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Ag(I)-Mediated hydrogen isotope exchange of
mono-fluorinated (hetero)arenes†
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An efficient approach to install deuterium into mono-fluorinated

(hetero)arenes by a Ag2CO3/Sphos-mediated HIE protocol with

D2O as the deuterium source has been disclosed. This method

showed a specific site selectivity of deuteration at the α-position
of the fluorine atom, which is complementary to the existing tran-

sition metal-catalyzed HIE process.

Deuterated compounds are widely utilized as internal stan-
dards in mass spectrometry,1 for the mechanistic study in
chemical and biological processes,2 and for the investigation
of the structure and dynamics in soft matter through neutron
scattering.3 Due to the higher bond dissociation energy of the
C–D bond versus C–H bond, deuteration is commonly used to
alter the therapeutic profile and metabolic fate of drugs, while
retaining their original biochemical potency and selectivity.4

Moreover, deuterated compounds have also found applications
in the production of advanced functional materials for organic
light-emitting devices and organic/polymer solar cells.5

As one of the most efficient and straightforward strategies
for the synthesis of deuterated organic compounds, direct
hydrogen isotope exchange (HIE) has recently attracted great
attention (Scheme 1).6 A common strategy to facilitate H/D
exchange processes and to control site selectivity focusses on
the use of directing groups containing N or O atoms to coordi-
nate with a metal catalyst.7,8 However, the site-selective H/D
exchange protocol for simple (hetero)arenes lacking a coordi-
nating group remains challenging.9,10 In 2016, great advances
were made by the Chirik group using an iron complex as a
catalyst, affording deuterated arenes with special sterically con-
trolled site selectivity.11 Following this work, the same group
developed an H/D exchange protocol with a nickel complex as
a catalyst, selectively occurring at the α-position of simple pyri-

dine derivatives.12 Despite significant advances being made,
further expanding the substrate scope of simple (hetero)arenes
for the HIE protocol is highly desirable.

Fluorinated arenes are one of the most prominent struc-
tural motifs in drug candidates, occurring in 32 of 200 best-
selling drugs in 2018.13 Although the deuteration of fluoroar-
enes could be a useful approach to prepare deuterium-labeled
active pharmaceutical ingredients for absorption, distribution,
metabolism and toxicity studies, a preparative method for deu-
teration of mono-fluorinated (hetero)arenes via H/D exchange
has rarely been explored.14 In addition, the cross-coupling
reaction by C–H activation of mono-fluorinated (hetero)arenes
also suffered from low efficiency and narrow substrate scope,
even when using monofluoroarenes as solvent.15 In our labora-
tory, we recently developed a new H/D exchange protocol with
a combination of Ag2CO3 and a phosphine ligand as a catalyst
and demonstrated that the adoption of carbonate salts instead
of carboxylic salts as additives played a key role in achieving
H/D exchange of five-membered heteroarenes at room temp-
erature.16 Herein, we report an efficient H/D exchange protocol

Scheme 1 Deuteration via HIE.
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for the incorporation of deuterium into a wide range of mono-
fluorinated (hetero)arenes with D2O as the deuterium source.

Our study began with using a combination of Ag2CO3/
JohnPhos, which has been found to be a robust catalytic
system for the H/D exchange protocol of five-membered het-
eroarenes. We found that products with only 5% deuterium
incorporation formed even at elevated temperature, which
suggested that the H/D exchange process is very slow under
these conditions. We then screened the solvents for the reac-
tion and found that toluene is the best, affording 15% deuter-
ium incorporation (see Table S1† for details). Concentration
played an important role in the H/D exchange process, as a
higher level of deuterium incorporation at 43% was achieved
using a smaller volume of toluene (Table 1, entry 1). The
choice of the phosphine ligand is crucial, and a high level of
deuterium incorporation at 91% was observed with Sphos as
the ligand (Table 1, entries 1–10). The examination of additives
showed that K2CO3 is the best for the H/D exchange process,
affording 91% deuterium incorporation (see Table S2† for
details). These results also suggested that K2CO3 can promote
the H/D exchange process. The atom% of deuterium incorpor-
ation can be further increased by conducting the reaction at a
slightly higher temperature (Table 1, entries 11 and 12).
Various silver salts other than Ag2CO3 were examined and
found to be less efficient, giving the product with lower deuter-
ium incorporation (Table 1, entries 13–16). In addition, no
deuterium incorporation was observed without adding a silver

salt, which suggested that a silver salt is essential for this reac-
tion (Table 1, entry 17). The attempt to reduce the amount of
Ag2CO3 and Sphos was unsuccessful. When the reaction was
conducted with 20 mol% of Ag2CO3 and Sphos, the atom% of
deuterium incorporation was 36% at 80 °C and 72% at 120 °C
(Table 1, entries 18 and 19). This result suggested that the
silver salt may serve as the catalyst for this reaction. Therefore,
the optimal conditions were established with Ag2CO3/Sphos as
the catalyst and K2CO3 as an additive in toluene at 90 °C.

With the optimal reaction conditions in hand, we set out to
explore the generality of this method with respect to fluori-
nated arenes. As shown in Table 2, we found that a wide range
of functional groups including nitrile, ketone, alkoxyl, nitro,
amide, alkynyl, alkyl, and halogen (Br) groups are compatible
with the reaction conditions. The monofluoroarenes with sub-
stituents at different positions are also examined. The mono-
fluoroarenes with ortho-substitution are wide substrates for
HIE, affording the desired products 2a–2d with moderate-to-
high atom% deuterium incorporation. Interestingly, we found
deuterium-labeling also occurring at the α position of the
alkoxyl group of product 2d, suggesting that the alkoxy group
may also promote the H/D exchange process. The monofluor-
oarenes with para-substituents enabled the H/D exchange
process to occur at both the α positions of the fluorine atom,

Table 1 Reaction optimization

Entrya Ag salt Ligand D incorporationb

1 Ag2CO3 JohnPhos 43%
2 Ag2CO3 t-Bu3P 26%
3 Ag2CO3 t-Bu2(2-MeC6H4)P 26%
4 Ag2CO3 (o-MePh)3P 6%
5 Ag2CO3 Ph3P 5%
6 Ag2CO3 (p-OMePh)3P 15%
7 Ag2CO3 (o-MePh)3P 6%
8 Ag2CO3 MePhos 90%
9 Ag2CO3 DavePhos 82%
10 Ag2CO3 SPhos 91%
11c Ag2CO3 SPhos 96%
12d Ag2CO3 SPhos 96%
13 Ag2O SPhos 65%
14 AgBr SPhos 1%
15 AgCl SPhos 1%
16 AgOAc SPhos 1%
17 None SPhos 0%
18e Ag2CO3 SPhos 36%
19 f Ag2CO3 SPhos 72%

a The reaction was conducted on 0.3 mmol of 1a, 6 mmol of D2O,
50 mol% of Ag salt, 50 mol% of ligand and 0.3 mmol of K2CO3 in
toluene at 80 °C. bDetermined by GC-MS. c 90 °C. d 100 °C. e 20 mol%
of Ag2CO3 and 20 mol% of SPhos. f 20 mol% of Ag2CO3 and 20 mol%
of SPhos 120 °C.

Table 2 Deuteration of monofluoroarenesa

a The reaction was conducted with compound 1 (1 mmol), D2O
(10 mmol), Ag2CO3 (0.5 mmol), Sphos (0.5 mmol) and K2CO3 (1 mmol)
in 1 mL of toluene at 90 °C for 12 hours; deuterium incorporation was
estimated using 1H NMR spectra; isolated yield. b Volatile liquid.
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affording products with 73% to 95% deuterium incorporation
(2e–2j). The H/D exchange process with meta-substituted
monofluoroarenes showed site selectivity, possibly due to the
steric effect of phenyl groups (2k–2l). The use of 4,4′-difluoro-
diphenyl and 4,4′-difluoro-benzophenone as starting materials
led to the H/D exchange of four C–H bonds, providing 65%
and 91% deuterium incorporation, respectively. In all cases,
deuterium preferred to install at the ortho-position to the C–F
bond, which is possibly due to the greater acidity of the C–H
bond ortho to the C–F bond.17 It is worth noting that the deu-
teration of 4,4′-difluoro-benzophenone may lead to novel ultra-
long organic phosphorescent materials, since it is an impor-
tant intermediate for organic phosphorescent materials.18

Since nitrogen-containing heteroarenes are common struc-
tural motifs in functional materials and bioactive compounds,
we next turned our attention to examine the H/D exchange
process with monofluorinated nitrogen-containing heteroar-
enes as starting materials. As shown in Table 3, pyridine
derivatives with fluorine substituted at different positions are
wide substrates for the Ag2CO3-mediated H/D exchange reac-
tion, and excellent atom% deuterium incorporation is com-
monly observed with the exception of product 4c. The great
difference in atom% deuterium incorporation observed
between products 4a (94%) and 4c (55%) suggested that a
steric effect may lead to the loss of efficiency in the H/D
exchange process. When a fluorine atom was installed at the
position meta to the pyridine nitrogen (compound 4d–4g), the
H/D exchange process preferentially occurred at the para-posi-
tion over the ortho-positions, possibly due to the difference in
the pKa of the C–H bond at these positions.17b The low yields

of compounds 4d and 4g may be attributed to the volatile pro-
perties and low boiling points of 4d and 4g. It is worth noting
that this Ag2CO3-mediated HIE protocol showed orthogonal
site selectivity to other metal catalysts, preferentially occurring
at the 3, 4, and 5 positions of pyridine derivatives.12

Furthermore, we found that monofluoroquinoline and mono-
fluoropyrimidine derivatives are wide substrates (4h–4j), pro-
viding a high level of deuterium incorporation even for the
substrate with an amine group directly attached at the pyrimi-
dine ring. With the exception of the electron-deficient arenes,
the H/D exchange of electron-rich 2-chloro-5-fluorobenzo[d]
thiazole was also tested and it afforded a product with 90%
deuterium incorporation, which further expands the scope of
this reaction.

To further demonstrate the specific site selectivity of this
Ag2CO3-mediated H/D exchange protocol, we conducted the
reaction with 2-(4-fluorophenyl)pyridine as the starting
material. As shown in Scheme 2, the H/D exchange occurred at
different positions with Ag2CO3/Sphos and a Ru complex as
the catalyst, respectively.19 Based on this result, we prepared
deuterium-labeled 2-(2,4-difluorophenyl)pyridine, which is a
key motif for a famous blue light-emitting material named
FIrpic.20 Deuterium-labeling of FIrpic is expected to prolong
the corresponding device’s lifetime.21

After establishing the utility of this Ag2CO3-mediated H/D
exchange protocol on a wide range of monofluorinated
(hetero)arenes, we attempted to apply this method to the late-
stage deuterium-labelling of drug molecules. Although it is
challenging to introduce deuterium at the C(sp2)–H bond in
the antipsychotic drug iloperidone by traditional metal-cata-
lyzed HIE protocols, the Ag2CO3-mediated H/D exchange on 5a
afforded 6a labeled at the fluorinated phenyl ring and methyl
group with a high level of deuterium incorporation
(Scheme 3).

We then investigated the mechanism. A mechanism invol-
ving free radicals should be discounted, because the radical
inhibitor TEMPO has no negative effect on the reaction (see
the ESI† for details). Based on our experimental evidence and
previous reports,16a,22 we proposed a plausible mechanism
pathway. First, the silver carbonate-mediated concerted meta-

Table 3 Deuteration of fluorinated nitrogen-containing heteroarenesa

a The reaction was conducted with compound 3 (1 mmol), D2O
(10 mmol), Ag2CO3 (0.5 mmol), Sphos (0.5 mmol) and K2CO3 (1 mmol)
in 1 mL of toluene at 90 °C for 12 hours; deuterium incorporation was
estimated using 1H NMR spectra; isolated yield. Scheme 2 Site selectivity of Ag2CO3-mediated HIE.

Organic & Biomolecular Chemistry Communication

This journal is © The Royal Society of Chemistry 2020 Org. Biomol. Chem.

Pu
bl

is
he

d 
on

 1
2 

A
ug

us
t 2

02
0.

 D
ow

nl
oa

de
d 

by
 C

or
ne

ll 
U

ni
ve

rs
ity

 L
ib

ra
ry

 o
n 

8/
27

/2
02

0 
10

:3
0:

17
 A

M
. 

View Article Online

https://doi.org/10.1039/d0ob01273d


lation deprotonation step leads to the C–H bond activation of
fluorinated arenes. Then, the H/D exchange may occur
between T2 and heavy water to form T3, followed by deuterium
incorporation and regeneration of silver carbonate (Scheme 4).

In summary, a general approach to install deuterium into
mono-fluorinated (hetero)arenes by H/D exchange is disclosed.
A wide range of fluorinated (hetero)arenes are found to be
compatible with this transformation, which widely expanded
the substrate scope of the H/D exchange protocol. In addition,
we applied this method for the deuterium-labelling of selected
commercial drugs and advanced functional materials. Further
work is underway in our laboratory to explore the scope of this
Ag2CO3-mediated HIE process and the isotope effect of deute-
rated functional materials. These studies will be reported in
due course.
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