Asymmetric Syntheses of Potent Antitumor Macrolides Cryptophycin B and Arenastatin A

Arun K. Ghosh* ${ }^{[a]}$ and A. Bischoff ${ }^{[a]}$

Keywords: Natural products / Cryptophycins / Arenastatin A / Asymmetric synthesis / Aldols

Efficient and highly stereoselective syntheses of cryptophy$\operatorname{cin} B$ and arenastatin A, potent cytotoxic agents, are described. An ester-derived titanium enolate mediated syn-aldol reaction was employed to generate the stereocenters C-5 and $\mathrm{C}-6$. The route is convergent and provides a convenient
access to the synthesis of structural variants of cryptophycins as well as members of its family.
(© Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, Germany, 2004)

Introduction

In 1990, while screening the extracts of blue-green algae for antitumor activity, researchers at Merck \& Co., Inc. found a strong antifungal agent in the lipophilic extract of the cyanobacteria Nostoc sp. (ATCC 53789). ${ }^{[1]}$ It was highly active against filamentous fungi and yeast of Cryptococcus sp. with MIC_{50} and MIC_{90} values of both $31 \mu \mathrm{~g} / \mathrm{mL}$ and consequently, was given the name cryptophycin (1, Figure 1). Later Moore et al. isolated and identified 25 compounds from Nostoc sp. GSV 224 of which the four major constituents, named cryptophycin A (1), B (2), C (3) and D (4), showed excellent activities against solid tumors implanted in mice. ${ }^{[2-4]}$ Cryptophycins A and B exhibited IC_{50} values of 5 and $7 \mathrm{pg} / \mathrm{mL}$ against KB cells and 3 and 0.2 $\mathrm{pg} / \mathrm{mL}$ against LoVo cells, respectively. ${ }^{[2]}$ In addition, the compounds were equally effective against drug-sensitive and drug-resistant tumor cells. ${ }^{[2,3]}$ In vivo structure-activity relationship studies on all isolated cryptophycins showed that the exclusion of the chlorine atom from the D-tyrosine moiety generally reduced the cytoxicity 10 -fold, although the potencies of cryptophycin A and B were almost identical. ${ }^{[4]}$ Also, removal of the O-methyl group or elimination of the epoxide oxygen atom both resulted in loss in potency (up to 1000 -fold). Interestingly, if the epoxide is converted into a chloro- or bromohydrin no decrease in cytotoxicity was observed. ${ }^{[6]}$ Replacement of the isobutyl group of the L-leucic acid moiety by an n-propyl, isopropyl or sec-butyl group was accompanied by a considerable reduction in cytoxicity ($10-$ to 100 -fold). The lack of a methyl group adjacent to the epoxide group lessened the cytoxicity substantially.

In 1994 another potent member of the cryptophycin family was isolated from the Okinawan marine sponge Dysidea

[^0]
Cryptophycin A (1), $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Me}, \mathrm{R}_{3}=\mathrm{Cl}$
Cryptophycin B (2), $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Me}, \mathrm{R}_{3}=\mathrm{H}$
Arenastatin A (5), $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$
LY355703
(6), $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Me}, \mathrm{R}_{3}=\mathrm{H}$

Cryptophycin C, $\mathrm{R}=\mathrm{Cl}$ (3)
Cryptophycin D, $\mathrm{R}=\mathrm{H}$ (4)

Figure 1. Structures of arenastatin A and cryptophycins
arenaria and identified by Kitagawa et al. ${ }^{[7]}$ Arenastatin A (5), named after its origin, showed an excellent cytotoxicity of $5 \mathrm{pg} / \mathrm{mL}$ against KB cell line $\left(\mathrm{IC}_{50}\right)$. ${ }^{[7]}$ Unfortunately, its potency is limited by the fact that it is subject to degradation in blood, a vulnerability caused by the high susceptibility of the ester linkages to hydrolysis. ${ }^{[8-11]}$ Synthesis of triamide and carba analogs resulted in better in vivo stability, but reduced potency. ${ }^{[8]}$

One of the more extensively investigated cryptophycins is cryptophycin A. It is an antimitotic and antiproliferative
agent exhibiting antitumor activity against mammary, colon and pancreatic adenocarcinomas in mice through its interaction with microtubules. Cryptophycin A binds in vitro to tubulin within the vinca domain and inhibits tubulin polymerization, causes tubulin to aggregate and depolymerizes microtubules to linear polymers. ${ }^{[12,13]}$ At low nanomolar concentrations, in the absence of microtubule depolymerization, cryptophycin A effectively stabilized microtubule dynamics by binding reversibly and with high affinity to the ends of microtubules. ${ }^{[2,14]}$ Its actions cause mitotic arrest accompanied by the formation of abnormal mitotic spindles and condensed chromatin without effecting interphase microtubule structures. In addition, cryptophycins overcome a common form of multidrug resitance, P-glyco-protein-mediated efflux, since it is not a substrate for P glycoprotein. In view of the potency of cryptophycins and the need for analogs that have a higher stability toward in vivo hydrolysis, many synthetic analogs of cryptophycins have been synthesized. ${ }^{[2-5,8-11,15-19]}$ Cryptophycin 52 (6), also known as LY355703, and initially synthesized by Lilly Research Laboratories, is currently under clinical trial phase 2. LY355703 was selected due to its high hydrolytic stability and, nevertheless, very potent activity against tumor cell lines in culture. ${ }^{[20]}$

The significant clinical potential of the cryptophycins and their relatively low natural abundance has attracted immense interest in their synthesis and structural modification. Several total syntheses and synthetic approaches to cryptophycins and arenastatin A have been described in recent years. ${ }^{[21-40]}$ As part of our interest in the structurefunction studies of cryptophycins, we sought a flexible, enantioselective synthesis of cryptophycin B. Herein we report a convergent and stereocontrolled total synthesis of cryptophycin B and arenastatin A.

Results and Discussion

As outlined in Figure 2, we planned the assembly of cryptophycin B and arenastatin A in a convergent manner from octadienoic acid 7, hydroxyisocaproic acid 8, D-tyrosine derivative $\mathbf{9}$ and β-amino acid $\mathbf{1 0}$ or 11, respectively. The fragments would be connected by Yamaguchi esterification and macrolactamization reactions. Introduction of the sensitive epoxide functionality would be carried out at the final stage of the synthesis. The stereocenters on C-5 and C-6 of fragment 7 would derive from syn-aldol adduct $\mathbf{1 2}$ generated by means of a titanium enolate mediated aldol reaction.

In order to set the two stereocenters on C-5 and C-6 of 7, an ester-derived titanium enolate mediated syn-aldol reaction was employed. ${ }^{[41,42]}$ The aldol starting material, ester 14 containing the chiral auxiliary and the styryl moiety, was derived by consecutive tosylation and acylation of $(1 R, 2 S)$ 1 -aminoindan-2-ol (13) (Scheme 1). Thus, tosylation of the amine with TsCl and 2 equiv. of DMAP in DCM at $0^{\circ} \mathrm{C}$ to room temperature for 1 h , followed by esterification with commercially available (E)-4-phenyl-3-butenoic acid and

Figure 2. Retrosynthetic analysis

Scheme 1. (a) TsCl, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $\mathrm{PhCH}=$ $\mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{EDCI}, 23{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}(98 \%)$; (b) $\mathrm{TiCl}_{4}, i \mathrm{Pr}_{2} \mathrm{NEt}, 0-23$ ${ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $\mathrm{BnO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHO},-78{ }^{\circ} \mathrm{C}, 20 \mathrm{~min}(98 \%)$; (c) LAH , THF, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}\left(92^{\circ} \%\right.$); (d) $\mathrm{PhLi}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then TsCl , $-20^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then LAH, $0^{\circ} \mathrm{C}, 20 \mathrm{~min}(96 \%)$; (e) TIPSOTf, 2,6lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}$, $20 \mathrm{~min}(99 \%)$; (f) $\mathrm{BBr}_{3}, 0^{\circ} \mathrm{C}, 5 \mathrm{~min}(45 \%$); (g) $\mathrm{BBr}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, (83%); (h) PCC, MS ($4 \AA$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}$ (98%); (i) NaH , (EtO$)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, THF, $0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}\left(92^{\%} \%\right.$); (j) $\mathrm{LiOH}, \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1), $23^{\circ} \mathrm{C}$, 2 h (94%); (k) $\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}$, $\mathrm{Et}_{3} \mathrm{~N}$, reflux, $4 \mathrm{~h}(33 \%)$

EDCI at ambient temperature for 6 h furnished 98% of indanyl ester 14. Exposure of ester $\mathbf{1 4}$ to TiCl_{4} and $i \mathrm{Pr}_{2} \mathrm{NEt}$ in DCM at $0{ }^{\circ} \mathrm{C}$ to room temperature for 1 h to generate the (Z)-enolate and subsequent reaction with 3-(benzyloxy)propionaldehyde at $-78{ }^{\circ} \mathrm{C}$ for 20 min gave aldol product $\mathbf{1 5}$ in 98% yield and $>99 \%$ de. ${ }^{[41,42]}$ When the enolate of 14 was treated with 3-[(p-methoxybenzyl)oxy]propionaldehyde the desired aldol product could not be obtained possibly due to the instability of the PMB group under the reaction conditions.

The auxiliary was cleaved by reduction of ester $\mathbf{1 5}$ with LAH in THF at $0{ }^{\circ} \mathrm{C}$ for 1 h . The resulting 1,3-diol was obtained in 92% yield and the auxiliary was also recovered in 92% yield. The primary alcohol was to be converted into the methyl group in a one-pot procedure by tosylation and subsequent reduction with hydride. Thus, treatment of the 1,3-diol with phenyllithium in THF at $-78^{\circ} \mathrm{C}$ for 30 min , subsequent addition of TsCl at $-78^{\circ} \mathrm{C}$ and warming of the reaction mixture to $-20^{\circ} \mathrm{C}$ furnished the primary tosylate in situ. Hydride reduction with LAH at -20 to $0^{\circ} \mathrm{C}$ for 20 min gave alcohol 16 in 96% yield. The use of Super Hydride ${ }^{\circledR}$ resulted in comparable yields. The free alcohol was then protected as triisopropylsilyl ether $\mathbf{1 7}$ in quantitative yield by treatment of $\mathbf{1 6}$ with TIPSOTf and 2,6-lutidine in DCM at room temperature for 20 min .

In order to install the α, β-unsaturated carboxylic acid, the benzyl protecting group had to be removed selectively. Treatment of $\mathbf{1 7}$ with lithium or sodium in liquid ammonia partially reduced the styryl double bond and gave the desired primary alcohol only as minor product. The use of alternative benzyl ether cleaving reagents, such as TMSI, $\mathrm{FeCl}_{3}, \mathrm{AlCl}_{3}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ and DDQ , in a variety of solvents rendered no practical amount of desired product. Only treatment with BBr_{3} in DCM at $0^{\circ} \mathrm{C}$ cleanly removed the benzyl group, but unfortunately, converted the silyl ether into bromide $\mathbf{1 8}$ with inversion of configuration (only one isomer isolated). Silyloxy replacement might have been the consequence of the presence of HBr , therefore, in order to reduce the reactivity and acidity of BBr_{3}, treatment of $\mathbf{1 7}$ with BBr_{3} was performed in DCM at $0^{\circ} \mathrm{C}$ and in the presence of solid $\mathrm{K}_{2} \mathrm{CO}_{3}$. Rewardingly, the selectively unprotected alcohol was obtained in 83% yield. Oxidation to the corresponding aldehyde 19 was accomplished in 98% yield with PCC in DCM in the presence of molecular sieves (4 A). A Horner-Emmons olefination of 19 with the sodium salt of triethyl phosphonoacetate in THF at $0^{\circ} \mathrm{C}$ proceeded with 92% yield and rendered (E)- α, β-unsaturated ester 20 as the only isomer. Ester hydrolysis with LiOH in a 1:1 mixture of $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ gave octadienoic acid 21 in 94% yield. The conversion of aldehyde 19 to acid 21 could also be achieved in one step by treatment with malonic acid and $\mathrm{Et}_{3} \mathrm{~N}$ in refluxing benzene, but in only 33% yield.

After generation of diene fragment 21, the remaining macrolide sections had to be generated and successively connected. First, commercially available N-Cbz-d-tyrosine (22) was converted into the methyl phenyl ether in 91% by treatment with $\mathrm{Me}_{2} \mathrm{SO}_{4}$ and NaOH in refluxing EtOH

Scheme 2. (a) $\mathrm{Me}_{2} \mathrm{SO}_{4}, \mathrm{NaOH}, \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ (50:1), reflux, 3 h (91%); (b) $2,4,6-\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{COCl}, i \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{THF}, 23^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then $t \mathrm{BuOH}, \mathrm{DMAP}$, toluene, $23{ }^{\circ} \mathrm{C}$, $3 \mathrm{~h}(64 \%) ;$ (c) $\mathrm{H}_{2}, 5 \% \mathrm{Pd} / \mathrm{C}$, $\mathrm{MeOH}, 2 \mathrm{~h}\left(95^{\circ} \%\right)$; (d) 21, EDCI, DMAP, $23^{\circ} \mathrm{C}$, 12 h (83%); (e) TBAF, THF, $23^{\circ} \mathrm{C}$, $6 \mathrm{~h}\left(99^{\circ} \%\right)$
(Scheme 2). ${ }^{[43]}$ Esterification of the acid with $t \mathrm{BuOH}$ was achieved using Yamaguchi's conditions. ${ }^{[44]}$ Thus, anhydride formation with trichlorobenzoyl chloride in the presence of Hünig's base and subsequent reaction with $t \mathrm{BuOH}$ and DMAP in toluene rendered fully protected D-tyrosine. Removal of the Cbz protection group was performed under hydrogen with $5 \% \mathrm{Pd} / \mathrm{C}$ catalyst in MeOH for 2 h and afforded tyrosine fragment $\mathbf{2 3}$ in 95% yield. The coupling of octadienoic acid fragment $\mathbf{2 1}$ with $\mathbf{2 3}$ was accomplished by exposure to EDCI and DMAP at ambient temperature for 12 h and gave α, β-unsaturated amide 24 in 83% yield. Removal of the silyl ether protecting group with TBAF in THF at room temperature gave alcohol 25 in 99% yield.

Next, L-leucic acid (26) was O^{\prime}-benzylated by treatment with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1) at ambient temperature for 30 min , followed by removal of the solvents and subsequent reaction with benzyl bromide in DMF at $0{ }^{\circ} \mathrm{C}$ to room temperature for 12 h (Scheme 3). ${ }^{[45]}$ The synthesis of cryptophycin B required N -Boc-protected 3-amino-2-methylpropionic acid 30, whereas N-Boc-protected β-alanine $\mathbf{3 1}$ was required for arenastatin A. Methylpropionic acid derivative $\mathbf{3 0}$ was derived from commercially available methyl (R)-2-methylpropionate (28) in a three-step sequence. The hydroxy group was tosylated by treatment with $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}$ and DMAP in DCM at $0{ }^{\circ} \mathrm{C}$ in 91% yield. Quantitative conversion of the tosylate to N-Boc-protected amine $\mathbf{2 9}$ was attained in a one-pot procedure by reaction of the tosylate with NaN_{3} in DMSO at room temperature and subsequent hydrogenation in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ and di-tert-butyl dicarbonate for 12 h . Saponification of ester 29 with LiOH in EtOH at room temperature for 30 min led to the free acid in quantitative yield. Acid $\mathbf{3 0}$ was then coupled with 27 using DCC and DMAP in DCM at room temperature for 12 h . The diester was obtained in 91% yield and debenzylated by hydrogenation in the presence of $5 \% \mathrm{Pd} / \mathrm{C}$ in EtOAc for 5 h to furnish desired fragment 32 in 95% yield. Fragment 33 for the synthesis of arenastatin A was obtained in two steps from known N-Boc- β-alanine ${ }^{[46]}$ (31) (Scheme 3). Coupling of acid $\mathbf{3 1}$ with 27 was accomplished

Scheme 3. (a) $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(5: 1), 23^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then BnBr , DMF, $0^{\circ} \mathrm{C}, 12 \mathrm{~h}$ (quant.); (b) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{H}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}(99 \%)$; (c) $\mathrm{NaN}_{3}, \mathrm{DMSO}, 23^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (d) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc}$, $23{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$ (quant., 2 steps); (e) $\mathrm{LiOH}, \mathrm{EtOH}, 23{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$ (quant.); (f) DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}(91 \%)$; (g) $\mathrm{H}_{2}, 5 \%$ $\mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc}, 23{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}(95 \%)$ (h) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$, EtOAc $23{ }^{\circ} \mathrm{C}$, 1 h (97\%)
in 91% yield by reaction with DCC and DMAP in DCM at room temperature for 12 h . The resulting diester was debenzylated by hydrogenation in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in EtOAc and fragment 33 was obtained in 97% yield.

With all essential pieces in hand, the macrolides of cryptophycin B and arenastatin A were constructed by linking fragment 25 with fragments 32 and 33, respectively, and subsequent macrolactamization between the D-tyrosine and β-amino acid segments. As summarized in Scheme 4, acid 32 was treated with 2,4,6-trichlorobenzoyl chloride and $i \mathrm{Pr}_{2} \mathrm{NEt}$ in THF at room temperature for 2 h to form the corresponding anhydride. After evaporation of the solvent, the anhydride was treated with fragment $\mathbf{2 5}$ and DMAP in benzene at ambient temperature for 1 h . Cryptophycin B precursor 34 was obtained in 84% yield. Treatment of 34 with a solution of 50% TFA in DCM for 1 h rendered the free amine (crude NMR), while the tert-butyl ester was inert to these conditions. Therefore, 34 was converted into cryptophycin $\mathrm{D}(4)$ by tert-butyl removal with neat TFA at room temperature for 2 h (crude NMR of the concentrated mixture showed loss of both tert-butyl groups) and subsequent macrolactamization under Yamaguchi conditions by treatment of the resulting amino acid with 2,4,6-trichlorobenzoyl chloride, $i \mathrm{Pr}_{2} \mathrm{NEt}$ and DMAP in benzene at room temperature for 1 h . This one-pot procedure afforded macrolide 4 in 74% yield. Spectroscopic and analytical data are in agreement with those reported $\left\{[\alpha]_{\mathrm{D}}^{23}=+36.2(c=0.72\right.$, $\mathrm{MeOH})$; ref. $\left.{ }^{[2]}[\alpha]_{\mathrm{D}}^{23}=+36.7(c=1.93, \mathrm{MeOH})\right\}$. The same coupling-deprotection-macrocyclization procedure was applied to fragment 33 to produce protected amino acid $\mathbf{3 5}$

($4, R=\mathrm{Me}$) 74%

Cryptophycin B (2, R = Me)
Arenastatin A (5, R = H)

Scheme 4. (a) $2,4,6-\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{COCl}, i \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{THF}, 2{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then 25, DMAP, benzene, $23^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (b) TFA, $23^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then 2,4,6$\left(\mathrm{Cl}_{3}\right) \mathrm{PhCOCl}, i \mathrm{Pr}_{2} \mathrm{NEt}$, DMAP, THF, $23{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then benzene, 23 ${ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (c) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{O})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-30$ to $23{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$
and deoxyarenastatin A (36) in 80% and 81% yield, respectively.

The epoxidation of the styryl double bond concluded the syntheses of cryptophycin B and arenastatin A. The most reliable and reproducable procedure previously published is the epoxidation with dimethyldioxirane. ${ }^{[21,29]}$ Accordingly, the treatment of cryptophycin D (4) with dimethydioxirane ${ }^{[47]}$ at $-30{ }^{\circ} \mathrm{C}$ for 2 h and room temperature for 10 h furnished cryptophycin B(2) in 87% yield as a $3: 1$ mixture of diastereomers (determined by ${ }^{1} \mathrm{H}$ NMR) (Scheme 4). Since both isomers could not be separated by flash column chromatography, clean separation of the major epoxide was accomplished by reversed phase HPLC (YMC-PACK ODAQ $5 \mathrm{~S} 120 \AA 4.6 \times 250 \mathrm{~mm}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 3: 1,1 \mathrm{~mL} /$ $\mathrm{min}) .{ }^{[33]}$ Retention times for 2 and its minor isomer were 31.58 and 37.20 min , respectively. Unfortunately, the minor isomer could not be obtained in pure form. Spectroscopic and analytical data for cryptophycin B are in agreement with those reported $\left\{[\alpha]_{\mathrm{D}}^{23}=+20.6(c=0.24\right.$, MeOH $)$; ref. $\left.{ }^{[2]}[\alpha]_{\mathrm{D}}^{23}=+20.4(c=0.54, \mathrm{MeOH})\right\}$. Epoxidation of deoxyarenastatin A (36) under the same conditions afforded arenastatin A (5) in 75% yield as a $3: 1$ mixture of diastereomers (determined by ${ }^{1} \mathrm{H}$ NMR). Spectroscopic and analytical data for arenastatin A are in agreement with
those reported $\left\{[\alpha]_{\mathrm{D}}^{23}=+48.1\left(c=0.09, \mathrm{CHCl}_{3}\right)\right.$; ref. ${ }^{[33]}[\alpha]$ $\left.{ }_{\mathrm{D}}^{23}=+48.7\left(c=0.87, \mathrm{CHCl}_{3}\right)\right\}$. In addition to the utilized epoxidation procedure, several other epoxidation protocols were tried. Shi's fructose-based dioxirane, ${ }^{[48-50]} N$-sulfonyloxaziridine, ${ }^{[51,52]}$ and Jacobsen's catalyst ${ }^{[53]}$ did not give a higher selectivity or any epoxy product at all. On the other hand, methyl(trifluoromethyl)dioxirane did epoxidize the olefin with comparable selectivities. ${ }^{[54,55]}$

The stereochemical outcome of the epoxidation with dimethyldioxirane could be rationalized according to Figure 3. The oxygen atom transfer from dimethyldioxirane to the olefin takes places by means of perpendicular approach of dimethyldioxirane. ${ }^{[56]}$ This orientation of the transition state benefits from a stabilizing interaction of an oxygen lone pair with the π^{*} orbital of the olefin. The sterically demanding isobutyl group is shielding the α-face of the double bond. This would favour an oxygen transfer from the β-face.

Cryptophycin B (2)
Arenastatin A (5) Arenastatin A (5)

Figure 3. Stereochemical model for epoxidation

Conclusion

In summary, high yielding total syntheses of the antitumor agents cryptophycin B and arenastatin A have been accomplished in a convergent manner. This is the first total synthesis of cryptophycin B. The syntheses utilized a highly stereoselective ester-derived syn-aldol reaction to control the absolute stereochemistry of the octadienoic acid fragment. Selective cleavage of a benzyl ether by use of a Lewis acid was achieved in presence of an acid-sensitive silyl ether group. The assembly of the macrolide fragments was accomplished by Yamaguchi- and Steglich-type esterification and amidation reactions. Ring-closing to the macrolides was performed by Yamaguchi lactamization. A stereoselective epoxidation installed the epoxy moieties of cryptophycin B and arenastatin A. Starting from 13 the overall yields for cryptophycin B and arenastatin A were 20 and 18%, respectively. The present synthesis provides convenient access to structural analogues of cryptophycins which are in great demand, considering the high clinical potential of cryptophycins.

Experimental Section

General: Melting points are uncorrected. Anhydrous solvents and reagents were obtained as follows: tetrahydrofuran by distillation from sodium and benzophenone, dichloromethane by distillation from CaH_{2}, triethylamine by distillation from CaH_{2}. All other solvents were of HPLC grade. Flash column chromatography was performed with Whatman 240-400 mesh silica gel under low pressure ($5-10 \mathrm{psi}$). Thin-layer chromatography (TLC) was carried out with E. Merck silica gel 60 F-254 plates. All starting materials are commercially available from Sigma-Aldrich ${ }^{\circledR}$.
(3E, $\mathbf{1}^{\prime} R, 2^{\prime} S$)-1'-[(p-Tolylsulfonyl)amino|indan-2'-yl 4-Phenylbut-3enoate (14): $\mathbf{1 3}(2.69 \mathrm{~g}, 17.5 \mathrm{mmol})$ was dissolved in DCM (200 mL) and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. p-Toluenesulfonyl chloride ($3.34 \mathrm{~g}, 17.5 \mathrm{mmol}$) and DMAP $(4.27 \mathrm{~g}, 35.0 \mathrm{mmol})$ were added and the mixture was stirred at room temperature for $1 \mathrm{~h} .(3 E)-4-$ Phenylbut-3-enoic acid ($2.20 \mathrm{~mL}, 17.5 \mathrm{mmol}$) and EDCI (3.36 g , 17.5 mmol) were added and after stirring at room temperature for 6 h , the reaction mixture was successively washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and NaHCO_{3}. Drying of the organic layer with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentration in vacuo yielded $\mathbf{1 4}(7.75 \mathrm{~g}, 98 \%)$ as a white solid. M.p. $105{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{23}=+3.82\left(c=4.30, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.84\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $7.36-7.20(\mathrm{~m}, 11 \mathrm{H}), 6.44\left(\mathrm{~d},{ }^{3} J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.19\left(\mathrm{dt},{ }^{3} J=\right.$ $\left.16.0,{ }^{3} J=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.60\left(\mathrm{~d},{ }^{3} \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.18(\mathrm{ddd}, 1$ $\left.\mathrm{H},{ }^{3} J=4.0,{ }^{3} J=4.0,{ }^{3} J=1.5 \mathrm{~Hz}\right), 5.05\left(\mathrm{dd},{ }^{3} J=10.5,{ }^{3} J=5.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 3 \mathrm{H}), 2.96\left(\mathrm{~d},{ }^{2} J=17.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.43(\mathrm{~s}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=171.0,144.3,140.1,139.0$, $138.3,137.1,134.1,130.4,129.1,129.0,128.1,127.9,127.3,126.7$, $125.5,124.8,121.6,75.5,60.0,38.3,37.9,22.0 \mathrm{ppm}$. IR (film): $\tilde{v}=$ 3282 (br. s), 1738 (s), 1598 (w), 1447 (m), 1435 (s), 1335 (s), 1161 (s), 1093 (s) cm^{-1}. HRMS (FAB): m / z calcd. $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NNaO}_{4} \mathrm{~S}[\mathrm{M}$ $+\mathrm{Na}^{+}$] 470.1402, found 470.1404. LRMS (FAB): $m / z(\%)=470.0$ (52), 329.0 (27), 277.1 (19), 176.1 (100), 154.1 (68), 136.1 (51), 117.1 (29), 76.9 (25).
($2 R, 3 E, 1^{\prime} S, 1^{\prime \prime} R, 2^{\prime \prime} S$) $-1^{\prime \prime}-\left[(p-T o l y l s u l f o n y)\right.$)amino]indan- $\mathbf{2}^{\prime \prime}-$ yl $2-\left[3^{\prime}-\right.$ (Benzyloxy)- 1^{\prime}-hydroxypropyl]-4-phenylbut-3-enoate (15): To a solution of $\mathbf{1 4}(2.00 \mathrm{~g}, 4.47 \mathrm{mmol})$ in $\mathrm{DCM}(50 \mathrm{~mL})$ was added TiCl_{4} (1.0 m in DCM, $4.50 \mathrm{~mL}, 4.47 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After stirring for $15 \mathrm{~min}, i \mathrm{Pr}_{2} \mathrm{NEt}(2.57 \mathrm{~mL}, 14.7 \mathrm{mmol})$ was added dropwise at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred at room temperature for 1 h . It was cooled to $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{TiCl}_{4}(1.0 \mathrm{~m}$ in $\mathrm{DCM}, 8.10 \mathrm{~mL}$, 8.04 mmol) was added at once. Subsequently, 3-(benzyloxy)propionaldehyde $(1.25 \mathrm{~mL}, 8.04 \mathrm{mmol})$ was added dropwise over a period of 5 min . After stirring at $-78^{\circ} \mathrm{C}$ for 20 min , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo (crude NMR showed $>99 \% d e)$ and chromatographic purification (20% EtOAc in hexane) yielded $15(2.69 \mathrm{~g}, 98 \%)$ as a white solid. M.p. $172^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{23}=$ $+32.5\left(c=2.83, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.81$ $\left(\mathrm{d},{ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.38-7.19(\mathrm{~m}, 16 \mathrm{H}), 6.47\left(\mathrm{~d},{ }^{3} J=16.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 6.44\left(\mathrm{~d},{ }^{3} \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.25\left(\mathrm{dd},{ }^{3} \mathrm{~J}=16.0,{ }^{3} \mathrm{~J}=9.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 5.40\left(\mathrm{dd},{ }^{3} J=4.5,{ }^{3} J=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.02\left(\mathrm{dd},{ }^{3} J=\right.$ $\left.10.0,{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.25\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.0,{ }^{3} \mathrm{~J}=3.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 3 \mathrm{H}), 3.19\left(\mathrm{dd},{ }^{3} J=10.0,{ }^{3} J=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.11\left(\mathrm{dd},{ }^{2} J=17.0,{ }^{3} J=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.94\left(\mathrm{~d},{ }^{2} J=17.0 \mathrm{~Hz}, 1\right.$ H), $2.43(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=172.0,143.9,140.6,138.9,138.6,138.2$, $136.9,135.1,130.2,129.1,129.0,128.9,128.8,128.4,128.3,127.8$, $127.4,126.9,125.3,124.9,123.2,76.0,73.8,72.2,68.7,60.3,56.2$, 37.7, 34.6, 22.0 ppm . IR (film): $\tilde{v}=3487$ (br. s), 3274 (br. s), 3060 (m), 3028 (m), 2922 (m), 2867 (m), 1733 (s), 1598 (w), 1451 (s),

1335 (s), 1160 (s), 1119 (w), 1094 (m), 1032 (m), 972 (m), 814 (m), 748 (s) cm^{-1}. HRMS (FAB): m/z calcd. $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{NNaO}_{6} \mathrm{~S}[\mathrm{M}+$ Na^{+}] 634.2239, found 634.2224. LRMS (FAB): $m / z(\%)=634.2$ (50), 329.1 (36), 176.1 (100), 154.0 (58), 136.1 (42), 91.1 (49).
(3S,4R,5E)-1-(Benzyloxy)-4-methyl-6-phenylhex-5-en-3-ol (16): To a solution of $\mathbf{1 5}(2.62 \mathrm{~g}, 4.28 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added LAH ($0.34 \mathrm{~g}, 8.56 \mathrm{mmol}$). The reaction mixture was stirred for 1 h and aqueous $\mathrm{NaHSO}_{4}(2.5 \mathrm{~m})$ was added until the solution turned clear. The organic layer was decanted and the aqueous phase was extracted once again with diethyl ether. The combined ether phases were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and the residue was chromatographically purified (30% EtOAc in hexane) to yield ($2 S, 3 S$)-5-(benzyloxy)-2-[(E)-styryl]pentane-1,3-diol $(1.23 \mathrm{~g}, 92 \%)$ as a white solid. M.p. $69^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{23}=+12.7(c=0.55$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \cdot{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.44-7.33(\mathrm{~m}, 10 \mathrm{H})$, $6.52\left(\mathrm{~d},{ }^{3} J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.35\left(\mathrm{dd},{ }^{3} J=16.0,{ }^{3} J=9.5 \mathrm{~Hz}, 1\right.$ H), $4.54(\mathrm{~s}, 2 \mathrm{H}), 4.19\left(\mathrm{~d},{ }^{3} J=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.89\left(\mathrm{dd},{ }^{3} J=11.0\right.$, $\left.{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.82\left(\mathrm{dd},{ }^{3} J=11.0,{ }^{3} J=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.74(\mathrm{~m}$, $1 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{br} . \mathrm{s}, 2 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H})$, $1.73(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=138.4,137.6$, 133.9, 129.0, 128.9, 128.2, 128.1, 127.8, 127.0, 126.7, 73.7, 72.4, $69.4,65.0,51.1,35.0 \mathrm{ppm}$. IR (film): $\tilde{v}=3393$ (br. s), 3060 (w), 3027 (w), 2923 (m), 2869 (m), 1599 (w), 1452 (m), 1364 (m), 1093 (s), 1028 (m), 971 (m), 749 (s) cm^{-1}. HRMS (CI): m/z calcd. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$313.1804, found 313.1809. LRMS (CI): m / z $(\%)=330.2(75), 313.2$ (100). Phenyllithium (1.8 м in cyclohexane/ diethyl ether, $3.90 \mathrm{~mL}, 7.04 \mathrm{mmol}$) was added dropwise to a solution of ($2 S, 3 S$)-5-(benzyloxy)-2-[(E)-styryl]pentane-1,3-diol (2.20 g , $7.04 \mathrm{mmol})$ in THF (60 mL) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and $\mathrm{TsCl}(1.34 \mathrm{~g}, 7.04 \mathrm{mmol})$ was added in one portion. The reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ over a period of 30 min and was subsequently treated with LAH ($0.85 \mathrm{~g}, 21.1 \mathrm{mmol}$). After 20 min , the reaction was quenched and the mixture washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was chromatographically purified ($20 \% \mathrm{EtOAc}$ in hexane) to give $16(2.01 \mathrm{~g}, 96 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}^{23}=+25.2\left(c=6.61, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.41-7.20(\mathrm{~m}, 10 \mathrm{H}), 6.47\left(\mathrm{~d},{ }^{3} J=\right.$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.27\left(\mathrm{dd},{ }^{3} J=16.0,{ }^{3} J=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.57(\mathrm{~s}, 2$ H), $3.84-3.70(\mathrm{~m}, 3 \mathrm{H}), 2.70$ (br. s, 1 H$), 2.45$ (dd, ${ }^{3} J=6.5,{ }^{3} \mathrm{~J}=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 2 \mathrm{H}), 1.19\left(\mathrm{~d},{ }^{3} J=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=138.4,137.9,132.5,131.2,128.9$, $128.2,128.1,127.5,126.6,126.7,75.1,73.8,69.7,43.9,34.3,16.9$ ppm. IR (film): $\tilde{v}=3448$ (br. s), 3060 (m), 3027 (m), 2961 (m), 2926 (m), 2869 (m), 1595 (m), 1495 (m), 1453 (s , 1364 (m), 1095 (s), 1028 (m), $970(\mathrm{~m}), 748$ (s) cm^{-1}. HRMS (CI): m / z calcd. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$297.1855, found 297.1846. LRMS (CI): m / z $(\%)=314.2$ (100), 297.3 (81).
(1S,2R,3E)-(\{1-[2'-(Benzyloxy)ethyl]-2-methyl-4-phenylbut-3-enyl\}oxy)triisopropylsilane (17): To a solution of $16(1.60 \mathrm{~g}, 5.40 \mathrm{mmol})$ and 2,6-lutidine ($1.26 \mathrm{~mL}, 10.8 \mathrm{mmol}$) in DCM $(40 \mathrm{~mL})$ was added TIPSOTf ($2.18 \mathrm{~mL}, 8.10 \mathrm{mmol}$). The resulting solution was stirred at room temperature for 20 min , concentrated in vacuo and chromatographically purified ($10 \% \mathrm{EtOAc}$ in hexanes) to furnish $\mathbf{1 7}$ $(2.42 \mathrm{~g}, 99 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{23}=+41.8\left(c=3.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.42-7.35(\mathrm{~m}, 9 \mathrm{H}), 7.28(\mathrm{t}$, $\left.{ }^{3} J=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.44\left(\mathrm{~d},{ }^{3} J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.30\left(\mathrm{dd},{ }^{3} J=16.0\right.$, $\left.{ }^{3} J=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.56\left(\mathrm{q},{ }^{3} J=12.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.15(\mathrm{~m}, 1 \mathrm{H}), 3.64$ $\left(\mathrm{t},{ }^{3} J=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.63(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 1.24\left(\mathrm{~d},{ }^{3} J=\right.$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 21 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta=139.0,138.2,133.0,130.3,128.9,128.8,128.1,127.9,127.4$, $126.5,73.9,73.4,67.9,43.3,34.4,18.8,15.6,13.4 \mathrm{ppm}$. IR (film):
$\tilde{v}=3060(\mathrm{~m}), 3027(\mathrm{~m}), 2943(\mathrm{~s}), 2866(\mathrm{~s}), 1596(\mathrm{~m}), 1493(\mathrm{~m})$, $1463(\mathrm{~s}), 1365(\mathrm{~m}), 1263(\mathrm{~m}), 1104(\mathrm{~s}), 1068(\mathrm{~m}), 968(\mathrm{~m}), 883(\mathrm{~m})$, $747(\mathrm{~m}) \mathrm{cm}^{-1}$. HRMS (FAB): m / z calcd. $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{NaSi}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$ 475.3008, found 475.2994. LRMS (FAB): $m / z(\%)=321.3$ (20), 215.2 (42), 157.2 (60), 131.2 (78), 115.2 (72), 91.1 (100), 73.0 (86), 60.9 (67).
($3 R, 4 R, 5 E$)-3-Bromo-4-methyl-6-phenylhex-5-en-1-ol (18): A solution of $\mathbf{1 7}(30.0 \mathrm{mg}, 66.3 \mu \mathrm{~mol})$ in DCM $(2 \mathrm{~mL})$ was cooled to 0 ${ }^{\circ} \mathrm{C} . \mathrm{BBr}_{3}(1.0 \mathrm{~m}$ in $\mathrm{DCM}, 100 \mu \mathrm{~L}, 99.5 \mu \mathrm{~mol})$ was added dropwise and after 5 min of stirring at $0^{\circ} \mathrm{C}$, the reaction was quenched and the mixture washed with saturated aqueous NaHCO_{3}, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Chromatographic purification ($10 \% \mathrm{EtOAc}$ in hexanes) of the residue furnished $\mathbf{1 8}(8.0 \mathrm{mg}, 45 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}^{23}=+40.5\left(c=0.85, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.40\left(\mathrm{~d},{ }^{3} J=9.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.33\left(\mathrm{dd},{ }^{3} J=\right.$ $\left.10.5,{ }^{3} J=9.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.26\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.50\left(\mathrm{~d},{ }^{3} J=\right.$ $20.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.13\left(\mathrm{dd},{ }^{3} J=20.0,{ }^{3} J=11.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.32(\mathrm{dtd}$, $\left.1 \mathrm{H},{ }^{3} J=8.5,{ }^{3} J=8.5,{ }^{3} J=3.5 \mathrm{~Hz}\right), 3.76(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~m}, 1$ H), $2.50\left(\mathrm{qd},{ }^{3} J=8.5,{ }^{3} J=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.90-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.70$ $\left(\mathrm{d},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=$ 137.3, 134.0, 129.2, 129.0, 128.0, 126.7, 60.8, 56.8, 47.4, 37.1, 24.7 ppm.
(3S,4R,5E)-4-Methyl-6-phenyl-3-[(triisopropylsilanyl)oxy]hex-5-enal (19): To a solution of $\mathbf{1 7}(1.30 \mathrm{~g}, 2.87 \mathrm{mmol})$ in $\mathrm{DCM}(50 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.00 \mathrm{~g})$. The resulting mixture was stirred at room temperature for 20 min and was then cooled to $0^{\circ} \mathrm{C} . \mathrm{BBr}_{3}(1.0 \mathrm{~m}$ in DCM, $3.12 \mathrm{~mL}, 3.12 \mathrm{mmol}$) was added dropwise and after 5 min of stirring at $0{ }^{\circ} \mathrm{C}$, the reaction was quenched and the mixture washed with saturated aqueous NaHCO_{3}, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Chromatographic purification ($10 \% \mathrm{EtOAc}$ in hexanes) of the residue furnished ($3 S, 4 R, 5 E$)-4-methyl-6-phenyl3 -[(triisopropylsilanyl)oxy]hex-5-en-1-ol ($865 \mathrm{mg}, 83 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}^{23}=+33.3\left(c=0.63, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \cdot{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta=7.37\left(\mathrm{~d},{ }^{3} J=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.33\left(\mathrm{dd},{ }^{3} J=10.5\right.$, $\left.{ }^{3} J=9.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.23\left(\mathrm{dd},{ }^{3} J=8.5,{ }^{3} J=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.42(\mathrm{~d}$, $\left.{ }^{3} J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.21\left(\mathrm{dd},{ }^{3} J=16.0,{ }^{3} J=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.12$ $(\mathrm{m}, 1 \mathrm{H}), 3.80\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.65(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H})$, $1.19\left(\mathrm{~d},{ }^{3} J=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.13(\mathrm{~s}, 21 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}): \delta=138.0,132.9,130.4,128.9,127.5,126.4,75.0,61.0$, $43.2,35.9,18.6,14.9,13.4 \mathrm{ppm}$. IR (film): $\tilde{v}=3352$ (br. s), 3025 (m), 2943 (s), 2866 (s), 1600 (w), 1463 (s), 1383 (s), 1246 (m), 1102 (s), 1061 (s), 968 (m), 883 (s), 748 (m) cm^{-1}. HRMS (CI): m/z calcd. $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]$363.2719, found 363.2693. LRMS $(\mathrm{CI}): m / z(\%)=363.4(43), 206.2(52), 189.2$ (100), 171.2 (30). Tо a solution of $(3 S, 4 R, 5 E)$-4-methyl-6-phenyl-3-[(triisopropyl-silanyl)oxy]hex-5-en-1-ol ($800 \mathrm{mg}, 2.21 \mathrm{mmol}$) in DCM (100 mL) was added molecular sieves $(4 \AA)(2.50 \mathrm{~g})$. The resulting mixture was stirred at room temperature for 10 min and PCC (713 mg , 3.31 mmol) was added portionwise. After 10 min of stirring at room temperature, the reaction mixture was filtered through a pad of Celite ${ }^{\ominus}$ and the resulting filtrate was concentrated in vacuo. Chromatographic purification (50% diethyl ether in hexanes) of the residue afforded $19(781 \mathrm{mg}, 98 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{23}=+27.1$ $\left(c=1.62, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=9.85\left(\mathrm{t},{ }^{3} \mathrm{~J}=\right.$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.26\left(\mathrm{dd},{ }^{3} J=8.5,{ }^{3} J=8.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 6.42\left(\mathrm{~d},{ }^{3} J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.15\left(\mathrm{dd},{ }^{3} J=16.0,{ }^{3} J=7.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 4.50\left(\mathrm{td},{ }^{3} J=6.0,{ }^{3} J=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.66(\mathrm{~m}, 1 \mathrm{H}), 2.61$ ($\mathrm{td},{ }^{3} J=4.0,{ }^{3} J=2.0 \mathrm{~Hz}, 2 \mathrm{H}$), $1.20\left(\mathrm{~d},{ }^{3} J=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.11$ $(\mathrm{s}, 21 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=202.3$, 137.7, 131.8, 131.3, 129.0, 127.7, 126.5, 72.0, 48.4, 43.8, 18.6, 14.8, 13.1 ppm. IR (film): $\tilde{v}=3027$ (w), 2943 (s), 2867 (s), 1725 (s), 1601 (w), 1463 (s), 1384 (m), 1284 (m), 1100 (s), 1068 (s), 883 (s), 749 (m)
cm^{-1}. HRMS (CI): m/z calcd. $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right] 361.2563$, found 361.2570. LRMS (CI): $m / z(\%)=393.4(100)\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, 309.2 (83), 192.3 (62), 75.1 (74).
(2E,5S,6R,7E)-Ethyl 6-Methyl-8-phenyl-5-[(triisopropylsilanyl)oxy]-octa-2,7-dienoate (20): To a dispersion of $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $306 \mathrm{mg}, 12.8 \mathrm{mmol}$) in THF (15 mL) was added triethyl phosphonoacetate ($633 \mu \mathrm{~L}, 3.19 \mathrm{mmol}$) and the resulting mixture was stirred at room temperature for 10 min . Then, the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and $19(1.15 \mathrm{~g}, 3.19 \mathrm{mmol})$ in THF (10 mL) was added. After stirring at $0^{\circ} \mathrm{C}$ for 10 min , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo and chromatographic purification ($5 \% \mathrm{EtOAc}$ in hexane) of the residue yielded $20(1.27 \mathrm{mg}, 92 \%)$ as a single isomer by ${ }^{1} \mathrm{H}$ NMR and as colorless oil. $[\alpha]_{\mathrm{D}}^{23}=+73.7\left(c=2.78, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta=7.39\left(\mathrm{~d},{ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.34\left(\mathrm{dd},{ }^{3} J=8.0,{ }^{3} J=\right.$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26\left(\mathrm{dd},{ }^{3} J=8.0,{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.03\left(\mathrm{dt},{ }^{3} J=\right.$ $\left.16.0,{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.43\left(\mathrm{~d},{ }^{3} J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.24\left(\mathrm{dd},{ }^{3} J=\right.$ $\left.16.0,{ }^{3} J=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.89\left(\mathrm{~d},{ }^{3} J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.22\left(\mathrm{q},{ }^{3} J=\right.$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{t}$, $\left.{ }^{3} J=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.21\left(\mathrm{~d},{ }^{3} J=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.14(\mathrm{~s}, 21 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=166.8,146.4,138.0,132.2$, $130.9,128.9,127.5,126.5,123.7,75.9,60.6,43.3,38.0,18.7,16.2$, 14.7, 13.3 ppm . IR (film): $\tilde{v}=3026$ (w), 2943 (s), 2867 (s), 1723 (s), 1655 (m), 1600 (w), 1463 (s), 1367 (m), 1264 (m), 1169 (m), 1101 (s), 1045 (s), 882 (s), 747 (m) cm ${ }^{-1}$. HRMS (FAB): m / z calcd. $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{NaSi}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$453.2801, found 453.2783. LRMS (FAB): $m / z(\%)=430.3(10), 387.3$ (39), 317.3 (33), 299.3 (95), 131.2 (65), 73.0 (75), 59.0 (100).
($2 E, 5 S, 6 R, 7 E$)-6-Methyl-8-phenyl-5-[(triisopropylsilanyl)oxylocta-2,7-dienonic Acid (21). From Ester 20: A mixture of 20 (1.10 g , $2.55 \mathrm{mmol})$ and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(320 \mathrm{mg}, 7.66 \mathrm{mmol})$ in $\mathrm{EtOH}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was vigorously stirred at room temperature for 2 h . After the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the water layer was acidified with concentrated $\mathrm{HCl}(\mathrm{pH}=$ 3) and extracted with DCM. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and chromatographically purified (25% EtOAc in hexane) to yield $21(954 \mathrm{mg}, 94 \%)$ as a white solid. From Aldehyde 19: A solution of $19(160 \mathrm{mg}, 0.42 \mathrm{mmol})$ and malonic acid ($44.0 \mathrm{mg}, 0.42 \mathrm{mmol}$) in $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL})$ and benzene (3 mL) was heated under reflux for 4 h . The reaction mixture was taken up with diethyl ether, washed with 20% aqueous HCl and subsequently dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo and chromatographic purification yielded $21(60 \mathrm{mg}, 33 \%)$ as a white solid. M.p. $88^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}^{23}=+83.8\left(c=7.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta=7.39\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.34\left(\mathrm{dd},{ }^{3} J=8.0,{ }^{3} \mathrm{~J}=\right.$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26\left(\mathrm{dd},{ }^{3} J=8.0,{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.15\left(\mathrm{dt},{ }^{3} J=\right.$ $\left.16.0,{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.43\left(\mathrm{~d},{ }^{3} J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.23\left(\mathrm{dd},{ }^{3} J=\right.$ $\left.16.0,{ }^{3} J=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.90\left(\mathrm{~d},{ }^{3} J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.05(\mathrm{~m}, 1$ H), $2.57(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~m}, 2 \mathrm{H}), 1.20\left(\mathrm{~d},{ }^{3} J=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.14$ $(\mathrm{s}, 21 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=172.2,149.5$, $137.9,132.1,131.0,128.9,127.5,126.5,123.0,75.8,43.4,38.1,18.6$, 16.2, 13.2 ppm . IR (film): $\tilde{v}=3025$ (w), 2943 (s), 2866 (s), 1698 (s), 1652 (s), 1463 (m), 1420 (m), 1103 (s), 882 (s), 747 (m) cm^{-1}. HRMS (FAB): m / z calcd. $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{NaO}_{3} \mathrm{Si}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 425.2488$, found 425.2502. LRMS (FAB): $m / z(\%)=447.2(54), 425.2$ (20) $\left[\mathrm{M}+\mathrm{Na}^{+}\right], 131.1$ (34), 116.1 (38), 87.0 (50), 73.5 (84), 70.2 (100).
(R)-tert-Butyl 2-amino-3-(4-methoxyphenyl)propionate (23): A mixture of $22(1.00 \mathrm{~g}, 3.17 \mathrm{mmol}), \mathrm{Me}_{2} \mathrm{SO}_{4}(1.38 \mathrm{~mL}, 14.3 \mathrm{mmol})$, $\mathrm{NaOH}(960 \mathrm{mg}, 23.8 \mathrm{mmol})$, EtOH (50 mL) and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was vigorously stirred under reflux for 3 h . After the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the water layer was acidi-
fied with concentrated $\mathrm{HCl}(\mathrm{pH}=3)$ and extracted with diethyl ether. The organic layer was washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to yield $(R)-2-\{[($ benzyloxy $)-$ carbonyl]amino\}-3-(4-methoxyphenyl)propionic acid (950 mg , $91 \%)$ as a white solid. M.p. $111-112{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{23}=-37.8(c=1.66$, $\left.\mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.38(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{~d}$, $\left.{ }^{3} J=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.85\left(\mathrm{~d},{ }^{3} J=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.22\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.13\left(\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.68\left(\mathrm{dd},{ }^{3} J=8.5,{ }^{3} J=6.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.17\left(\mathrm{dd},{ }^{2} J=14.0,{ }^{3} J=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.09$ $\left(\mathrm{dd},{ }^{2} J=14.0,{ }^{3} J=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}): \delta=176.6,159.2,156.3,136.5,130.8,129.0,128.7$, 128.6, 127.7, 114.5, 67.6, 55.6, 55.1, 37.3 ppm . IR (film): $\tilde{v}=3330$ (br. s), 1715 (s), 1514 (s), 1248 (s), 1057 (m), 1036 (m), 738 (m) cm^{-1}. HRMS (CI): m/z calcd. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right]$330.1341, found 330.1351. LRMS (CI): $m / z(\%)=347.2(100)\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]$, $330.2(40)\left[\mathrm{M}+\mathrm{H}^{+}\right], 286.2$ (43), 196.1 (23). To a solution of (R) -2-\{[(benzyloxy)carbonyl]amino\}-3-(4-methoxyphenyl)propionic acid $(1.27 \mathrm{~g}, 3.87 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ were successively added $i \operatorname{Pr}_{2} \mathrm{NEt}(674 \mu \mathrm{~L}, 3.87 \mathrm{mmol})$ and 2,4,6-trichlorobenzyl chloride ($604 \mu \mathrm{~L}, 3.87 \mathrm{mmol}$). After 30 min of stirring, the solvent was evaporated and the residue was dissolved in toluene $(20 \mathrm{~mL}) . t \mathrm{BuOH}$ ($740 \mu \mathrm{~L}, 7.74 \mathrm{mmol}$) and DMAP $(1.89 \mathrm{~g}, 15.5 \mathrm{mmol})$ were added and the mixture was stirred for a further 3 h . The reaction mixture was entirely transferred onto a column and chromatographically purified (25% EtOAc in hexane) to yield (R)-tert-butyl 2-\{[(benzyloxy)carbonyl]amino\}-3-(4-methoxyphenyl)propionate
($946 \mathrm{mg}, 64 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}^{23}=-17.9\left(c=9.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.38(\mathrm{~m}, 5 \mathrm{H}), 7.09\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.83\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.26\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1\right.$ H), $5.13\left(\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.52\left(\mathrm{dd},{ }^{3} J=8.5,{ }^{3} J=6.5 \mathrm{~Hz}, 1\right.$ H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.06\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.44(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=171.1,159.0,156.0,136.8,130.9$, $128.9,128.9,128.5,128.4,114.2,82.6,67.2,55.7,55.6,37.9,28.4$ ppm. IR (film): $\tilde{v}=3343$ (br. s), 2977 (m), 2934 (w), 2835 (w), 1723 (s), 1613 (m), 1513 (s), 1368 (m), 1249 (s), 1155 (s), 1056 (m), $1038(\mathrm{~m}), 740(\mathrm{~m}) \mathrm{cm}^{-1}$. HRMS (FAB): m / z calcd. $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NNaO}_{5}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$408.1787, found 408.1796. LRMS (FAB): $m / z(\%)=$ 386.2 (14) $\left[\mathrm{M}+\mathrm{H}^{+}\right], 330.1$ (81), 286.1 (95), 234.1 (82), 178.1 (28), 154.1 (34), 121.1 (79), 91.0 (100), 60.2 (50). A mixture of (R)-tertbutyl 2-\{[(benzyloxy)carbonyl]amino \}-3-(4-methoxyphenyl)propionate ($640 \mathrm{mg}, 1.66 \mathrm{mmol}$), $5 \% \mathrm{Pd} / \mathrm{C}(20 \mathrm{mg})$ and $\mathrm{MeOH}(20 \mathrm{~mL})$ was stirred for 2 h under H_{2} and filtered through a pad of Celite ${ }^{\circledR}$. Concentration of the filtrate in vacuo yielded $\mathbf{2 3}$ ($406 \mathrm{mg}, 95 \%$) as a white solid. M.p. $176{ }^{\circ} \mathrm{C}$ (gas emission and formation of new solid). $[\alpha]_{\mathrm{D}}^{23}=+71.3\left(c=0.08, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta=7.14\left(\mathrm{~d},{ }^{3} J=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.86\left(\mathrm{~d},{ }^{3} J=8.5 \mathrm{~Hz}, 2\right.$ H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.58\left(\mathrm{dd},{ }^{3} J=7.5,{ }^{3} J=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.00(\mathrm{dd}$, $\left.{ }^{2} J=14.0,{ }^{3} J=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.81\left(\mathrm{dd},{ }^{2} J=14.0,{ }^{3} J=8.0 \mathrm{~Hz}, 1\right.$ H), 1.68 (br. s, 2 H), 1.46 ($\mathrm{s}, 9 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}): \delta=174.7,158.8,130.8,129.8,114.3,81.6,56.8,55.7$, 40.6, 28.4 ppm . HRMS (CI): m/z calcd. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 252.1600, found 252.1598. LRMS (FAB): $m / z=252.3$ (100) [M + $\left.\mathrm{H}^{+}\right], 196.1$ (35).
($2 R, 2^{\prime} E, 5^{\prime} S, 6^{\prime} R, 7^{\prime} E$)-tert-Butyl 3-(4-Methoxyphenyl)-2-(\{6'-meth-yl-8'-phenyl-5'-I(triisopropylsilanyl)oxylocta-2', $\mathbf{7}^{\prime}$-dienoyl\}amino)propionate (24): A solution of $21(700 \mathrm{mg}, 1.74 \mathrm{mmol}), \mathbf{2 3}(437 \mathrm{mg}$, 1.74 mmol), DMAP ($105 \mathrm{mg}, 0.87 \mathrm{mmol}$) and EDCI (334 mg , 1.74 mmol) was stirred at room temperature for 12 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo and chromatographic purification of the residue (15% EtOAc in hexane) yielded $24\left(931 \mathrm{mg}, 83 \%\right.$) as a white solid. M.p. $64-65{ }^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}^{23}=+29.9\left(c=0.87, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=$
$7.34-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.22\left(\mathrm{dd},{ }^{3} J=8.0,{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.04(\mathrm{~d}$, $\left.{ }^{3} J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.83\left(\mathrm{dt},{ }^{3} J=16.0,{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.80(\mathrm{~d}$, $\left.{ }^{3} J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.36\left(\mathrm{~d},{ }^{3} J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.22\left(\mathrm{dd},{ }^{3} J=16.0\right.$, $\left.{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.87\left(\mathrm{~d},{ }^{3} J=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.78\left(\mathrm{~d},{ }^{3} J=16.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.80\left(\mathrm{ddd}, 1 \mathrm{H},{ }^{3} J=5.6,{ }^{3} \mathrm{~J}=4.0,{ }^{3} \mathrm{~J}=1.6 \mathrm{~Hz}\right), 3.96(\mathrm{~m}, 1$ H), $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.07\left(\mathrm{~d},{ }^{3} J=5.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.51\left(\mathrm{qdd}, 1 \mathrm{H},{ }^{3} J=\right.$ $\left.7.2,{ }^{3} J=8.0,{ }^{3} J=7.3,{ }^{3} J=2.6 \mathrm{~Hz}\right), 2.40(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$, $1.15\left(\mathrm{~d},{ }^{3} J=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.09(\mathrm{~s}, 21 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}): \delta=171.2,165.2,159.0,142.1,138.1,132.3,131.0$, $130.8,128.9,128.5,127.4,126.5,125.7,114.2,82.8,76.0,55.6,53.9$, $42.9,38.2,37.5,28.4,18.7,17.1,13.3 \mathrm{ppm}$. IR (film): $\tilde{v}=3299$ (br. m), 2942 (s), 2866 (s), 1733 (s), 1671 (s), 1513 (s), 1463 (m), 1367 (s), 1249 (s), 1155 (s), 1109 (m), 1036 (s), 882 (m), 749 (m) cm^{-1}. HRMS (FAB): m / z calcd. $\mathrm{C}_{38} \mathrm{H}_{57} \mathrm{NNaO}_{5} \mathrm{Si}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 658.3904$, found 658.3912. LRMS (FAB): $m / z(\%)=658.4(82)\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, 602.4 (45), 176.1 (62), 122.1 (53), 116.1 (52), 88.0 (53), 60.9 (100).
($\left.2 R, 2^{\prime} E, 5^{\prime} S, 6^{\prime} R, 7^{\prime} E\right)$-tert-Butyl $\quad 2-\left[\left(5^{\prime}-H y d r o x y-6^{\prime}\right.\right.$-methyl- $\mathbf{8}^{\prime}$-phe-nylocta-2', 7^{\prime}-dienoyl)aminol-3-(4-methoxyphenyl)propionate (25): A solution of $24(440 \mathrm{mg}, 0.69 \mathrm{mmol})$ and TBAF $(690 \mu \mathrm{~L}, 0.69 \mathrm{mmol})$ in THF (30 mL) was stirred at room temperature for 6 h . The reaction mixture was concentration in vacuo, the residue was redissolved in DCM and filtered through a short pad of MgSO_{4}. Evaporation of solvent yielded 25 ($329 \mathrm{mg}, 99 \%$) as a highly viscous oil. $[\alpha]_{\mathrm{D}}^{23}=-13.3\left(c=0.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):$ $\delta=7.37\left(\mathrm{~d},{ }^{3} J=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.31\left(\mathrm{dd},{ }^{3} J=7.4,{ }^{3} J=7.4 \mathrm{~Hz}, 2\right.$ H), $7.25\left(\mathrm{dd},{ }^{3} J=7.8,{ }^{3} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.06\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 2\right.$ H), $6.85\left(\mathrm{dt},{ }^{3} J=16.0,{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.80\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 2\right.$ H), $6.48\left(\mathrm{~d},{ }^{3} J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.12\left(\mathrm{dd},{ }^{3} J=16.0,{ }^{3} J=8.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.91\left(\mathrm{~d},{ }^{3} J=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.82\left(\mathrm{~d},{ }^{3} J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.80$ (ddd, $\left.1 \mathrm{H},{ }^{3} J=5.6,{ }^{3} J=4.0,{ }^{3} J=1.6 \mathrm{~Hz}\right), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~m}$, $1 \mathrm{H}), 3.08\left(\mathrm{~d},{ }^{3} J=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.46-2.33(\mathrm{~m}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$, $1.14\left(\mathrm{~d},{ }^{3} J=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=$ $171.1,165.2,159.0,141.7,137.5,132.3,131.4,131.0,129.0,128.5$, $127.8,126.6,126.3,114.2,82.8,74.2,55.6,54.0,43.6,37.3,37.5$, 28.4, 17.3 ppm . IR (film): $\tilde{v}=3340$ (br. s), 2960 (m), 2925 (s), 2853 (s), 1730 (s), 1670 (s), 1635 (s), 1513 (s), 1457 (m), 1368 (s), 1249 (s), 1154 (s), 1036 (m), 751 (w) cm^{-1}. HRMS (FAB): m / z calcd. $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{NNaO}_{5}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 502.2569$, found 502.2558. LRMS $(\mathrm{FAB}): m / z(\%)=446.3$ (36), 413.4 (25), 176.1 (100), 91.9 (30), 59.1 (29).
(S)-Benzyl 2-Hydroxy-4-methylpentanoate (27): ${ }^{[45]}$ To a solution of $26(2.77 \mathrm{~g}, 21.0 \mathrm{mmol})$ in $\mathrm{MeOH}(40 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$ was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.42 \mathrm{~g}, 10.5 \mathrm{mmol})$. After stirring at room temperature for 30 min , the reaction mixture was concentrated to dryness and the residue was redissolved in DMF. The solution was cooled to $0^{\circ} \mathrm{C}$, benzyl bromide $(2.5 \mathrm{~mL}, 20 \mathrm{mmol})$ was added and the resulting mixture was stirred at room temperature for 12 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with EtOAc and the organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of solvent yielded 27 (4.32 g , quant.) as colorless oil. $[\alpha]_{\mathrm{D}}^{23}=$ $-15.5\left(c=1.02, \mathrm{CHCl}_{3}\right)\left\{\operatorname{ref}^{[45]}[\alpha]_{\mathrm{D}}^{23}=-15.2\left(c=2.96, \mathrm{CHCl}_{3}\right)\right\}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.40(\mathrm{~m}, 5 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 4.27$ $\left(\mathrm{dd},{ }^{3} J=8.0,{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.62($ br. s, 1 H$), 1.92(\mathrm{~m}, 1 \mathrm{H})$, $1.60(\mathrm{~m}, 2 \mathrm{H}), 0.97\left(\mathrm{~d},{ }^{3} J=5.5 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.96\left(\mathrm{~d},{ }^{3} J=5.5 \mathrm{~Hz}, 3\right.$ H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=176.2,135.6,129.1$, 129.0, 128.7, 69.6, 67.7, 43.8, 24.8, 23.7, 22.0 ppm.
(R)-Methyl 3-\{[(tert-Butoxy)carbonyl]amino\}-2-methylpropionate (29): To a solution of $\mathbf{2 8}(2.55 \mathrm{~g}, 21.6 \mathrm{mmol})$ in $\mathrm{DCM}(50 \mathrm{~mL})$ were added $\mathrm{TsCl}(4.12 \mathrm{~g}, 21.6 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(3.01 \mathrm{~mL}, 21.6 \mathrm{mmol})$ and DMAP ($1.32 \mathrm{~g}, 10.8 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring at room temperature for 1 h , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation
of the solvent furnished (R)-methyl 2-methyl-3-[(p-tolylsulfony1)oxy]propionate $(5.87 \mathrm{~g}, 99 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{23}=-3.75(c=$ 6.42, CHCl_{3}). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.70(\mathrm{~d}, 2 \mathrm{H}), 7.28$ (d, 2H), $4.11\left(\mathrm{dd},{ }^{3} J=9.3,{ }^{3} J=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.98\left(\mathrm{dd},{ }^{3} J=9.6\right.$, $\left.{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.73\left(\mathrm{dq},{ }^{3} J=6.6,{ }^{3} J=6.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.10\left(\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=173.0,144.9,132.7,129.8,127.9,70.8,52.0$, 39.2, 21.6, 13.6 ppm . IR (film): $\tilde{v}=2986$ (m), 2954 (m), 1741 (s), 1598 (m), 1460 (m), 1363 (s), 1179 (s), 1097 (m), 977 (s), 818 (s) cm^{-1}. HRMS (CI): m/z calcd. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]$290.1062, found 290.1055. LRMS (CI): $m / z(\%)=290.2(100)\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]$. A solution of (R)-methyl 2-methyl-3-[(p-tolylsulfonyl)oxy]propionate $(710 \mathrm{mg}, 2.61 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(190 \mathrm{mg}, 2.87 \mathrm{mmol})$ in DMSO $(20 \mathrm{~mL})$ was stirred at room temperature for 6 h . EtOAc $(100 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ were added, the organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was dissolved in EtOAc (50 mL) and di-tert-butyl dicarbonate $(0.60 \mathrm{~mL}, 2.61 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(25 \mathrm{mg})$ were added. The resulting mixture was stirred under H_{2} for 12 h and subsequently filtered through a pad of Celite ${ }^{\odot}$. Evaporation of the solvent and chromatographic purification (20% EtOAc in hexane) gave $29(600 \mathrm{mg}$, quant.) as a colorless oil. $[\alpha]_{\mathrm{D}}^{23}=-17.6\left(c=2.74, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}): \delta=4.90$ (br. m, 1 H), $3.60(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~m}, 2 \mathrm{H}), 2.60$ $\left(\mathrm{dq},{ }^{3} J=6.9,{ }^{3} J=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.08\left(\mathrm{~d},{ }^{3} J=7.2 \mathrm{~Hz}\right.$, $3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=175.7,156.9,79.2$, $51.8,42.9,40.0,28.3,14.7 \mathrm{ppm}$. IR (film): $\tilde{v}=3381$ (br. s), 2978 (s), 1716 (s), 1518 (s), 1367 (s), 1250 (s), 1175 (s) cm^{-1}. HRMS $(\mathrm{CI}): m / z$ calcd. $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$218.1392, found 218.1385. LRMS (CI): $m / z(\%)=218.2(100)\left[\mathrm{M}+\mathrm{H}^{+}\right], 179.2(40), 162.1$ (81), 118.2 (27).
(R)-3-\{[(tert-Butoxy)carbonyl]amino\}-2-methylpropionic Acid (30): A solution of $29(2.62 \mathrm{~g}, 12.1 \mathrm{mmol})$ and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.50 \mathrm{~g}$, $36.3 \mathrm{mmol})$ in $\mathrm{EtOH}(50 \mathrm{~mL})$ was stirred at room temperature for 30 min . The reaction mixture was acidified $(\mathrm{pH}=4)$ with 10% aqueous citric acid and extracted with EtOAc. The organic layer was washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to furnish 30 (2.46 g , quant.) as a colorless oil. $[\alpha]_{\mathrm{D}}^{23}=-25.5$ $\left(c=1.41, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=5.07$ (br. m , $1 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$, $1.22\left(\mathrm{~d},{ }^{3} J=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=$ $181.4,156.5,81.5,43.1,40.4,28.8,15.0 \mathrm{ppm}$. IR (film): $\tilde{v}=3380$ (br. s), 2979 (s), 1708 (s), 1518 (s), 1368 (m), 1252 (m), 1170 (s) cm^{-1}. HRMS (CI): m/z calcd. $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$204.1236, found 204.1239. LRMS (CI): $m / z(\%)=204.2(35)\left[\mathrm{M}+\mathrm{H}^{+}\right]$, 165.2 (40), 148.2 (58), 104.1 (22).
(2S,2'R)-2-[(3'-\{[(tert-Butoxy)carbonyl]amino\}-2'-methylpropionyl)-oxy]-4-methylpentanoic Acid (32): A solution of 27 (2.50 g, $12.1 \mathrm{mmol}), 30(2.46 \mathrm{~g}, 12.1 \mathrm{mmol}), \mathrm{DCC}(2.50 \mathrm{~g}, 12.1 \mathrm{mmol})$ and DMAP ($740 \mathrm{mg}, 6.05 \mathrm{mmol}$) in DCM $(50 \mathrm{~mL})$ was stirred at room temperature for 12 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and chromatographic purification $(10 \%$ EtOAc in hexane) afforded $\left(2 S, 2^{\prime} R\right)$-benzyl $2-\left[\left(3^{\prime}-\{[(\right.\right.$ tert butoxy)carbonyl]amino \}-2'-methylpropionyl)oxy]-4-
methylpentanoate $(1.83 \mathrm{~g}, 91 \%)$ as colorless film. $[\alpha]_{\mathrm{D}}^{23}=-49.7$ $\left(c=1.50, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.35(\mathrm{~m}, 5$ H), 5.21-5.10 (m, 4 H), $3.43\left(\mathrm{ddd},{ }^{2} J=12.0,{ }^{3} J=6.5,{ }^{3} J=5.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.17\left(\mathrm{ddd},{ }^{2} J=12.0,{ }^{3} J=6.0,{ }^{3} J=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.76(\mathrm{~m}$, $1 \mathrm{H}), 1.82-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.17\left(\mathrm{~d},{ }^{3} J=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right)$, $0.94\left(\mathrm{~d},{ }^{3} J=6.4 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.91\left(\mathrm{~d},{ }^{3} J=6.4 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=175.2,171.1,156.4,135.6,129.0$, $128.9,128.7,79.7,71.3,67.5,43.5,40.8,39.9,28.8,25.1,23.4,21.9$,
14.9 ppm. IR (film): $\tilde{v}=3394$ (br. s), 2962 (s), 1741 (s), 1718 (s), 1508 (s), 1456 (m), 1367 (m), 1252 (m), 1173 (s) cm^{-1}. HRMS (FAB): m/z calcd. $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NNaO}_{6}\left[\mathrm{M}+\mathrm{Na}^{+}\right] 430.2206$, found 430.2183. LRMS (FAB): $m / z(\%)=352.1(19), 308.1$ (85), 130.1 (23), 90.9 (100), 60.2 (32). A mixture of $\left(2 S, 2^{\prime} R\right)$-benzyl 2-[(3'-\{[(tert-butoxy)carbonyl]amino $\}-2^{\prime}$-methylpropionyl)oxy]-4methylpentanoate $(2.50 \mathrm{~g}, 6.13 \mathrm{mmol}), 5 \% \mathrm{Pd} / \mathrm{C}(200 \mathrm{mg})$ and EtOAc (40 mL) was stirred for 5 h under H_{2} and then filtered through a pad of Celite ${ }^{\circledR}$. Concentration of the filtrate in vacuo yielded $32(1.84 \mathrm{~g}, 95 \%)$ as a white solid. M.p. $72{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{23}=47.9$ $\left(c=4.70, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=5.20$ (br. t , $\left.{ }^{3} J=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.14\left(\mathrm{dd},{ }^{3} J=10.0,{ }^{3} J=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.42$ $\left(\mathrm{ddd},{ }^{2} J=12.0,{ }^{3} J=6.5,{ }^{3} J=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.26\left(\mathrm{ddd},{ }^{2} J=12.0\right.$, $\left.{ }^{3} J=6.0,{ }^{3} J=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.76(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.65(\mathrm{~m}, 3 \mathrm{H})$, $1.45(\mathrm{~s}, 9 \mathrm{H}), 1.23\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.99\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 3\right.$ H), $0.96\left(\mathrm{~d},{ }^{3} J=6.4 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$: $\delta=175.8,175.2,156.5,79.9,70.9,43.5,40.9,39.9,28.8,25.1,23.4$, $21.9,15.0 \mathrm{ppm}$. IR (film): $\tilde{v}=3334$ (br. s), 2962 (s), 1739 (s), 1727 (s), 1521 (s), 1458 (m), 1369 (m), 1253 (m), 1173 (s) cm^{-1}. HRMS (FAB): m/z calcd. $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]$335.2182, found 335.2212. LRMS (FAB): $m / z(\%)=318.3(21)\left[\mathrm{M}+\mathrm{H}^{+}\right], 279.2$ (100), 263.2 (61), 218.2 (58), 104.1 (16).
(2S)-2-[(3'-\{[(tert-Butoxy)carbonyl]amino\}propionyl)oxy]-4-methylpentanoic Acid (33): A solution of $27(1.05 \mathrm{~g}, 5.11 \mathrm{mmol}), \mathbf{3 1}^{[46]}$ $(966 \mathrm{mg}, 5.11 \mathrm{mmol}), \quad$ DCC $(1.05 \mathrm{~g}, 5.11 \mathrm{mmol})$ and DMAP $(312 \mathrm{mg}, 2.55 \mathrm{mmol})$ in DCM $(50 \mathrm{~mL})$ was stirred at room temperature for 12 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and chromatographic purification (30\% EtOAc in hexane) afforded ($\left.2 S, 2^{\prime} R\right)$-benzyl 2-[($3^{\prime}-\{[($ tert-butoxy)carbonyl]amino $\}$ propionyl)oxy]-4-methylpentanoate $(1.83 \mathrm{~g}, 91 \%)$ as white solid. M.p. $63{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{23}=-27.8\left(c=0.94, \mathrm{CHCl}_{3}\right)\left\{\right.$ ref. ${ }^{[33]}[\alpha]_{\mathrm{D}}^{23}=$ $\left.-28.1\left(c=1.34, \mathrm{CHCl}_{3}\right)\right\} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.38$ $(\mathrm{m}, 5 \mathrm{H}), 5.23(\mathrm{ABq}, 2 \mathrm{H}, J=12.0 \mathrm{~Hz}, \Delta v=12.0 \mathrm{~Hz}), 5.18(\mathrm{br} . \mathrm{s}$, $1 \mathrm{H}), 5.13\left(\mathrm{dd},{ }^{3} J=9.5,{ }^{3} J=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.44$ (br. m, 2 H$), 2.62$ $\left(\mathrm{t},{ }^{3} J=6.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.84-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}$, $9 \mathrm{H}), 0.97\left(\mathrm{~d},{ }^{3} J=5.5 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.93\left(\mathrm{~d},{ }^{3} J=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=176.1,171.0,156.4,135.6$, $129.0,128.9,128.6,79.8,71.6,67.5,40.0,36.7,35.0,28.8,25.0$, 23.4, 22.0 ppm . IR (film): $\tilde{v}=3399$ (br. m), 2962 (s), 2873 (w), 1743 (s), 1716 (s), 1509 (m), 1367 (m), 1250 (s), 1170 (s), 1078 (m), $749(\mathrm{~m}) \mathrm{cm}^{-1}$. HRMS (CI): m/z calcd. $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NO}_{6}\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 394.2230, found 394.2219. A mixture of $\left(2 S, 2^{\prime} R\right)$-benzyl 2-[(3'-\{[(tert-butoxy)carbonyl]amino $\}$ propionyl)oxy]-4-methylpentanoate $(1.50 \mathrm{~g}, 3.81 \mathrm{mmol}), 10 \% \mathrm{Pd} / \mathrm{C}(50 \mathrm{mg})$ and EtOAc $(50 \mathrm{~mL})$ was stirred for 1 h under H_{2} and then filtered through a pad of Celite ${ }^{\odot}$. Concentration of the filtrate in vacuo yielded $33(1.05 \mathrm{mg}, 97 \%)$ as a white solid. M.p. $58{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{23}=-18.3\left(c=1.55, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=5.20$ (br. s, 1 H$), 5.13\left(\mathrm{dd},{ }^{3} J=9.0\right.$, ${ }^{3} J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (br. m, 2 H), 2.64 (br. m, 2 H), $1.85-1.75$ $(\mathrm{m}, 2 \mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 0.99\left(\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}, 3 \mathrm{H}\right)$, $0.96\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=$ $175.6,172.5,156.4,80.0,71.2,39.9,36.7,35.0,28.5,25.1,23.4,21.9$ ppm. IR (film): $\tilde{v}=2961$ (w), 2874 (w), 1741 (s), 1722 (s), 1521 (m), 1368 (s), 1251 (s), 1170 (s), 1076 (m) cm ${ }^{-1}$. HRMS (CI): m/z calcd. $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NNaO}_{6}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$326.1580, found 326.1589.
($\left.2 S, 2^{\prime} R, 1^{\prime \prime} S, 2^{\prime \prime} R, 1^{\prime \prime \prime \prime} R\right)-1^{\prime \prime}-\left(3^{\prime \prime \prime}-\left\{1^{\prime \prime \prime \prime}-[(\right.\right.$ tert-Butoxy $)$ carbonyl $]$ $2^{\prime \prime \prime \prime}$-p-methoxyphenylethylcarbamoyl\}allyl)-2''-methyl-4''-phenyl-but-3' ${ }^{\prime \prime}$-enyl 2-[(3'-\{[(tert-Butoxy)carbonyl]amino\}-2'-methylpropi-onyl)oxyl-4-methylpentanoate (34): To a solution of 32 (794 mg , $2.50 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ were successively added $i \operatorname{Pr}_{2} \mathrm{NEt}$ (436 $\mathrm{mL}, 2.50 \mathrm{mmol}$) and 2,4,6-trichlorobenzyl chloride (391 mL ,
2.50 mmol). After 2 h of stirring at room temperature, the solvent was evaporated and the residue was dissolved in benzene $(20 \mathrm{~mL})$. $25(400 \mathrm{mg}, 0.83 \mathrm{mmol})$ and DMAP ($306 \mathrm{mg}, 2.50 \mathrm{mmol}$) were added and the mixture was stirred at room temperature for a further 1 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with diethyl ether. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and chromatographically purified ($30 \% \mathrm{EtOAc}$ in hexane) to yield 34 ($549 \mathrm{mg}, 84 \%$) as a white solid. M.p. $184{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{23}=-26.9\left(c=0.26, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.37-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{dd}$, $\left.{ }^{3} J=8.0,{ }^{3} J=7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.09\left(\mathrm{~d},{ }^{3} J=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.83(\mathrm{~m}$, $3 \mathrm{H}), 6.43\left(\mathrm{~d},{ }^{3} J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.32\left(\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.04$ $\left(\mathrm{dd},{ }^{3} J=16.0,{ }^{3} J=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.91\left(\mathrm{~d},{ }^{3} J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.25$ $\left(\mathrm{t},{ }^{3} J=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.06\left(\mathrm{dd},{ }^{3} J=5.5,{ }^{3} J=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.96$ $\left(\mathrm{dd},{ }^{3} J=10.0,{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.82\left(\mathrm{ddd}, 1 \mathrm{H},{ }^{3} J=7.5,{ }^{3} J=\right.$ $\left.4.0,{ }^{3} J=1.6 \mathrm{~Hz}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~m}, 2 \mathrm{H}), 3.09\left(\mathrm{~d},{ }^{3} J=6.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 2$ H), $1.58(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.22\left(\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}\right.$, $3 \mathrm{H}), 1.13\left(\mathrm{~d},{ }^{3} J=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.88\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.85$ $\left(\mathrm{d},{ }^{3} J=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=$ $175.4,171.2,170.8,165.2,158.9,156.5,138.9,137.3,132.1,131.0$, $130.6,129.0,128.7,127.8,126.6,126.5,114.1,82.6,79.5,76.9,71.6$, $55.6,54.2,43.4,41.4,40.4,39.9,37.7,33.9,28.8,28.4,25.0,23.3$, $21.8,17.1,15.0 \mathrm{ppm}$. IR (film): $\tilde{v}=3400$ (br. s), 2964 (s), 2934 (s), 1737 (s), 1678 (m), 1641 (m), 1513 (s), 1367 (s), 1249 (s), 1175 (s) cm^{-1}. HRMS (FAB): m / z calcd. $\mathrm{C}_{44} \mathrm{H}_{63} \mathrm{~N}_{2} \mathrm{O}_{10}\left[\mathrm{M}+\mathrm{H}^{+}\right] 779.4483$, found 779.4480.
$\left(2 S, 1^{\prime \prime} S, 2^{\prime \prime} R, 1^{\prime \prime \prime \prime} R\right)-1^{\prime \prime}-\left[3^{\prime \prime \prime}-\left(\left\{1^{\prime \prime \prime \prime}-[(\right.\right.\right.$ tert - Butoxy $)$ carbonyl $]-2^{\prime \prime \prime \prime \prime}-$ (p-methoxyphenyl)ethyl\}carbamoyl)allyl]-2' ${ }^{\prime \prime}$-methyl-4' ${ }^{\prime \prime}$-phenylbut$3^{\prime \prime}$-enyl 2-[(3'-\{[(tert-Butoxy)carbonyl]amino\}propionyl)oxy]-4methylpentanoate (35): To a solution of 33 ($38.0 \mathrm{mg}, 125 \mu \mathrm{~mol}$) in THF (3 mL) were successively added $i \operatorname{Pr}_{2} \mathrm{NEt}(22 \mu \mathrm{~L}, 125 \mu \mathrm{~mol})$ and 2,4,6-trichlorobenzyl chloride $(20 \mu \mathrm{~L}, 125 \mu \mathrm{~mol})$. After 2 h of stirring at room temperature, the solvent was evaporated and the residue was dissolved in benzene $(6 \mathrm{~mL}) .25(30.0 \mathrm{mg}, 62.6 \mu \mathrm{~mol})$ and DMAP $(15.0 \mathrm{mg}, 125 \mu \mathrm{~mol})$ were added and the mixture was stirred at room temperature for a further 1 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with diethyl ether. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and chromatographically purified (35\% EtOAc in hexane) to yield $35(38.0 \mathrm{mg}, 80 \%)$ as a white solid. M.p. $175^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}^{23}=+7.9\left(c=0.38, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=$ $7.37-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.24\left(\mathrm{dd},{ }^{3} J=7.8,{ }^{3} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.09(\mathrm{~d}$, $\left.{ }^{3} J=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.82(\mathrm{~m}, 3 \mathrm{H}), 6.43\left(\mathrm{~d},{ }^{3} J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.38$ $\left(\mathrm{d},{ }^{3} J=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.04\left(\mathrm{dd},{ }^{3} J=16.0,{ }^{3} J=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.91$ (d, $\left.{ }^{3} J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.29$ (br. s, 1 H$), 5.06\left(\mathrm{dd},{ }^{3} J=5.5,{ }^{3} J=\right.$ $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.94\left(\mathrm{dd},{ }^{3} J=10.0,{ }^{3} J=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.82(\mathrm{ddd}, 1$ $\left.\mathrm{H},{ }^{3} J=5.6,{ }^{3} J=4.0,{ }^{3} J=1.6 \mathrm{~Hz}\right), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~m}, 2 \mathrm{H})$, $3.08\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.70-2.51(\mathrm{~m}, 5 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 2$ H), $1.58(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.13\left(\mathrm{~d},{ }^{3} J=6.5 \mathrm{~Hz}\right.$, $3 \mathrm{H}), 0.88\left(\mathrm{~d},{ }^{3} J=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.86\left(\mathrm{~d},{ }^{3} J=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=172.7,171.3,170.8,165.3$, $159.0,156.4,139.0,137.3,132.1,131.0,130.6,129.0,128.7,127.9$, $126.6,114.1,82.6,79.8,76.9,71.2,55.6,54.1,41.4,40.0,37.7,36.5$, $34.9,34.0,28.8,28.4,25.0,23.3,21.8,17.2 \mathrm{ppm}$. IR (film): $\tilde{v}=$ 3340 (br. s), 2964 (s), 2932 (s), 1739 (s), 1677 (m), 1641 (m), 1513 (s), 1367 (s), 1249 (s), 1167 (s) cm^{-1}. HRMS (FAB): m / z calcd. $\mathrm{C}_{43} \mathrm{H}_{61} \mathrm{~N}_{2} \mathrm{O}_{10}\left[\mathrm{M}+\mathrm{H}^{+}\right] 765.4326$, found 765.4341.

Cryptophycin D (4): A mixture of $\mathbf{3 4}(288 \mathrm{mg}, 0.37 \mathrm{mmol})$ and TFA $(20 \mathrm{~mL})$ was stirred at room temperature for 2 h . The reaction mixture was concentrated in vacuo and the residue was dissolved in THF (50 mL). To this solution were successively added $i \mathrm{Pr}_{2} \mathrm{NEt}$
(225 $\mu \mathrm{L}, 1.29 \mathrm{mmol}$), 2,4,6-trichlorobenzyl chloride ($58 \mu \mathrm{~L}$, $0.37 \mathrm{mmol})$ and DMAP ($90 \mathrm{mg}, 0.37 \mathrm{mmol}$). After stirring at room temperature for 1 h , the solvent was evaporated and the residue was dissolved in benzene (20 mL) and stirred at room temperature for 12 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with diethyl ether. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and chromatographically purified (50% EtOAc in hexane) to yield $4(169 \mathrm{mg}, 76 \%)$ as a white solid. M.p. $186-189^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}^{23}=+36.2(c=0.72, \mathrm{MeOH})$ $\left\{\right.$ ref. $\left.{ }^{[2]}[\alpha]_{\mathrm{D}}^{23}=+36.7(c=1.93, \mathrm{MeOH})\right\} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta=7.36-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.26\left(\mathrm{dd},{ }^{3} J=7.0,{ }^{3} J=7.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.13\left(\mathrm{~d},{ }^{3} J=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.08\left(\mathrm{dd},{ }^{3} J=6.0,{ }^{3} J=6.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 6.83\left(\mathrm{~d},{ }^{3} J=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.73\left(\mathrm{ddd},{ }^{3} J=15.0,{ }^{3} J=\right.$ $\left.10.0,{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.42\left(\mathrm{~d},{ }^{3} J=15.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.03\left(\mathrm{dd},{ }^{3} J=\right.$ $\left.15.5,{ }^{3} J=9.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.77\left(\mathrm{~d},{ }^{3} J=15.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.67\left(\mathrm{~d},{ }^{3} J=\right.$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05\left(\mathrm{ddd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=8.5,{ }^{3} \mathrm{~J}=6.0,{ }^{3} \mathrm{~J}=1.0 \mathrm{~Hz}\right), 4.87$ $\left(\mathrm{dd},{ }^{3} J=10.0,{ }^{3} J=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.81\left(\mathrm{dt},{ }^{3} J=7.5,{ }^{3} J=7.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.42\left(\mathrm{dd},{ }^{3} \mathrm{~J}=5.0,{ }^{3} \mathrm{~J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.16(\mathrm{dd}$, $\left.{ }^{2} J=14.0,{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.10\left(\mathrm{dd},{ }^{2} J=14.0,{ }^{3} J=7.5 \mathrm{~Hz}, 1\right.$ H), $2.70(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.36$ $(\mathrm{m}, 1 \mathrm{H}), 1.25\left(\mathrm{~d},{ }^{3} J=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.15\left(\mathrm{~d},{ }^{3} J=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right)$, $0.78\left(\mathrm{~d},{ }^{3} J=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.74\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta=176.4,171.6,171.2,165.7,159.0$, $141.9,137.1,132.2,130.6,130.5,129.0,128.9,128.0,126.6,125.5$, $114.5,77.6,72.0,55.6,54.3,42.7,41.2,40.1,38.5,36.9,35.8,24.9$, 23.1, 21.6, 17.8, 14.6 ppm . IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=3420(\mathrm{~m}), 2963(\mathrm{~s})$, 2936 (m), 1746 (s), 1721 (s), 1680 (s), 1649 (s), 1513 (s), 1248 (s), 1179 (s) cm^{-1}. HRMS (FAB): m/z calcd. $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{7}\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 605.3227, found 605.3231.

Deoxyarenastatin A (36): A mixture of $\mathbf{3 5}(56.9 \mathrm{mg}, 74.4 \mu \mathrm{~mol})$ and TFA $(10 \mathrm{~mL})$ was stirred at room temperature for 2 h . The reaction was concentrated in vacuo and the residue was dissolved in THF $(10 \mathrm{~mL})$. To this solution were successively added $i \operatorname{Pr}_{2} \mathrm{NEt}(12 \mu \mathrm{~L}$, $74.4 \mu \mathrm{~mol}$), 2,4,6-trichlorobenzyl chloride ($12 \mu \mathrm{~L}, 74.4 \mu \mathrm{~mol}$) and DMAP ($36.0 \mathrm{mg}, 298 \mu \mathrm{~mol}$). After 1 h of stirring at room temperature, the solvent was evaporated and the residue was dissolved in benzene $(10 \mathrm{~mL})$ and stirred at room temperature for 1 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture extracted with diethyl ether. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and chromatographically purified (65% EtOAc in hexane) to yield $36(35.2 \mathrm{mg}, 81 \%)$ as a white solid. M.p. $182-188^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}^{23}=+33.5\left(c=0.09, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left\{\right.$ ref. ${ }^{[2]}[\alpha]_{\mathrm{D}}^{23}=$ $\left.+34.0\left(c=1.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=$ $7.36-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23\left(\mathrm{dd},{ }^{3} J=7.8,{ }^{3} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.12(\mathrm{~d}$, $\left.{ }^{3} J=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.02\left(\mathrm{dd},{ }^{3} J=4.5,{ }^{3} J=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.82(\mathrm{~d}$, $\left.{ }^{3} J=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.71\left(\mathrm{ddd},{ }^{3} J=15.2,{ }^{3} J=10.4,{ }^{3} J=4.8 \mathrm{~Hz}, 1\right.$ H), $6.40\left(\mathrm{~d},{ }^{3} J=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.01\left(\mathrm{dd},{ }^{3} J=15.6,{ }^{3} J=8.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.73\left(\mathrm{~d},{ }^{3} \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.05$ (ddd, $1 \mathrm{H},{ }^{3} J=9.6,{ }^{3} J=6.8,{ }^{3} J=1.3 \mathrm{~Hz}$), $4.90\left(\mathrm{dd},{ }^{3} J=9.6\right.$, $\left.{ }^{3} J=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.74\left(\mathrm{dd},{ }^{3} J=7.2,{ }^{3} J=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.55(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}), 3.14\left(\mathrm{dd},{ }^{2} J=14.4,{ }^{3} J=6.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 3.05\left(\mathrm{dd},{ }^{2} J=14.4,{ }^{3} J=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.54(\mathrm{~m}, 4 \mathrm{H})$, $2.36\left(\mathrm{dt},{ }^{2} J=14.0,{ }^{3} \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~m}, 1$ H), $1.14\left(\mathrm{~d},{ }^{3} J=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.74\left(\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.71(\mathrm{~d}$, $\left.{ }^{3} J=6.0 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=173.3$, 171.2, 171.1, 165.9, 159.0, 141.9, 137.1, 132.2, 130.6, 130.5, 129.0, $128.9,128.0,126.6,125.5,114.5,77.0,72.0,55.6,54.5,42.7,40.1$, $36.8,35.6,34.6,32.9,24.8,23.0,21.7,17.7 \mathrm{ppm}$. IR (film): $\tilde{v}=$ 2957 (s), 2925 (s), 1741 (s), 1730 (s), 1678 (s), 1650 (s), 1513 (s), $1372(\mathrm{~m}), 1247(\mathrm{~s}), 1175(\mathrm{~s}) \mathrm{cm}^{-1}$. HRMS (FAB): m/z calcd. $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{7}\left[\mathrm{M}+\mathrm{H}^{+}\right] 591.3070$, found 591.3080. LRMS (LCQ): $m / z(\%)=591.1(22)\left[\mathrm{M}+\mathrm{H}^{+}\right], 387.9(100), 360.0(35)$.

Cryptophycin B (2): To a solution of $4(6.0 \mathrm{mg}, 9.92 \mu \mathrm{~mol})$ in DCM $(2 \mathrm{~mL})$ was added dimethyldioxirane ${ }^{[47]}$ (0.32 m in acetone, $310 \mu \mathrm{~L}$, $99.2 \mu \mathrm{~mol})$ at $-30^{\circ} \mathrm{C}$. The resulting mixture was stirred at -30 ${ }^{\circ} \mathrm{C}$ to room temperature for 12 h and then concentrated in vacuo. Chromatographic purification [HPLC, YMC-PACK OD-AQ 5S $120 \AA 4.6 \times 250 \mathrm{~mm}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 3: 1,1 \mathrm{~mL} / \mathrm{min}$, room temp., $\left.t_{\mathrm{R}}(\mathbf{2})=31.58 \mathrm{~min}\right]$ to yield $\mathbf{2}(5.4 \mathrm{mg}, 87 \%, 3: 1)$ as a white solid. $[\alpha]_{\mathrm{D}}^{23}=+20.6^{\circ}(c=0.24, \mathrm{MeOH})\left\{\right.$ ref. ${ }^{[2]}[\alpha]_{\mathrm{D}}^{23}=+20.4(c=0.54$, $\mathrm{MeOH})\} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.42-7.35(\mathrm{~m}, 3 \mathrm{H})$, $7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.12\left(\mathrm{~d},{ }^{3} J=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.06\left(\mathrm{dd},{ }^{3} J=5.9\right.$, $\left.{ }^{3} J=5.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.84\left(\mathrm{~d},{ }^{3} J=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.73\left(\mathrm{ddd},{ }^{3} J=15.1\right.$, $\left.{ }^{3} J=10.1,{ }^{3} J=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.73\left(\mathrm{~d},{ }^{3} J=15.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.66(\mathrm{~d}$, ${ }^{3} J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.21\left(\mathrm{ddd}, 1 \mathrm{H},{ }^{3} J=9.5,{ }^{3} J=4.8,{ }^{3} J=1.6 \mathrm{~Hz}\right.$), $4.84\left(\mathrm{dd},{ }^{3} \mathrm{~J}=9.8,{ }^{3} \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.81\left(\mathrm{dt},{ }^{3} \mathrm{~J}=7.2,{ }^{3} \mathrm{~J}=6.4\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.71\left(\mathrm{~d},{ }^{3} \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.44\left(\mathrm{ddd},{ }^{2} J=\right.$ $\left.13.6,{ }^{3} J=12.7,{ }^{3} J=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.39\left(\mathrm{ddd},{ }^{2} J=13.6,{ }^{3} J=4.2\right.$, $\left.{ }^{3} J=4.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.15\left(\mathrm{dd},{ }^{2} J=14.6,{ }^{3} J=5.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.10$ $\left(\mathrm{dd},{ }^{2} J=14.4,{ }^{3} J=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.94\left(\mathrm{dd},{ }^{3} J=7.6,{ }^{3} J=1.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.58\left(\mathrm{dm}, 1 \mathrm{H},{ }^{2} J=14.5 \mathrm{~Hz}\right), 2.40(\mathrm{ddd}, 1 \mathrm{H}$, $\left.{ }^{2} J=14.5,{ }^{3} J=10.8,{ }^{3} J=10.5 \mathrm{~Hz}\right), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H})$, $1.36(\mathrm{~m}, 1 \mathrm{H}), 1.25\left(\mathrm{~d},{ }^{3} J=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.17\left(\mathrm{~d},{ }^{3} J=6.9 \mathrm{~Hz}, 3\right.$ H), $0.88\left(\mathrm{~d},{ }^{3} J=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=176.4,171.5,171.1,165.5$, $159.0,141.6,137.1,130.6,129.1,129.0,128.7,126.0,125.5,114.6$, $76.7,71.7,63.5,59.5,55.6,54.3,41.2,39.8,38.5,37.2,35.7,24.9$, 23.3, 21.7, 14.7, 14.0 ppm . IR (DCM): $\tilde{v}=3411$ (m), 2962 (s), 2935 (m), 1743 (s), 1724 (s), 1682 (s), 1513 (s), 1247 (s), 1199 (s), 1179 (s) cm^{-1}. HRMS (FAB): m/z calcd. $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{8}\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 621.3176, found 621.3160 .

Arenastatin A (5): To a solution of $36(5.2 \mathrm{mg}, 8.81 \mu \mathrm{~mol})$ in DCM $(2 \mathrm{~mL})$ was added dimethyldioxirane ${ }^{[45]}(0.23 \mathrm{~m}$ in acetone, $383 \mu \mathrm{~L}$, $88.1 \mu \mathrm{~mol})$ at $-30^{\circ} \mathrm{C}$. The resulting mixture was stirred at -30 ${ }^{\circ} \mathrm{C}$ to room temperature for 12 h and then concentrated in vacuo. Chromatographic purification [HPLC, YMC-PACK OD-AQ 5S $120 \AA 4.6 \times 250 \mathrm{~mm}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 3: 1,1 \mathrm{~mL} / \mathrm{min}$, room temp., $\left.t_{\mathrm{R}}(\mathbf{5})=30.86 \mathrm{~min}\right]$ to yield $\mathbf{5}(4.0 \mathrm{mg}, 75 \%, 3: 1)$ as a colorless film. $[\alpha]_{\mathrm{D}}^{23}=+48.1\left(c=0.09, \mathrm{CHCl}_{3}\right)\left\{\right.$ ref. ${ }^{[33]}[\alpha]_{\mathrm{D}}^{23}=+48.7(c=0.87$, $\left.\mathrm{CHCl}_{3}\right)\left[.{ }^{1} \mathrm{H}\right.$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.43-7.24(\mathrm{~m}, 5 \mathrm{H})$, $7.11\left(\mathrm{~d},{ }^{3} J=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.04\left(\mathrm{t},{ }^{3} J=5.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.83\left(\mathrm{~d},{ }^{3} J=\right.$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $6.72\left(\mathrm{ddd},{ }^{3} J=15.1,{ }^{3} J=10.2,{ }^{3} J=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$), $5.72\left(\mathrm{~d},{ }^{3} J=15.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.65\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.21$ (ddd, $\left.1 \mathrm{H},{ }^{3} J=9.4,{ }^{3} J=4.8,{ }^{3} J=1.5 \mathrm{~Hz}\right), 4.90\left(\mathrm{dd},{ }^{3} J=9.8,{ }^{3} J=3.4\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 4.75\left(\mathrm{dt},{ }^{3} \mathrm{~J}=7.3,{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.71$ $\left(\mathrm{d},{ }^{3} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.46\left(\mathrm{ddd},{ }^{2} J=13.4,{ }^{3} J=12.6,{ }^{3} J=5.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.41\left(\mathrm{ddd},{ }^{2} J=13.5,{ }^{3} J=4.2,{ }^{3} J=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.15(\mathrm{dd}$, $\left.{ }^{2} J=14.6,{ }^{3} J=5.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.08\left(\mathrm{dd},{ }^{2} J=14.5,{ }^{3} J=6.7 \mathrm{~Hz}, 1\right.$ H), $2.94\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.6,{ }^{3} \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.58(\mathrm{~m}, 3 \mathrm{H}), 2.39$ (ddd, $\left.1 \mathrm{H},{ }^{3} J=7.6,{ }^{3} J=7.5,{ }^{3} J=7.5 \mathrm{~Hz}\right), 1.75-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.32$ (m, 1 H), $1.15\left(\mathrm{~d},{ }^{3} J=6.9 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.84\left(\mathrm{~d},{ }^{3} J=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right)$, $0.83\left(\mathrm{~d},{ }^{3} J=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=$ 173.2, 171.1, 171.0, 165.8, 159.0, 141.5, 137.1, 130.6, 129.1, 128.9, 128.7, 126.0, 125.5, 114.5, 77.5, 71.7, 63.5, 59.5, 55.6, 54.5, 42.7, 40.1, 36.9, 35.6, 34.6, 32.9, 24.8, 23.1, 21.7, 14.0 ppm . IR (film): $\tilde{v}=3410(\mathrm{~m}), 2963(\mathrm{~s}), 2932(\mathrm{~m}), 1742(\mathrm{~s}), 1726$ (s$), 1679(\mathrm{~s}), 1513$ (s), 1246 (s), $1200(\mathrm{~m}), 1180(\mathrm{~s}) \mathrm{cm}^{-1}$. HRMS (FAB): m / z calcd. $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{8}\left[\mathrm{M}+\mathrm{H}^{+}\right]$607.3019, found 607.3025.

Acknowledgments

Financial support by the National Institutes of Health is gratefully acknowledged.

[^1]train, R. E. Fromtling, G. H. Harris, M. J. Salvatore, J. M. Liesch, K. Yudin, J. Ind. Microbiol. 1990, 51, 113.
${ }^{[2]}$ T. Galakoti, I. Ohtani, G. M. L. Patterson, R. E. Moore, T. H. Corbett, F. A. Valeriote, L. Demchik, J. Am. Chem. Soc. 1994, 116, 4729.
${ }^{[3]}$ T. Galakoti, J. Ogino, C. E. Heltzel, T. L. Husebo, C. M. Jensen, L. K. Larsen, G. M. L. Patterson, R. E. Moore, S. L. Mooberry, T. H. Corbett, F. A. Valeriote, J. Am. Chem. Soc. 1995, 117, 12030.
${ }^{[4]}$ C. D. Smith, X. Zhang, S. L. Mooberry, G. M. L. Patterson, R. E. Moore, Cancer Res. 1994, 54, 3779.
${ }^{[5]}$ G. V. Subbaraju, T. Galakoti, G. M. L. Patterson, R. E. Moore, J. Nat. Prod. 1997, 60, 302.
${ }^{[6]}$ G. I. Georg, S. M. Ali, V. J. Stella, W. N. Waugh, R. H. Himes, Bioorg. Med. Chem. Lett. 1998, 8, 1959.
${ }^{[7]}$ M. Kobayashi, M. Kurosu, W. Wang, S. Fujii, I. Kitagawa, Chem. Pharm. Bull. 1994, 42, 2196.
${ }^{[8]}$ N. Murakami, S. Tamura, W. Wang, T. Takagi, M. Kobayashi, Tetrahedron 2001, 57, 4323.
${ }^{[9]}$ N. Murakami, W. Wang, S. Tamura, M. Kobayashi, Bioorg. Med. Chem. Lett. 2000, 10, 1823.
${ }^{[10]}$ N. Murakami, W. Wang, N. Ohyahu, T. Ito, S. Tamura, S. Aoki, M. Kobayashi, I. Kitagawa, Tetrahedron 2000, 56, 9121.
${ }^{[11]}$ K. Morita, Y. Koiso, Y. Hashimoto, M. Kobayashi, W. Wang, N. Ohyahu, N. Iwasaki, Biol. Pharm. Bull. 1997, $20,171$.
${ }^{[12]}$ S. L. Mooberry, C. R. Taoka, L. Busquets, Cancer Lett. 1996, 107, 53.
${ }^{[13]}$ K. Kerksiek, M. R. Mejillano, R. E. Schwartz, G. I. Georg, R. H. Himes, FEBS Lett. 1995, 377, 59.
${ }^{[14]}$ D. Panda, R. H. Himes, R. E. Moore, L. Wilson, M. A. Jordan, Biochemistry 1997, 36, 12948.
${ }^{[15]}$ J.-M. Muys, R. Rej, D. Nguyen, B. Go, S. Fortin, J.-F. Lavallée, Bioorg. Med. Chem. Lett. 1996, 6, 111.
${ }^{[16]}$ D.-L. Varie, C. Shih, D. A. Hay, S. L. Andis, T. H. Corbett, L. S. Gossett, S. K. Janisse, M. J. Martinelli, E. D. Moher, R. M. Schultz, J. E. Toth, Bioorg. Med. Chem. Lett. 1999, 9, 369.
${ }^{[17]}$ K. Menon, E. Alvarez, P. Forler, V. Phares, T. Amsrud, C. Shih, R. Al-Awar, B. A. Teicher, Cancer Chemother. Pharmacol. 2000, 46, 142.
${ }^{[18]}$ V. F. Patel, S. L. Andis, J. H. Kennedy, J. E. Ray, R. M. Schultz, J. Med. Chem. 1999, 42, 2588.
${ }^{[19]}$ B. H. Norman, T. Hemscheidt, R. M. Schultz, S. L. Andis, J. Org. Chem. 1998, 63, 5288.
${ }^{[20]}$ M. M. Wagner, D. C. Paul, C. Shih, M. A. Jordan, L. Wilson, D. C. Williams, Cancer Chemother. Pharmacol. 1999, 43, 115.
${ }^{[21]}$ M. Kobayashi, M. Kurosu, W. Wang, I. Kitagawa, Chem. Pharm. Bull. 1994, 42, 2394.
${ }^{[22]}$ M. Kobayashi, W. Wang, N. Ohyabu, M. Kurosu, I. Kitagawa, Chem. Pharm. Bull. 1995, 43, 1598.
${ }^{[23]}$ A. Barrow, T. Hemscheidt, S. Paik, J. Liang, R. E. Moore, M. A. Tius, J. Am. Chem. Soc. 1995, 117, 2479.
${ }^{[24]}$ G. M. Salamonczyk, K. Han, Z. Guo, C. J. Sih, J. Org. Chem. 1996, 61, 6893.
${ }^{[25]}$ R. Rej, D. Nguyen, B. Go, S. Fortin, J.-F. Lavallée, J. Org. Chem. 1996, 61, 6289.
${ }^{[26]}$ K. M. Gardinier, J. W. Leahy, J. Org. Chem. 1997, 62, 7098.
${ }^{[27]}$ D. L. Varie, J. Brennan, B. Briggs, J. S. Cronin, D. A. Hay, J. A. Rieck, M. J. Zmijewski, Tetrahedron Lett. 1998, 39, 8405.
${ }^{[28]}$ U. P. Dhokte, V. V. Khau, D. R. Hutchinson, M. J. Martinelli, Tetrahedron Lett. 1998, 39, 8771.
${ }^{[29]}$ J. D. White, J. Hong, L. A. Robarge, Tetrahedron Lett. 1998, 39, 8779.
${ }^{[30]}$ M. J. Eggen, G. I. Georg, Bioorg. Med. Chem. Lett. 1998, 8 , 3177.
${ }^{[31]}$ M. Furuyama, I. Shimizy, Tetrahedron Asym. 1998, 9, 1351.
${ }^{[32]}$ J. Liang, D. W. Hoard, V. V. Khau, M. J. Martinelli, E. D. Moher, R. E. Moore, M. A. Tius, J. Org. Chem. 1999, 64, 1459.
${ }^{[33]}$ J. D. White, J. Hong, L. A. Robarge, J. Org. Chem. 1999, 64, 6206.
${ }^{[34]}$ A. K. Ghosh, A. Bischoff, Org. Lett. 2000, 2, 1573.
${ }^{[35]}$ M. J. Eggen, C. J. Mossman, S. B. Buck, S. K. Nair, L. Bhat, S. M. Ali, E. A. Reiff, T. C. Boge, G. I. Georg, J. Org. Chem. 2000, 65, 7792.
${ }^{[36]}$ J. Liang, E. D. Moher, R. E. Moore, D. W. Hoard, J. Org. Chem. 2000, 65, 3143.
${ }^{[37]}$ J. A. Christopher, P. J. Kocienski, A. Kuhl, R. Bell, Synlett 2000, 463.
${ }^{[38]}$ C. Pousset, M. Haddad, M. Larchevêque, Tetrahedron 2001, 57, 7163.
${ }^{[39]}$ M. J. Eggen, S. K. Nair, G. I. Georg, Org. Lett. 2001, 3, 1813.
${ }^{[40]}$ L.-H. Li, M. A. Tius, Org. Lett. 2002, 4, 1637.
${ }^{[41]}$ A. K. Ghosh, S. Fidanze, C. H. Senanayake, Synthesis 1998, 937.
${ }^{[42]}$ A. K. Ghosh, S. Fidanze, M. Onishi, K. A. Hussain, Tetrahedron Lett. 1997, 38, 7171.
${ }^{[43]}$ S. von Kostanecki, V. Lampe, Ber. Dtsch. Chem. Ges. 1904, 37, 773.
${ }^{[44]}$ J. Inanaga, K. Hirata, H. Saeki, T. Katsuki, M. Yamaguchi, Bull. Chem. Soc. Jpn. 1979, 52, 1989.
${ }^{[45]}$ F. Degerbeck, B. Fransson, L. Grehn, U. Ragnarsson, J. Chem. Soc., Perkin Trans. 1 1991, 11.
${ }^{[46]}$ O. Keller, W. E. Keller, G. Van Look, G. Wersin, Org. Synth. Coll. Vol. 1990, 7, 70.
${ }^{[47]}$ A. Péres-Encabo, S. Perrio, A. M. Z. Slawin, S. Thomas, A. T. Wierzchleyski, D. J. Williams, J. Chem. Soc., Perkin Trans. I 1994, 629.
${ }^{[48]}$ Y. Tu, Z.-X. Wang, Y. Shi, J. Am. Chem. Soc. 1996, 118, 9806.
${ }^{[49]}$ Z.-X. Wang, Y. Tu, M. Frohn, Y. Shi, J. Org. Chem. 1997, 62, 2328.
${ }^{[50]}$ Y. Tu, Z.-X. Wang, M. Frohn, M. He, H. Yu, Y. Tang, Y. Shi, J. Org. Chem. 1998, 63, 8475.
${ }^{[51]}$ F. A. Davis, J. C. Towson, D. B. Vashi, R. T. Reddy, J. T. McCauley, M. E. Harakal, D. J. Gosciniak, J. Org. Chem. 1990, 55, 1254.
${ }^{[52]}$ R. A. Abramovitch, E. M. Smith, M. Humber, B. Purtschert, P. C. Srinivasan, G. M. Singer, J. Chem. Soc., Perkin Trans. 1 1974, 2589.
${ }^{[53]}$ E. N. Jacobsen, W. Zhang, A. R. Muci, J. R. Ecker, L. Deng, J. Am. Chem. Soc. 1991, 113, 7036.
${ }^{[54]}$ S. E. de Sousa, P. O'Brien, C. D. Pilgram, D. Roder, T. D. Towers, Tetrahedron Lett. 1999, 40, 391.
${ }^{[55]}$ D. Yang, M.-K. Wong, Y.-C. Yip, J. Org. Chem. 1995, 60, 3887.
${ }^{[56]}$ Z.-X. Wang, Y. Tu, M. Frohn, J.-R. Zhang, Y. Shi, J. Am. Chem. Soc. 1997, 119, 11224, and references cited therein.

Receiveed December 30, 2003

[^0]: [a] Department of Chemistry, University of Illinois at Chicago,
 845 West Taylor Street, Chicago, IL 60607, USA
 E-mail: arunghos@uic.edu

[^1]: ${ }^{[1]}$ R. E. Schwartz, C. F. Hirsch, D. E. Sesin, J. E. Flor, M. Char-

