

Recyclable Trifluoromethylation Reagents from Fluoroform

Jacob B. Geri and Nathaniel K. Szymczak*®

Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109-1055, United States

S Supporting Information

ABSTRACT: We present a strategy to rationally prepare CF_3^- transfer reagents at ambient temperature from HCF_3 . We demonstrate that a highly reactive CF_3^- adduct can be synthesized from alkali metal hydride, HCF_3 , and borazine Lewis acids in quantitative yield at room temperature. These nucleophilic reagents transfer CF_3^- to substrates without additional chemical activation, and after CF_3 transfer, the free borazine is quantitatively regenerated. These features enable syntheses of popular nucleophilic, radical, and electrophilic trifluoromethylation reagents with complete recycling of the borazine Lewis acid.

T he trifluoromethyl functional group is widely used in medicinal chemistry to enhance the bioavailability, lipophilicity, and resistance to oxidative degradation of drug molecules, and these properties have led to its inclusion in many approved drugs.¹ Fluoroform (HCF₃, <\$0.10/mol) is an attractive starting material for CF₃ installation reactions: it is nontoxic, widely available, and easily handled.² However, even though >0.5 million metric tons of HCF₃ are produced each year as a byproduct from PTFE manufacturing, it is not used as a CF₃ feedstock and is instead incinerated.³

Unlike methane, which is widely used as a source of the $-CH_3$ group,⁴ the use of HCF₃ as a $-CF_3$ feedstock has presented significant challenges. Although HCF₃ has a large C-H bond dissociation enthalpy (107 kcal/mol),⁵ its weak acidity ($pK_a =$ 28)⁶ renders deprotonation strategies for C–H bond activation tractable.^{2,7} Unlike CH₃⁻, which can be readily transferred to electrophilic substrates using organometallic reagents,⁸ analogous LiCF₃ and MgX(CF₃) are unstable because they irreversibly eliminate F⁻, even at -80 °C.⁹ However, CF₃⁻ can be stabilized through the formation of a Lewis acid $(LA)-CF_3$ adduct; this strategy forms the basis of all nucleophilic trifluoromethylation reagents.¹⁰ The key challenge that limits the synthesis of LA-CF₃⁻ reagents from HCF₃ is poor compatibility between components of the reaction mixture. The LA and Brønsted base must coexist in solution prior to HCF₃ addition because the CF_3^- anion is extremely unstable. Furthermore, the base must not irreversibly react with the LA, and the LA must not promote CF_3^- defluorination (Figure 1).

Two primary strategies have emerged to provide compatible pairs of LAs and bases: the use of steric bulk to separate reactive Lewis acidic and basic centers,¹¹ and the use of Lewis pairs with mismatched strength to enable reversible adduct formation.¹² Recently, steric control has been used to activate HCF₃ using a mixture of bulky bases (potassium bis(trimethylsilyl)amide (KHMDS)¹³ or phosphazene superbases)¹⁴ and LAs such as SiMe₃Cl. The instability of the CF₃⁻ intermediate (-80 °C)

© XXXX American Chemical Society

a) challenges in HCF $_3$ activation with an acid/base pair

Figure 1. Challenges in HCF₃ activation (E = electrophile).

requires the combination of KHMDS and electrophiles prior to addition of HCF₃, which presents an operational challenge. This strategy is limited by the expense of the required bases, cryogenic temperatures, and low generality.²

We sought to design a system for room-temperature HCF_3 activation using neutral, weak LAs to avoid irreversible reactions with bases and provide optimal stabilization of CF_3^- . Importantly, we hypothesized that a precisely tuned LA could be recyclable, impart high CF_3^- nucleophilicity to a LA- CF_3 adduct, and prevent F^- elimination from CF_3^- at room temperature. This represents a distinct concept in HCF_3 activation: no systematic approach for the selection of Lewis acids capable of providing these three desirable properties has been reported.

We targeted alkali metal hydride derived bases (NaH, \$0.10/ mol; KH, \$35/mol) for HCF₃ deprotonation, and boron based LAs. A widely used solvent, dimethyl sulfoxide (DMSO), reacts with alkali hydrides to produce $\text{KCH}_2(\text{SO})\text{CH}_3^-$ (p K_a = 35).¹⁵ Because of the low expense of this strong, soluble base and its ability to deprotonate HCF₃, we selected it as an ideal basic partner.¹⁶ Boron-based LAs were targeted because they have a wide range of Lewis acidities,¹⁷ and can be easily prepared.

An appropriate LA must react reversibly with $KCH_2(SO)CH_3$ in order to enable HCF_3 deprotonation, while subsequently

Received: May 25, 2017

Figure 2. Development of LA–CF₃⁻ adducts from HCF₃. (a) LAs evaluated. (b) Calculated pK_{CF3} values of LAs (M062X/6-311++G(d,p)). (c) Yield of LA–CF₃⁻ adduct from HCF₃. *: HCF₃ was added to a 1:1 mixture of LA and KCH₂(SO)CH₃ (0.1 M), and the yield of LA-CF₃⁻ was quantified by 19F-NMR spectroscopy.

providing sufficient Lewis acidity to capture and stabilize CF₃⁻. To select LAs with a wide range of strengths for experimental evaluation, the CF₃⁻ affinity of selected boron LAs was assessed computationally using density functional theory (DFT). The ΔG of the reaction between CF₃⁻ and a given LA was calculated at the M062X/6-311++G(d,p) level.¹⁸ The scale was set to zero relative to the known adduct between dimethylformamide and CF₃,^{7a} and the data were translated to provide predicted relative binding constants on a log scale (pK_{CF3}) as a unified metric of CF₃⁻ affinity. We used these data to select 13 LAs representing a 30 pK_{CF3} span for experimental evaluation in reactions between KCH₂(SO)CH₃, LAs, and HCF₃ (Figure 2).

Equimolar quantities of KCH₂(SO)CH₃ and each LA were combined at room temperature in DMSO. HCF₃ was added (1 atm), and the formation of B–CF₃ adducts was assessed by ¹⁹F-NMR spectroscopy. LAs with pK_{CF3} values above 11 exhibited irreversible coordination to CH₂(SO)CH₃⁻, and did not react with HCF₃. LAs with pK_{CF3} values below 6 reacted with HCF₃, but were insufficiently Lewis acidic to stabilize the CF₃⁻ anion resulting from HCF₃ deprotonation (Figure 2c).¹⁹

Three LAs with intermediate pK_{CF3} values between 6 and 11 reacted with HCF₃ to provide B–CF₃ species in quantitative yield (Figure 3a). When either hexamethylborazine (B₃N₃Me₆), trimethyl borate (B(OMe)₃), or trisethyleneoxyborazine ((BOC₂H₄N)₃) were combined with 1 equiv KCH₂(SO)CH₃, followed by 1 equiv HCF₃ in DMSO solvent, the B–CF₃ adducts

Figure 3. (a) Synthesis of 1, 2, and 3 from HCF₃. (b) HCF₃ activation by $B_3N_3Me_6/base$, ORTEP of 1. Ellipsoids shown at 50% probability; B1–C2, 1.656(4) Å,; B1–C1, 1.627(4) Å; C1–B1–C2, 107.1(2). [K(18-crown-6)(THF)]⁺ omitted for clarity.

were observed (1, 2, and 3) in quantitative conversion within 5 min at room temperature. These three LAs are easily obtained; $B(OMe)_3$ is a commodity chemical (<\$1/mol),²⁰ and $B_3N_3Me_6$ and ($BOC_2H_4N)_3$ can be synthesized from simple starting materials (see SI for details).

Importantly, **2** is currently an expensive CF_3^- reagent with reported applications in nucleophilic trifluoromethylation and copper-catalyzed cross-coupling.²¹ Solutions of **1** and **3** are oxygen-stable, decompose on exposure to moisture, and return the free borazine LAs upon thermal decomposition.

To examine the mechanism of CF₃ adduct formation, the reaction between B₃N₃Me₆ and KCH₂(SO)CH₃ was followed spectroscopically. The combination of equimolar KCH₂(SO)-CH₃ and B₃N₃Me₆ in DMSO afforded a homogeneous solution containing a single new species with C_s symmetry, as assessed by NMR spectroscopy. ¹H, ¹³C, and ¹¹B-NMR spectra support the formation of a 1:1 Lewis pair between KCH₂(SO)CH₃ and $B_3N_3Me_6$ at room temperature (4). The ¹¹B-NMR spectrum exhibited a 2:1 set of resonances at +32.5 and -3.6 ppm. The resonance at -3.6 ppm is consistent with a tetrahedral boron center, whereas the broad resonance at 32.5 ppm ($\nu_{1/2}$ = 477 Hz) is minimally shifted from the free $B_3N_3Me_6$ (35.5), consistent with two planar boron centers.²² The reversibility of KCH₂(SO)-CH₃ adduct formation with B₃N₃Me₆ was examined by variable temperature NMR spectroscopy. At 15 °C, the ¹H NMR spectrum exhibited resonances at 0.04 and -0.44 ppm for the B- CH_3 resonances. As the temperature was raised, the resonances broadened and coalesced at 35 °C; further increasing the temperature to 90 °C resulted in the appearance of resonances consistent with free $B_3N_3Me_6$ (Figure S23). Upon cooling, 4 was cleanly regenerated. The coalescence temperature of 35 °C was used to estimate a $\Delta G^{\ddagger} \approx 14$ kcal/mol.²³ These data are consistent with a dynamic exchange process between CH₂(SO)- CH_3^- and $B_3N_3Me_6$ at room temperature (Figure 3b).

The addition of 1 equiv HCF₃ to 4 immediately (<1 min) afforded 1 in 99% yield. NMR spectroscopy revealed a species similar to 4, as assessed via ¹H, ¹¹B, ¹⁹F, and ¹³C NMR spectroscopy. A new resonance at -65.7 ppm (² $J_{10B-19F} = 210$ Hz) was observed in the ¹⁹F NMR spectrum, consistent with a B–CF₃ adduct. Additionally, a new 2:1 set of resonances in the ¹¹B NMR spectrum at +33.1 and -5.7 ppm was observed along with two 2:1 sets of $-CH_3$ resonances in the ¹⁴H and ¹³C NMR spectra, representing desymmetrized N–CH₃ (¹H: 2.49, 2.45 ppm. ¹³C: 34.73, 34.55 ppm.) and B-CH₃ (¹H: 0.08, -0.35 ppm.

¹³C: 4.31, 0.16 ppm.) units. The sharp peaks exhibited by this complex in the ¹H, ¹³C, and ¹⁹F NMR spectra suggest that although 4 equilibrates with free KCH₂(SO)CH₃, the formation of 1 is irreversible at room temperature.

Preparation of 1 in the less polar solvent tetrahydrofuran (THF) required adjustments to the base and the countercation. Potassium toluide (KTol) was selected as a base that can be prepared on large scales and in high (>95%) yield from KOtBu, BuLi, and toluene at 25 °C.²⁴ The Lewis adduct between KTol, 18-crown- 6_1^{25} and $B_3N_3Me_6$ (5) was characterized using NMR spectroscopy and X-ray crystallography. 5 possesses similar NMR spectra in comparison with 4: C_s symmetry and diagnostic 2:1 sets of B-CH₃ and N-CH₃ resonances. The solid state structure of 5 revealed a tetrahedral boron center, containing two distinct B-C bond lengths for the B-CH₃ and B-CH₂Ph bonds (1.590(4) Å and 1.775(5) Å, respectively). The long B-CH₂Ph bond length²⁶ is consistent with a weak B-CH₂Ph bond. Similar to 4, variable temperature ¹H NMR spectra of 5 exhibited dynamic behavior with broadening of the $B-CH_3$ peaks at 25 °C, which indicate reversible dissociation of the toluide base.

Solutions of 1 were prepared in THF by the addition of 1 equiv HCF₃ to **5**. 1 was obtained as a weighable solid in 95% yield, and was structurally characterized by X-ray crystallography (Figure 3b). The aromatic character of the borazine unit was disrupted by the inclusion of a tetrahedral boron center with a new B–CF₃ bond (C1–B1–C2: 107.1(2)°), and elongation of the proximal B–N bond distances (B1–N1, 1.550(3) Å; B1–N2, 1.549(3) Å) vs 1.44(3) in free borazine).²⁷ The B1–C2 (*CF*₃) bond (1.656(4) Å) is longer than the B1–C1 (*CH*₃) bond (1.627(4) Å), consistent with a weaker B–CF₃ bond. DFT analyses revealed a larger binding enthalpy of CH₃⁻⁻ to B₃N₃Me₆ than that of CF₃⁻⁻ by 8.5 kcal/mol (see SI). These structural and calculated metrics indicate that CF₃⁻⁻ transfer should be preferred over CH₃⁻⁻ transfer to electrophilic substrates.

Although KB(OMe)₃CF₃ (2) has been previously shown to facilitate nucleophilic CF₃⁻ transfer reactions, these proceed only under forcing reaction conditions.²⁸ Because nucleophilic CF₃⁻ transfer necessitates the cleavage of a B–CF₃ bond, we hypothesized that CF₃⁻ reagents stabilized by weaker LAs may exhibit superior nucleophilicity. 1 has a pK_{CF3} value 3.2 units lower than 2, indicating that B₃N₃Me₆ is a weaker LA than B(OMe)₃. The addition of B(OMe)₃ to 1 afforded 2 in 80% yield, which is consistent with the difference in the calculated CF₃⁻ affinity of B₃N₃Me₆ and B(OMe)₃ (Figure 4b). When 1 was allowed to react with benzophenone, the corresponding trifluoromethylcarbinol was generated in 72% yield in 30 min at room temperature. In contrast, 2 provided only 2% yield under

Figure 4. (a) Relative reactivity of 1 and 2 in nucleophilic trifluoromethylation of benzophenone. (b) CF_3^- transfer between 1 and $B(OMe)_{3i}$ synthesis of $CF_3CO_2^-$ from HCF_3 and subsequent recovery of $B_3N_3Me_6$.

identical conditions; this implicates that 1 has a higher nucleophilicity than 2 (Figure 4a).

The observation that $B_3N_3Me_6$ can be released upon thermal decomposition of 1 suggests that the free LA may be regenerated, recovered, and reused after CF_3^- transfer. CO_2 was selected as an initial substrate to test this hypothesis. The addition of 4 atm CO_2 to 1 in DMSO afforded trifluoroacetate ($CO_2CF_3^-$) in 93% isolated yield (Figure 4b). $B_3N_3Me_6$ was recovered in 95% isolated yield by extraction into pentane; the recovery of the free LA after CF_3 transfer is a unique attribute of this system. Transformations with high atom economy using 1 should be advantageous²⁹ in comparison with SiMe_3CF_3/CsF,^{10a} KB-(OMe_3)CF_3, or DMF/KOtBu/HCF₃,¹⁶ which generate stoichiometric waste (SiMe_3F) or require low temperatures (-80 °C).

The high cost of trifluoromethylation reagents stems largely from their multistep syntheses from CF₃Br or CF₃L.^{10a,30} The regeneration of the B₃N₃Me₆ LA in the reactions noted above suggested that these popular reagents could be prepared from HCF₃ using B₃N₃Me₆ as a recyclable component, thereby reducing the reaction inputs to base, HCF₃, and the direct precursor (Figure 5). Reagents used to install the CF₃ group can be divided between their use for CF₃^{-,31} CF₃^{-,32} and CF₃⁺ transfer.³³ The most important of these is SiMe₃CF₃, the precursor to almost all other trifluoromethylation reagents.^{10a} We used the preparation of this compound to demonstrate the *in situ* recyclability of B₃N₃Me₆ on a large scale.

b) *iterative synthesis of SiMe*₃CF₃

Figure 5. (a) Synthesis of SiMe₃CF₃, KSO₂CF₃, and Togni I from HCF₃. *: yield measured *in situ* by ¹⁹F-NMR spectroscopy. (b) Iterative synthesis of SiMe₃CF₃ with in situ $B_3N_3Me_6$ recycling; NaCH₂(SO)-CH₃ made *ex situ*.

Through ten cycles of an iterative addition/distillation protocol, we achieved ~5 turnovers with respect to $B_3N_3Me_6$ to obtain 34 mmol SiMe₃CF₃ after distillation without the need for separation or purification of the borazine LA. The only consumed reagents were NaH, SiMe₃Cl, and HCF₃. The radical CF₃· reagent KSO₂CF₃³² was also prepared in 66% isolated yield by treating SO₂ with 1 (98% recovery of $B_3N_3Me_6$). Finally, the hypervalent iodonium-CF₃ reagent Togni I,³³ a widely used CF₃⁺ reagent, was synthesized in 78% chemical yield and with 98% regeneration of $B_3N_3Me_6$ by treating the appropriate iodaoxole with 1. We expect that direct access to these well-established nucleophilic, radical, and electrophilic reagents from HCF₃ may increase access to the CF₃ group in existing large-scale processes.

In summary, we have developed a predictive design concept that led to the preparation of several trifluoromethylation reagents from HCF₃. One of these, 1, exhibited high nucleophilicity at room temperature. After CF₃⁻ transfer, the free LA was quantitatively regenerated. We exploited this property to present an iterative synthesis of SiMe₃CF₃ on a large scale from NaH, HCF₃, and SiMe₃Cl as the only consumed reagents with repeated in situ reuse of the LA. This methodology provides direct access to other common trifluoromethylating reagents from HCF₃, including $K(B(OMe)_3CF_3, KSO_2CF_3)$ KCO₂CF₃, and Togni reagent I. Finally, we introduce borazines as a class of tunable, weak LAs for synthetic applications. The rational selection of compatible LAs and bases for efficient nucleophilic trifluoromethylation using HCF₃ is a design strategy that may also be applied to other unstable anions to promote other difficult nucleophilic functionalizations.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b05408.

Crystallographic information for 1 and 5 (CIF) Synthetic details, characterization (PDF)

AUTHOR INFORMATION

Corresponding Author

*nszym@umich.edu

ORCID [©]

Nathaniel K. Szymczak: 0000-0002-1296-1445

Notes

The authors declare the following competing financial interest(s): We have a patent pending on content relating to this manuscript.

ACKNOWLEDGMENTS

This work was supported by the NSF-CAREER program (grant CHE-1350877), a Rackham Graduate Student Research Grant (J.B.G.) and the NSF (Grant CHE-0840456) for X-ray instrumentation. N.K.S. is a Camille Dreyfus Teacher-Scholar and an Alfred P. Sloan Research Fellow. We thank Dr. Jeff Kampf for crystallographic assistance.

REFERENCES

- Wishart, D. S.; Knox, C.; Guo, A. C.; Shrivastava, S.; Hassanali, M.;
 Stothard, P.; Chang, Z.; Woolsey, J. Nucleic Acids Res. 2006, 34, D668.
 Grushin, V. V. Chim. Oggi 2014, 32, 81.
- (3) McCulloch, A.; Lindley, A. A. Atmos. Environ. 2007, 41, 1560.
- (4) Olsbye, U. Angew. Chem., Int. Ed. 2016, 55, 7294.

(5) Amphlett, J. C.; Coomber, J. W.; Whittle, E. *J. Phys. Chem.* **1966**, *70*, 593.

(6) Symons, E. A.; Clermont, M. J. J. Am. Chem. Soc. 1981, 103, 3127.
(7) (a) Russell, I.; Roques, N. Tetrahedron 1998, 54, 13771.

(b) Zanardi, A.; Novikov, M. A.; Martin, E.; Benet-Buchholz, J.;

Grushin, V. V. J. Am. Chem. Soc. 2011, 133, 20901.

(8) Grignard, V. Compt. rend **1900**, 130, 1322.

(9) (a) Lishchynskyi, A.; Miloserdov, F. M.; Martin, E.; Benet-Buchholz, J.; Escudero-Adán, E. C.; Konovalov, A. I.; Grushin, V. V. *Angew. Chem., Int. Ed.* **2015**, *54*, 15289. (b) Prakash, G. K. S.; Wang, F.; Zhang, Z.; Haiges, R.; Rahm, M.; Christe, K. O.; Mathew, T.; Olah, G. A. *Angew. Chem., Int. Ed.* **2014**, *53*, 11575.

(10) (a) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683.
(b) Langlois, B. R.; Billard, T.; Roussel, S. J. Fluorine Chem. 2005, 126, 173.

(11) (a) Stephan, D. W. J. Am. Chem. Soc. 2015, 137, 10018. (b) Erős, G.; Nagy, K.; Mehdi, H.; Pápai, I.; Nagy, P.; Király, P.; Tárkányi, G.; Soós, T. Chem. - Eur. J. 2012, 18, 574. (c) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2015, 54, 6400.

(12) (a) Mahdi, T.; Stephan, D. W. J. Am. Chem. Soc. 2014, 136, 15809.
(b) Scott, D. J.; Fuchter, M. J.; Ashley, A. E. J. Am. Chem. Soc. 2014, 136, 15813.

(13) Prakash, G. K. S.; Jog, P. V.; Batamack, P. T. D.; Olah, G. A. Science **2012**, 338, 1324.

(14) Kawai, H.; Yuan, Z.; Tokunaga, E.; Shibata, N. Org. Biomol. Chem. 2013, 11, 1446.

(15) Brown, C. A. J. Org. Chem. 1974, 39, 3913.

(16) Folléas, B.; Marek, I.; Normant, J.-F.; Jalmes, L. S. *Tetrahedron Lett.* **1998**, 39, 2973.

(17) Sivaev, I. B.; Bregadze, V. I. Coord. Chem. Rev. 2014, 270–271, 75.

- (18) (a) Zhao, Y.; Truhlar, D. G. *Theor. Chem. Acc.* 2008, 120, 215. (b) Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L.
- A. J. Comput. Chem. **2001**, 22, 976.

(19) See SI for details.

(20) Banfi, L.; Narisano, E.; Riva, R.; Matteson, D. S. In *Encyclopedia of Reagents for Organic Synthesis*; Paquette, L. A., Ed.; John Wiley & Sons, Ltd, 2001.

(21) Knauber, T.; Arikan, F.; Röschenthaler, G.-V.; Gooßen, L. J. Chem. - Eur. J. 2011, 17, 2689.

(22) Kennedy, J. D. In *Multinuclear NMR*; Mason, J., Ed.; Springer, 1987; p 221.

(23) Jackman, L. Dynamic nuclear magnetic resonance spectroscopy; Elsevier, 2012.

(24) Lochmann, L.; Trekoval, J. J. Organomet. Chem. 1987, 326, 1.

(25) 18-crown-6 was added to improve the stability of 1 in THF, due to the previously observed sensitivity of CF_3^- species toward alkali metal cations. See reference 13.

(26) Cambridge crystallographic database search (CSD version 5.38, updated November 2016).

(27) Dearomatized borazines: (a) Nöth, H.; Troll, A. Eur. J. Inorg. Chem. 2005, 2005, 3524. (b) Carter, T. J.; Kampf, J. W.; Szymczak, N. K. Angew. Chem., Int. Ed. 2012, 51, 13168. (b1) Carter, T. J.; Wang, J. Y.; Szymczak, N. K. Organometallics 2014, 33, 1540–1543.

(28) Levin, V. V.; Dilman, A. D.; Belyakov, P. A.; Struchkova, M. I.; Tartakovsky, V. A. *Tetrahedron Lett.* **2011**, *52*, 281.

(29) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259.

(30) Burton, D. J.; Qui, W.; Sánchez-Roselló, M.; del Pozo Losada, C.; Luis Aceña, J. In *Encyclopedia of Reagents for Organic Synthesis*; Paquette, L. A., Ed.; John Wiley & Sons, Ltd, 2001.

(31) Krishnamurti, R.; Bellew, D. R.; Prakash, G. K. S. J. Org. Chem. 1991, 56, 984.

(32) Zhang, C. Adv. Synth. Catal. 2014, 356, 2895.

(33) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650.