline/[2,3-
f]quinoline have been developed. The syntheses started with commercially available materials and affor-
ded excellent overall yields in straightforward steps. Intramolecular azomethine ylide-alkene [3+2]
cycloaddition is the key step in the construction of these pyrroloisoquinoline and pyrroloquinoline scaf-
folds. This route is much more atom-economic than those reported in the literature and is appropriate for
scale-up synthesis.

� 2011 Elsevier Ltd. All rights reserved.
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Structural modification of the nicotine molecule provided many
novel potent and drugable nicotinic acetylcholine receptor
(nAChR) ligands in CNS drug discovery.1 In light of this strategy,
conformationally restrained analogs of nicotine have attracted
much attention among medicinal chemists.2 In this regard, com-
pounds based on two scaffolds: cis-1-methyl-2,3,3a,4,5,9b- hexa-
hydro-1H-pyrrolo-[3,2-h] isoquinoline (1, Fig. 1) and cis-1-
methyl-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo-[2,3-f]-quinoline (3),3

which were designed to mimic the two isoenergetic conformers
of nicotine that are believed to be present in aqueous solution,4

demonstrated considerable potential. Compound 1 may represent
a new class of analgesic because of its unique pharmacological pro-
file,5 and SIB-1663 (2) has been established to have distinctive
nAChR subtype selectivity.6 Additionally, haptens 4 and 5 (Fig. 1),
which have the scaffold of 1 and 3, respectively, yielded enhanced
immune response as demonstrated in a new strategy for the devel-
opment of nicotine vaccines.7 Thus, an expeditious synthetic path-
way to the scaffolds 1 and 3 would have important value in the
CNS drug discovery area. Herein we report a new approach for
the efficient construction of 1 and 3, which will be much more via-
ble for scale-up synthesis.

For the synthesis of compound 1, the original route has been
followed for two decades,8 which resorts to the key intermediate
6,7-dihydro-8(5H)-isoquinolinone (6, Scheme 1). However, the
approaches related to the preparation of 6 involved either harsh
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conditions, tedious isolation or/and rare precursors that are labori-
ous to prepare, and additionally, all these approaches afforded
relatively poor overall yields of the desired intermediate 6 and
eventually product 1. The same strategy has also been employed
for the synthesis of 3 starting from the corresponding isomer 8
with similar overall yield.

An alternative route to the synthesis of compound 1 has been
reported recently utilizing Diels–Alder chemistry for the construc-
tion of the central six-membered ring system.9 Unfortunately,
the key step proceeds only when multiple functional groups are
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present on specific positions of the precursor molecule 7
(Scheme 1). Obviously these particular requirements, as well as
the reported low yields, substantially limit the scope and utiliza-
tion of this synthetic approach.

As a valuable strategy, azomethine ylide-alkene [3+2] cycload-
dition constitutes an efficient method for the construction of a pyr-
rolidine ring. This synthetic approach has been widely employed
for the synthesis of many biologically active molecules.10 Utilizing
this strategy, we have synthesized 1 in our earlier research
(Scheme 2).11 We envisaged that this approach may serve as a good
starting point for the development of a new, efficient synthetic
route to 1 and 3.

Upon close analysis of the route in Scheme 2, it was realized
that the stepwise introduction of the ene-containing side chain
at the 4-position of 3-bromopyridine (9) left a hydroxyl group in
the resulting molecule 11. This hydroxyl group has to be protected
(as 12) for the next step, that is, Li-bromo exchange, to proceed
smoothly.12 Eventually, the protecting MOM group has to be re-
moved (as 15) and the exposed hydroxyl group reduced to furnish
the final product 1. Obviously the introduction of the hydroxyl
group in 11 necessitated a few manipulations on the functional
group that is not present in the final molecule, which largely
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depreciated the atom-economy for the whole process. Thus we
developed a new synthetic route to 1 as illustrated in Scheme 3.

Taking advantage of the acidity of the methyl proton in com-
mercially available 3-bromo-4-methylpyridine (16), we chose this
as our starting material. Thus, 16 was treated with LDA and allylbr-
omide at �78 �C to afford 3-bromo-4-(but-3-en-1-yl)pyridine (17)
in excellent yield (92%). The resulting 17 was subjected to bro-
mine-lithium exchange with n-BuLi at �78 �C followed by formy-
lation to furnish the corresponding aldehyde 18 (87% yield). The
key intermediate 18 sets the stage for intramolecular azomethine
ylide-alkene [3+2] cycloaddition. Accordingly, when the mixture
of 18 and sarcosine in DMF was heated at 110 �C for 4 h, the cyc-
loadduct 1 was obtained in excellent yield (86%). The 1H and 13C
NMR spectra of 1 were identical to those of an authentic sample
prepared in this group previously following the route depicted in
Scheme 211 or the route of Glassco et al.,3,13a who had established
the cis-geometry of 1 through X-ray analysis. Only the cis-isomer
was detected as the product of the intramolecular ylide-alkene
[3+2] cycloaddition. This result is consistent with the observations
of other groups.14

Obviously, this route for the synthesis of 1 is much more expe-
ditious than those reported in the literature as illustrated in
Schemes 1 and 2. The route starts from a commercially available
material and affords an excellent overall yield of 69% in three
straightforward steps. From an atom-economy point of view, this
is a very efficient process for the synthesis of 1, and affords a more
appropriate process for scale-up synthesis.

Furthermore, we discovered that this route can be easily
adapted for the synthesis of compound 3 (Scheme 4). Following
the same process as that illustrated in Scheme 3 for the synthesis
of 1, the desired product 3 was very conveniently prepared in 3
steps from 3-bromo-2-picoline (19)15. The 1H and 13C NMR spectra
of the resulting 3 were also identical to those of an authentic sam-
ple prepared previously following the synthetic route of Glassco
et al.3 Thus, the current route is also significantly more efficient
than the reported method for the synthesis of compound 3.8
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In conclusion, expeditious syntheses of cis-1-methyl-
2,3,3a,4,5,9b-hexahydro-1H-pyrrolo-[3,2-h]iso-quinoline (1) and
cis-1-methyl-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo-[2,3-f]quinoline
(3) have been established utilizing intramolecular azomethine
ylide-alkene [3+2] cycloaddition. For the synthesis of 1 and 3, this
route is considerably more efficient than the previously reported
routes, and provides a viable route for large scale production of
such molecules, which is important for subsequent preclinical
development as therapeutic agents. Details of the synthesis and
characterization data for compounds 1, 3, 17, 18, 20 and 21 are
provided in the references and notes.16–17
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