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ABSTRACT: A bifunctional secondary phosphine oxide (SPO) ligand-controlled
method was developed for Ni−Al-catalyzed nonchelated dual C−H annulation of
arylformamides with alkynes, providing a series of substituted amide-containing
heterocycles in ≤97% yield. The SPO-bound bimetallic catalysis proved to be critical
to the reaction efficiency.

Transition metal-catalyzed nonchelated oxidative annula-
tion of dual C−H bonds with π-unsaturated compounds

has received an increasing amount of attention in recent years,
because it provides an atom- and step-economical pathway to
various cyclic compounds (Scheme 1a).1−6 However, the
absence of a chelating group causes difficulty for C−H bond
activations. Most reported examples had to rely on electron-
rich (hetero)arenes as substrates and high-valent precious
metals as catalysts such as Pd(II),2 Rh(III),3 and Ir(III).4 So
far, only one example reported by Nakao, Hiyama, and co-

workers used an inexpensive low-valent metal [Ni(0)] as a
catalyst to activate the electron-deficient formyl C−H bond
and alkyl C−H bond of amides (Scheme 1b).6 Despite a
substantial breakthrough, the reaction required the use of
sterically hindered substrates to accelerate C−H activation,
leading to the severe restriction of substrates. Only special
N,N-bis(1-arylalkyl)formamides were compatible, whereas
other formamides including less bulky but readily available
arylformamides did not undergo the reaction at all (Scheme
1b). To address this challenge, the development of a general
strategy instead of the substrate-controlled method is required.
We reasoned that less bulky N-methyl and N-aryl group
significantly decreased the steric hindrance between the
carbonyl and the N substituent, so that the aromatic C−H
bond could not be effectively pushed to the nickel center,
rendering subsequent aromatic C−H bond activation more
difficult. On the basis of our recent works on bimetallic
catalysis,7,8 we proposed to use a bifunctional SPO9

(secondary phosphine oxide) ligand to solve this problem,
because a SPO ligand would bind both Al and Ni to form a
cyclic intermediate, which would force the nickel center to
closely approach the aromatic C−H bond, thus accelerating
C−H bond activation (Scheme 1c). Herein, we report our
recent result: a bifunctional bulky SPO ligand significantly
facilitated the reaction of arylformamides with alkynes for the
first time, providing a series of amide-containing heterocycles10

in ≤97% yield.
We selected N-phenylformamide (1a) and oct-4-yne (2a) as

model substrates to commence our studies. The reported
optimal tBu3P

6 gave only side products from hydrocarbamoy-

Received: February 3, 2020

Scheme 1. Nonchelated Oxidative Annulation of Dual C−H
Bonds
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lation11 and decarbonylation (Scheme 2, entries 1 and 2,
respectively). Other traditional ligands such as phosphines and

carbenes also proved to be ineffective (entries 3−9).
Pleasingly, bifunctional tBu2P(O)H (L1) did afford trace
amounts of desired product 3a. Further tuning the steric
hindrance of the SPO ligand led to a significantly improved
yield of 3a (L2 and L3), albeit still with side product 3a′ from
the hydrocarbamoylation. Encouraged by this result, we then
examined a wide range of SPO ligands, including diol-derived
(L4 and L5), biphenol-derived (L6), and diamine-derived SPOs
(L7−L12). In the end, sterically hindered di-tert-butylethyldi-
amine-derived SPO (L11) provided the best yield (81%).
Decreasing the temperature and increasing the concentration
gave the best yield (95%), and in this case, side reactions such
as hydrocarbamoylation and decarbonylation were significantly
suppressed. Notably, a lower efficiency of bulky ligands (L10
and L12) could suggest that the reactivity of the current
reaction may also be affected by other factors such as the cone
angle and the electronic properties of the ligands.
With the optimized reaction conditions in hand, we first

explored an array of arylformamides bearing various sub-
stituents on the nitrogen and the aryl ring to test the generality
of the reaction (Scheme 3). Commonly used protecting groups
of the nitrogen such as Et (3b), Bn (3c), and Ph (3d) were

quite compatible with the current reaction, providing the
corresponding products in 72−90% yields. Notably, in the case
of the phenyl group, 20 mol % 1,4-diazabicyclo[2.2.2]octane
(DABCO) was needed to improve the yield. We speculated
that its coordination to Al could inhibit possible oligomeriza-
tion of Al species, thus enhancing coordination of the
substrate. However, electron-withdrawing protecting groups
such as Ac, BOC, and Bz were not suitable, leading to
significant decarbonylation. The reaction displayed a high
tolerance to a series of para substituents on the phenyl ring,
including either electron-donating alkyls (3e−3g), alkoxyls (3h
and 3i), aminos (3j and 3k), phenyl (3l) or electron-
withdrawing halos (3m and 3n), CF3 (3o), and carboxylate
(3p), providing the corresponding products in yields varying
from 61% to 91%. Various meta substituents also did not have
a strong influence on the yield. For example, both electron-rich
alkyl groups (3q and 3r) and electron-deficient F (3s) and CF3
(3t) gave moderate to good yields. In contrast, most ortho
substituents resulted in significant hydrocarbamoylation of 2a.
We reasoned that ortho substituents could result in a twist of

Scheme 2. Ligand Optimization

aReaction conditions: 1a (0.5 mmol), 2a (1.1 mmol), and toluene
(1.0 mL) under N2. Yield determined by 1H NMR using CH2Br2 as
the internal standard. bAll ratios refer to the 1H NMR yield (%) of
3a/3a′. cToluene (0.2 mL) and 2a (1.0 mmol) at 80 °C. Np = 1-
naphthyl. Ad = 1-adamantyl.

Scheme 3. Scope of Arylformamides

aReaction conditions: 1 (0.5 mmol), 2a (1.0 mmol), and toluene (0.2
mL) under N2 for 2 h. Yield for isolated products. bDABCO (20 mol
%) was added.
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the aryl ring, rendering the following C−H bond cleavage
more difficult. On the basis of this analysis, a cyclic formamide
(3u) that could efficiently inhibit the twist of the aryl ring was
tested and yields of ≤84% was achieved. Other aryls (3v and
3w) and heteroaryls (3x) also worked well in the reactions,
providing yields of ≤97% yield.
We then proceeded to investigate the substituent effect of

alkynes (Scheme 4). Various alkyl substituents, including both

linear alkynes (4a and 4b) and cyclic alkyne (4c), can be
tolerated well, providing the corresponding product in yields of
85−89%, whereas diphenyl alkyne was not suitable for this
annulation, leading to only undesired acrylamides. We
speculated that the insertion of diphenyl alkyne would
significantly increase the steric hindrance of the intermediate,
thus inhibiting subsequent aryl C−H activation. Therefore, in
this case, more flexible SPO ligands were then re-examined. To
our delight, L4 can promote the reaction, albeit only in 25%
yield in the current stage (4d). Although low regioselectivities
were obtained for asymmetric dialkyl alkynes (4e/4e′ and 4f/
4f′), asymmetric alkylphenyl alkynes (4g/4g′ and 4h/4h′) led
to pretty good regioselectivities (>10:1). Moreover, the phenyl
was exclusively proximate to the carbonyl group, which was
confirmed by X-ray analysis (see the Supporting Information).
These results suggested that the second alkyne insertion of the
nickelacycle could start from the aryl−Ni bond, thus
preferentially forming a more stable benzylic nickel species.
To understand the mechanism, some mechanistic experi-

ments were performed. Tracking formyl H of the amide by the
use of deuterated formamide 1a-d under the standard
conditions showed that D was completely transferred into
the acrylamide and the alkene (Scheme 5a, eq 1). Parallel
reactions disclosed no isotope effect for the formyl C−H bond
(eq 2), excluding this C−H bond cleavage from the rate-
determining step. Either oxidative addition of Ni to the C−H

bond along with alkyne insertion or Ni-catalyzed direct H
transfer into alkyne occurred in this step.6,12 Intra- and
intermolecular competitive experiments gave two similar kH/kD
values, 1.56 and 1.50, respectively (eqs 3 and 4), suggesting
that the second C−H activation may occur through a
concerted pathway instead of the typical SEAr mechanism.6
31P NMR tracing experiments showed that small amounts of
the SPO-bound Ni−Al complex could be formed (95.9 ppm)
when equal numbers of equivalents of L11, AlMe3, and
Ni(cod)2 were mixed at 80 °C (see the Supporting
Information). However, the process can be accelerated by
addition of the formamide, whereas the alkyne did not have the
same influence. The result suggested that the formamide that
coordinated to Ni promoted isomerization of SPO with AlMe3.
Notably, the resulting complex was found to be able to
promote the annulation of alkyne 2a, providing product 3a in
60% yield. On the basis of these observations and previous
discussions,13 we proposed a plausible mechanism for this
reaction (Scheme 5b). First, the formed SPO-bound Ni−Al
bimetallic complex initiates formyl C−H bond cleavage
through oxidative addition (or H transfer).14 Subsequent
alkyne insertion provides the key intermediate (A), which
undergoes aryl C−H bond cleavage to produce the
intermediate (B). Final alkyne insertion and reductive
elimination led to the desired product 3a.
In summary, we have developed a ligand-controlled method

for nickel-catalyzed dual C−H annulation of arylformamides
and alkynes, affording various quinolin-2(1H)-ones in yields of
≤97%. This SPO-enabled bimetallic catalysis demonstrates its
unique ability to activate C−H activation and suppress
decarbonylation of arylformamides, which will improve the
future design of other types of C−H bond functionalization in
our lab.

Scheme 4. Scope of Alkynes

aReaction conditions: 1a (0.5 mmol), 2 (1.0 mmol), and toluene (0.2
mL) under N2 for 2 h. Yield for isolated products. bL4 (5 mol %) was
used instead of L11.

Scheme 5. Mechanistic Experiments and a Plausible
Mechanism
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