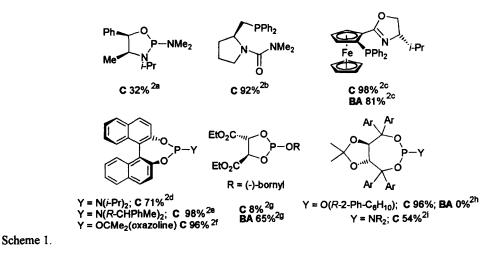


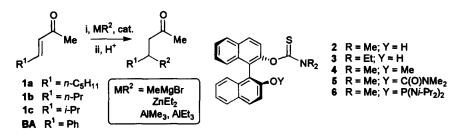
Copper-Catalysed Asymmetric Conjugate Addition of Organometallic Reagents to Linear Enones Using Thiourethane Ligands

Simon M. W. Bennett,⁴ Stephen M. Brown,^b James P. Muxworthy,^b Simon Woodward^{a*}


*Department of Chemistry, University of Hull, Hull HU6 7RX, United Kingdom

^bZeneca Limited, Process Technology Department, PO Box A38, Huddersfield HD2 1FF, United Kingdom

Received 23 November 1998; accepted 21 December 1998


Abstract: In the presence of chiral thiourethane ligands $[Cu(MeCN)_4]BF_4$ forms active catalysts for the conjugate addition of MeMgBr, $ZnEt_2$ and AlR_3 (R = Me, Et) to non-3-en-2-one, hept-3-en-2-one, and 5-methylhex-3-en-2-one. Enantioselectivities of up to 51% are realised for these difficult substrates; for cyclohex-2-enone an e.e. of 42% is attained. © 1999 Elsevier Science Ltd. All rights reserved.

Recently, there has been considerable interest in asymmetric copper-catalysed 1,4-additions of organometallic reagents to Michael acceptors.¹ In the presence of phosphorus ligands derived from chiral diols, ephedrine, or oxazolines, significant levels of enantioselectivity have been realised for organometallic addition to cyclohex-2-enone (C) and benzylideneacetone (BA).² Typical ligands and their highest selectivity (% e.e.) are shown in Scheme 1. In general, the selectivities of these phosphorus systems are higher than those realised by thiolate-based catalysts³ and other ligands.⁴ However, at present no one ligand system affords a copper catalyst showing uniformly superb selectivity against a wide range of substrate variables (*e.g.* cyclic *vs.* acyclic enones, cyclic enones with different ring sizes, *etc.*). Such a goal may be unattainable and there is therefore a need for the development of new families of ligands and catalysts outside the scope of those reported in Scheme 1.

Fax: +44-1482-466410; E-mail: S.Woodward@chem.hull.ac.uk

Linear enones possessing only aliphatic substituents are a demanding substrate class for asymmetric conjugate addition.⁵ We are seeking new copper(I) catalysts which engender 1,4-addition with good enantioselectivity to these compounds. Routine screening for effective ligands revealed thiourethanes to be a promising new class of ligand for these challenging substrates. Addition of AlMe₃ to (E)-non-3-en-2-one 1a (Scheme 2) was selected as an initial model using *in situ* catalysts formed from [Cu(MeCN)₄]BF₄ and two equivalents of ligands 2-6⁶ (Table 1). In general, straw-coloured homogeneous catalysts were obtained but in some cases black precipitates formed. Ligands containing free hydroxyl functions led to moderately selective systems (runs 1-2), whereas ligands with either weakly co-ordinating to strongly co-ordinating neutral donors led to much less effective catalysts (runs 3-5). In no case was 1,2-addition observed.

Scheme 2.

Table 1. Addition of AlMe₃ (1.5 equivalents) to (*E*)-non-3-en-2-one 1a in the presence of $[Cu(MeCN)_4]BF_4$ (10 mol%) and ligands 2-6 (20 mol%).⁷

Run Ligand		Conversion/%	1,4-Yield/%	e.e./%	
1	2	96	80	50	
2	3	93	75	40	
3	4	69	31	12	
4	5	46	23	15	
5	6	90	63	8	

Several other sets of conditions were applied to ligand 2 (Table 2) to study the affect of the reaction conditions on the enantioselectivity. Control reactions indicated some (MeMgBr) or no (ZnEt₂, AlR₃) conjugate addition in the absence of copper(I). In all catalysed runs the Kubas compound,⁸ [Cu(MeCN)₄]BF₄, proved superior to other copper salts tried [CuBr, Cu(OTf)₂]. Changing the catalyst stoicheiometry to 1:1 led to an inferior system (run 1), as did use of other organometallics (runs 2-4). The addition of AlMe₃ proceeded with lower selectivity in solvents of both lower and higher polarity (runs 5-8). Lowering the catalyst loading reduced the chemical yield but the enantioselectivity was not affected (run 9). The present catalytic system could not be used at room temperature due to decomposition; at temperatures below -20 °C the catalyst performance was also poor (run 10). Attempts to improve the catalyst activity by addition of Lewis acid promoters at -50°C strongly suppressed the reaction (runs 11-12). The optimal system was finally applied to other enone substrates (runs 13-20). In general the highest enantioselectivities were realised for the addition of AlMe₃. Reducing the length of the alkyl substituent in the enone 1a vs. 1b leads to a reduction in e.e. as does α branching in the substrate 1c (runs 13-16). The present system is not suitable for cyclic enones (run 19) due to deficiencies in chemical yield and mass balance.

Run	RM	Enone	Cu/	2/	Temp/°C (solvent)	1,4-	e.e.
			mol%	mol%	· · · /	Yield/%	1%
1	AlMe ₃	12	10	10	-20 (THF)	62	47
2	AlEt ₃	1 a	10	20	-20 (THF)	40	32
3	MeMgBr	1a	10	20	-20 (THF)	81	0
4	ZnEt ₂	1 a	10	20	-20 (THF)	66	35
5	AlMe ₃	1a	10	20	-20 (toluene)	79	8
6	AlMe ₃	1 a	10	20	-20 (Et ₂ O)	49	16
7	AlMe ₃	1 a	10	20	-20 (THF/DMI)	0	0
8	AlMe ₃	1a	10	20	-20 (THF/NMP)	0	0
9	AlMe,	ls	S	10	-20 (THF)	47	51
10	AlMe ₃	1a	10	20	-40 (THF)	34	37
11	AlMe ₃	1 a	10	20	-50 (THF + TMSCI)	3	12
12	AlMe ₃	1a	10	20	-50 (THF + BF ₃ •OEt ₂)	7	4
13	AlMe ₃	1b	10	20	-20 (THF)	51	46
14	AlEt ₃	1b	10	20	-20 (THF)	42	26
15	AlMe ₃	1c	10	20	-20 (THF)	43	43
16	AlEt ₃	1c	10	20	-20 (THF)	36	10
19	AlEt ₃	С	10	20	-20 (THF)	26	42

Table 2. Addition of Organometallics to Various Enones Using [Cu(MeCN)₄]BF₄ and Ligand 2.

Thioketone donors, and related compounds, have been rarely used as ligands in catalysis. Chiral thioureas have proved valuable additives in ruthenium-catalysed transfer hydrogenation.⁹ However, we are not aware of any asymmetric catalytic processes using chiral thiourethanes and clearly other work is required to delineate the scope and utility of this interesting new ligand class.

Acknowledgements

We thank EPSRC for the award of a project studentship to SMWB (GR/K52263) and to Zeneca (Huddersfield Works) for CASE support. SW is grateful the EU for support through the COST-D2 programme and to Prof. W. A. König (Universität Hamburg) for help with the chiral assay.

References

- Reviews: a) Rossiter, B. E.; Swingle, N. M. Chem. Rev. 1992, 92, 771-806. b) Alexakis, A. in Organocopper Reagents, A Practical Approach, Ed. Taylor, R. J. K., Oxford University Press, Oxford, 1994, Ch 8, pp. 159-183. c) Krause, N. Angew. Chem., Int. Ed. Engl. 1998, 37, 283-285.
- a) Alexakis, A.; Frutos, J. C.; Mangeney, P. Tetrahedron: Asymmetry 1993, 4, 2427-2430. b) Kanai, M.; Tomioka, K. Tetrahedron Lett. 1995, 36, 4275-4278. c) Strangeland, E. L.; Sammakai, T. Tetrahedron 1997, 53, 16503-16510. d) de Vries, A. H. M.; Meetsma, A.; Feringa, B. L. Angew. Chem., Int. Ed. Engl.

1996, 35, 2374-2430. e) Feringa, B. L.; Pineschi, M.; Arnold, L. A.; Imbos, R.; de Vries, A. H. M. Angew. Chem., Int. Ed. Engl. **1997**, 36, 2620-2623. f) Knobel, A. K. H.; Escher, I. H.; Pfaltz, A. Synlett **1997** 1429-1431. g) Alexakis, A.; Burton, J.; Vastra, J.; Mangeney, P. Tetrahedron: Asymmetry **1997**, **8**, 3193-3196. h) Alexakis, A. Vastra, J.; Burton, J.; Benhaim, C.; Mangeney, P. Tetrahedron Lett. **1998**, 39, 7869-7872. i) Keller, E.; Maurer, J.; Naasz, R.; Schader, T.; Meetsma, A.; Feringa, B. L. Tetrahedron Lett. **1998**, 9, 2409-2413.

- a) Lambert, F.; Knotter, D. M.; Jansen, M.D.; van Klaveren, M.; Boersma J.; van Koten, G. *Tetrahedron:* Asymmetry 1991, 2, 1097-1100. b) Knotter, D. M.; Grove, D. M.; Smeets, W. J. J.; Speck, A. L.; van Koten, G. J. Am. Chem. Soc. 1992, 114, 3400-3410. c) Zhou, Q.-L.; Pfaltz, A. *Tetrahedron* 1994, 50, 4467-4479. d) Spescha, M.; Rihs, G. Helv. Chim. Acta 1993, 76, 1219-1230.
- a) Wendisch, V.; Sewald, N. Tetrahedron: Asymmetry 1997, 8, 1253-1257. b) de Vries, A. H. M.; Hof, R. P.; Staal, D.; Kellogg, R. M.; Feringa, B. L. Tetrahedron: Asymmetry 1997, 8, 1535-1543.
- The only >90% e.e. catalytic conjugate additions of this substrate class are rhodium-catalysed, see: Sakai, M; Miyaura, N. J. Am. Chem. Soc. 1998, 120, 5579-5580. Enantioselective addition of alkyl groups is problematic and has not been described before
- 6. Ligands 2 and 4-5 are literature compounds a) Azad, S. A.; Bennett, S. M. W.; Brown, S. M.; Green, J.; Sinn, E.; Topping, C. M.; Woodward, S. J. Chem. Soc., Perkin Trans 1 1997, 687-694. b) Fabbri, D.; Pulacchini; Gladiali, S. Synlett 1996, 1054-1056. Compounds 3 and 6 were prepared by alkylation of BINOL and 2 with Et₂NC(S)Cl and ClP(Ni-Pr₂)₂ respectively. For 3: ¹H NMR (400 MHz, CDCl₃) δ_H 0.47 (t, 3 H, J = 7.3, Me), 1.06 (t, 3 H, J = 7.1, Me), 2.87 (dq, 1 H, J = 14.1, 7.3, CH₂Me), 3.18 (dq, 1 H, J = 14.1, 7.1, CH₂Me), 3.63 (m, 2 H, CH₂Me), 5.93 (s, 1 H, OH), 7.08-8.07 (Ar); v(C=S, KBr) 1213s cm⁻¹; for 6 ³¹P NMR (161.7 MHz, CDCl₃) δ_P 113.4. Correct combustion analysis or HRMS in both cases.
- 7. Representative procedure: MeMgBr, ZnEt₂, or AlR₃ solution (0.05 mmol; 1 equiv. per OH) was added to a chilled THF solution (1 mL, -20 °C) containing ligand 2 (37.3 mg, 0.10 mmol) and [Cu(MeCN)₄]BF₄ (15.7 mg, 0.05 mmol) and the mixture stirred (1 min, -20°C). Then at the desired temperature (-20°C) the organometallic (0.5 mL of 1.5 M solution, 0.75 mmol) and enone (0.5 mL of 1.0 M solution, 0.50 mmol) were introduced sequentially in a dropwise manner over 20 min. The reaction mixture was stirred for a further 20 min then quenched with HCl(aq.) and filtered (twice) through flash silica. Pentadecane (50 µL) was added and the chemical yield/e.e. obtained by GC using an *oktakis*-(6-O-methyl-2,3-di-O-pentyl)-γ-cyclodextrin column.
- 8. Kubas, G. J. Inorg. Synth. 1990, 28, 68-70.
- 9. Touchard, F.; Gamez, P.; Fache, F.; Lemaire, M. Tetrahedron Lett. 1997, 38, 2275-2278.