Jack E. Baldwin, * Richard T. Freeman, Christopher Lowe, Christopher J. Schofield, and Eun Lee. ${ }^{+}$

The Dyson Perrins Laboratory, South Parks Road, Oxford OX1 3QY

+ The Department of Chemistry, Seoul National University, Seoul 151, Korea.

(Received in UK 17 April 1989)

Abstract: The synthesis of a γ-lactam analogue of penems, from aspartic acid semi-aldehyde, which possessed antibacterial activity is described. ${ }^{1,2}$

The antibacterial activity of the $\beta-l a c t a m$ antibiotics [e.g. penicillin $V(1)]$ involves the acylation of transpeptidases involved in cell wall biosynthesis. ${ }^{3}$ The minimum structural requirement for activity appears to be a suitably activated $\beta-1$ actam. The possibility of similarly biologically active compounds devoid of a $\beta-l a c t a m$ ring has been explored by ourselves and others. We have prepared several γ-lactams, for example (2)" and (3) ${ }^{5}$ and the literature contains several related efforts. ${ }^{6}$ However, with the exception of the azete (4) ${ }^{7}$ none were shown to possess biological activity, either as antibacterials or $\beta-1$ actamase inhibitors.

1

2

3

4

We reasoned that the absence of antibacterial activity observed for (2) and (3) possibly derived from the diminished reactivity of the γ-lactams compared to that of the β-lactam ring systems. ${ }^{s}$ Hence a γ-lactam analogue (6) of the 6β-acylamino penems $(5)^{9}$, might show increased reactivity and biological activity due to delocalisation of the lactam-N lone pair through the olefinic double bond, as in (6) $\rightarrow(7)$. In this connection it is of interest that the 6及-acylamino-penems (5) have been considered too reactive for practical use as antibiotics. ${ }^{10}$

We chose cysteine and aspartic acid semi-aldehyde ${ }^{12}$ as readily available chiral precursors. Initially we examined the reaction of (8) with \underline{L}-cysteine methyl ester. Thus condensation of (8) with L-cysteine methyl ester in pyridine in the presence of activated molecular sieves ($20^{\circ} \mathrm{C}$, 5 hours) gave a ca $1: 1$ mixture of the diastereomeric thiazolidines (9a, 9b). Equilibration of separated (9a) and (9b) was observed on silica gel and upon standing in chloroform solution. Reflux of a mixture of (9a) and (9b) in pyridine effected ring closure to give the bicyclic lactam (10) (45\%) $\left\{[\alpha] \mathcal{D}^{\circ}=-208^{\circ}\left(\mathrm{CHCl}_{3}\right.\right.$, $c=1.48)$ \} and a minor product assigned as probably a mixture of the enantiomers (11) and (12) $\left.\{[\alpha]]^{\circ}=-117^{\circ}\left(\mathrm{CHCl}_{3}, c=0.11\right)\right\}$ (Scheme 1). These assignments were made on the basis of nuclear Overhauser experiments and further experimentation.

The C-5 stereochemistry of (10) was the opposite to that desired, consequently the condensation was repeated, without isolation of the intermediate thiazolidines, using D-cysteine methyl ester. ${ }^{1} \mathrm{H}$ n.m.r. analysis indicated two bicyclic products the major of which was assigned as the desired diastereomer (12) (38\%) \{[$\alpha]_{\mathbb{D}^{\circ}}=+175^{\circ}$ (CHCl_{3}, $c=0.6)\}$ and a minor which was assigned as a mixture of the enantiomers (10) and (13) $\left\{[\alpha]_{D}{ }^{\circ}=+168^{\circ}\left(\mathrm{CHCl}_{3}, c=1.13\right)\right\}$ (Scheme 2) .

The final ring closures to afford the bicyclic $\gamma-1$ actams (10-13) were shown to be irreversible by refluxing pure samples [by ${ }^{1} \mathrm{H}$ n.m.r. (500 MHz)] of (10) and (12) in pyridine (>16 hours). No isomerisation was observed by tle or ${ }^{1} \mathrm{H}$ n.m.r. and the optical integrity of the starting materials was maintained. A similar test on the aldehyde (8) at $20^{\circ} \mathrm{C}$ also indicated no racemisation.

A plausible rationale for the observed partial racemisation of the minor products was provided by consideration of the mechanism of the ring closures. For the \underline{L} - cysteine case, formation of the imine (15) allows partial epimerisation at the cysteine $\mathrm{C}-2$ position to occur in pyridine at elevated temperatures. Similarly epimerisation at $C-7$ of the thiazolidines can be rationalised by reversible cyclisation of the 0-benzyloxycarbonyl moiety onto the imine (15) to give (16) which renders the $C-7$ position H^{*} exchangeable (Scheme 3).

We have previously reported methodology for stereospecific functionalisation α - to sulphur in a synthesis of penicillin G. ${ }^{12}$ Thus reflux of (12) in benzene with benzoyl peroxide (cat. cupric acetoacetate) provided as a single product the trans-benzoate (17) (59\%). Similarly, reaction of (10) with benzoyl peroxide gave a $3: 1$ mixture of the diastereomeric benzoates (18) and (19).

Syn-elimination of benzoic acid from (17) was achieved either by neat thermolysis or by reflux in $\underline{N}, \underline{N}^{\prime}$-dimethylaniline to give the olefin (20) (40\%). Similar treatment of the trans-benzoate (18) gave a ca $4: 1$ mixture of olefins (20) and (21) respectively. The minor cis-benzoate (19) also gave (20) and (21) but with a substantially altered rati, ($1: 1$). It is possible that in addition to a simple E2 type elimination an alternative process occurs in which at high temperature an initial displacement of the sulphur occurs to give a thiolate (22), thereby explaining the observed loss of stereochemistry at C-5 in the transformations $[(19) \rightarrow(21)+(22)$ and $(18) \rightarrow(21)+(22)]$ (Scheme 4).

18 or 19

SCHEME 4

23

24

38, $\mathbf{R}=\mathbf{H}$ 39, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$

25

The analogue (20) was saponified ($\mathrm{LiOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$) then dissolved in $\mathrm{pH} 7.650 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}$ $\mathrm{K}_{2} \mathrm{HPO}_{4}-\mathrm{KCl}$ buffer to give a solution of (23). The carboxylate salt (23) could be re-esterified (DMF, ethyl iodide) to the corresponding ethyl ester (24) [74\% from (20)], thereby proving the existence of the free carboxylate (23).

27

26, $R=M e$
28, $\mathbf{R}=\mathrm{Bn}$
29, $R=K$

30

The phenoxyacetamido ('V') side chain was introduced by deprotection ($45 \% \mathrm{HBr} / \mathrm{AcOH}$) of (12), followed by reacylation to give (25). The olefinic linkage was introduced as before to yield (26) via the benzoate (27). Hydrolysis of (26) gave the desired $\gamma-1 a c t a m$ analogue (6) as the carboxylate which could be re-esterified to give (28).

SCHEME 5

The final deprotection step proceeded in low yield, presumably due to hydrolysis of the bicyclic lactam to give (30). We therefore developed a modified synthesis of (6) using a p-nitrobenzyl protecting group for the carboxylic acid (Scheme 5).

Condensation of aldehyde (31) with free D-cysteine gave the crude bicyclic lactam (32) which was esterified to the bicyclic ester (33). Functionalisation as before followed by deprotection [$\mathrm{H}_{2} / \mathrm{Pd} / \mathrm{C} /$ tetrahydrofuran $/ \mathrm{H}_{2} \mathrm{O} / \mathrm{NaHCO}_{3}$ (1 equiv.)] gave (6) cleanly. The analogue (6) showed weak, but real biological activity against Staphylococcus aureus. In contrast the saturated analogue (38) exhibited no biological activity.

36

37

Acknowledgements We thank the SERC, for a studentship (to C.L.) and the British Council, for support (to R.T.F.)

Experimental

Standard chemical procedures as previously reported were employed. ${ }^{5}$
Melting points (m.p.) were determined on a Buchi 510 capillary apparatus and are uncorrected.

Infra red spectra were recorded as nujol mulls or in chloroform solution on PerkinElmer 681 and Perkin-Elmer 1750 Fourier Transform spectrometers. Absorption maxima were recorded in wavenumbers. The following abbreviations were used: s, strong; m, medium; w, weak; and b, broad.

Low resolution mass spectra (m/e) in the elcctron impact (E.I.) or chemical ionisation (C.I.) modes were recorded on a V.G. Micromass 16 F spectrometer. Samples requiring desorption chemical ionisation (D.C.I.), in beam electron impact (I.B.E.I.) techniques and accurate mass measurements (E.I. or I.B.E.I.) were recorded on V.G. Micromass 30F or ZAB $1 F$ spectrometers. The m / e values are quoted with the relative abundance (base ion $=100 \%$) and assignment in parentheses. Only molecular ions (M^{+}), fragments of molecular ions and major peaks were reported.

Proton magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR) were recorded at $300 \mathrm{MHz}, 500 \mathrm{MHz}$ and 250 MHz on Bruker WH300, Bruker AM500 and Bruker AM250 spectrometers respectively. For ${ }^{1} \mathrm{H}$ NMR spectra recorded in CDCl_{3} and acetone d_{6}, chemical shifts ($\delta \mathrm{H}$) were reported in parts per million (ppm) downfield of internal or external tetramethylsilane at 0.00 ppm . For ${ }^{1} H$ NMR spectra recorded in $D_{2} O$, chemical shifts were reported in ppm downfield of sodium 3 -trimethylsilylpropionate-2,2,3,3-d4 (TSP) at 0.00 ppm . The following abbreviations were used: s, singlet, d, doublet; t, triplet; q, quartet; m, multiplet and b, broad. Coupling constants were recorded in Hertz to the nearest 0.5 Hz .

Carbon magnetic resonance spectra (${ }^{13} \mathrm{C}$ NMR) were recorded at 62.5 MHz and 125 MHz on Bruker AM250 and Bruker AM500 spectrometers respectively. Chemical shifts (δ_{C}) are quoted in ppm and are referenced to CDCl_{3} unless otherwise stated.

Relative assignments of stereochemistry of all products were made using nuclear Overhauser experiments - only selected data are reported and all values are approximate. α and β refer to the stereochemistry as drawn in the diagrams.

Thin layer chromatography (t.l.c.) was performed using Merck aluminium foil backed plates, pre-coated with Kieselgel $60 \mathrm{GF}_{254}$ (No. 5554). Plates were developed by spraying with either $3 \% \mathrm{w} / \mathrm{v}$ dodeca-phosphomolybdic acid in ethanol or $10 \% \mathrm{w} / \mathrm{v}$ ammonium molybdate in 2 N sulphuric acid; followed by warming to $60^{\circ} \mathrm{C}$. Preparative layer chromatography (PLC) was performed using $200 \times 200 \times 1 \mathrm{~mm}$ layers of Merck Kieselgel $60 \mathrm{GF}_{254}$ (No. 7730). Flash column chromatography was carried out using Merck Kieselgel $60 \mathrm{GF}_{254}, 230-400$ mesh.

Test for stability of the aldehyde (8)
The aldehyde $(8)^{1 T}(200 \mathrm{mg}, 0.59 \mathrm{mmol})$ was stirred in pyridine (20 ml) at $20^{\circ} \mathrm{C}$ over ca 3 h and was re-isolated by chromatography to give [flash silica (20 g), diethyl ether] (8) ($175 \mathrm{mg}, 88 \%$), identical by ${ }^{\mathrm{t}} \mathrm{H}$ NMR (300 MHz) and optical rotation, $(\alpha] \mathrm{D}^{\circ}+6.8^{\circ}$, $c=0.5)$ to the starting material, $\left([\alpha] D^{\circ}+6.3^{\circ}, c=0.5\right)$.

D-Cysteine methyl ester hydrochloride
D-Cysteine hydrochloride monohydrate ($2.00 \mathrm{~g}, 11.4 \mathrm{mmol}$) was dissolved in dry distilled methanol (100 ml), and HCl gas was bubbled through the solution for ca 2 h , whilst stirring at room temperature $\left(20^{\circ} \mathrm{C}\right)$. Stirring was then continued for a further 20 h . The solvent was evaporated in vacuo to yield an oll, which, upon tituration with diethyl ether, yielded the title compound ($2.15 \mathrm{~g}, 99 \%$) as white orystals; m.p. $140-141^{\circ} \mathrm{C}$, (Lit. $\left.{ }^{4}, 1^{40-141^{\circ} \mathrm{C}}\right) ;[a]^{20}+2.3^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}, \mathrm{c}=10.3\right)$, (Lit. ${ }^{14},[a]^{\circ}+2.1^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}, \mathrm{ca} 10\right)$; $v_{\max }$ (nujol) $1740 \mathrm{~s}, 1580 \mathrm{~m}, 1513 \mathrm{~s}, 1378 \mathrm{~s}, 1335 \mathrm{~m}, 1248 \mathrm{~m}, 1220 \mathrm{~m}, 1077 \mathrm{~m} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right) 3.00(2 \mathrm{H}, \mathrm{ca} \mathrm{dd}, \mathrm{J} 6,5 \mathrm{~Hz}, 3-\mathrm{H}), 3.72\left(3 \mathrm{H}, \mathrm{s}, 0 \mathrm{CH}_{3}\right), 4.27(1 \mathrm{H}, \mathrm{ca} \mathrm{t}, \mathrm{J} \mathrm{d} \mathrm{Hz}, 2-\mathrm{H})$; $\delta_{C}\left(62.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 25.1\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{~S}\right), 53.9\left(\mathrm{q}, \mathrm{OCH}_{\mathrm{a}}\right), 55.8\left(\mathrm{~d}, \mathrm{CHCO}_{2}\right) ; \mathrm{m} / \mathrm{e}\left(\overline{\mathrm{N}}_{3}, \mathrm{D} . \mathrm{C} . \mathrm{I}_{\mathrm{l}}\right)$ $136\left(\mathrm{MH}^{+}, 100 \%\right)$; [Found $\mathrm{C}, 27.98 \%$; $\mathrm{H}, 5.95 \%$; $\mathrm{N}, 8.15 \% . \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{SCl}$ requires $\mathrm{C}, 27.99 \%$; H, 5.83\%; N, 8.16\%].
(2R,4S and 2S,4S)-[(2S)-2-(Benzyloxycarbonylaminopropanoic acid benzyl ester)]-3-aza-4(methoxycarbonyl)tetrahydrothiophene (9c and 9d) - From D-cysteine

D-Cysteine methyl ester hydrochloride monohydrate ($54.0 \mathrm{mg}, 0.29 \mathrm{mmol}$) and the aldehyde (8) ($96.4 \mathrm{mg}, 0.28 \mathrm{mmol}$) were dissolved in pyridine (2.5 ml) and stirred under nitrogen at room temperature ($20^{\circ} \mathrm{C}$) for 18 h . The excess pyridine was evaporated in vacuo (0.1 mmHg) and the residue partitioned between diethyl ether (20 ml) and water (20 ml). The organic layer was washed with brine (20 ml), dried (sodium sulphate) and evaporated in vacuo to yield the thiazolidines (9 c and 9 d) ($116 \mathrm{mg}, 90 \%$) as an ofl; t.l.c. [diethyl ether] showed two spots, $R_{f} 0.6$ which equilibrated on silica, corresponding to an epimeric mixture of the two thiazolidines ($9 \mathrm{c}, \mathrm{d}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.83-2.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~S}\right)$, $3.26-3.28\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~S}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 5.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right)$, $5.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7 \mathrm{~Hz}, \mathrm{NH}), 6.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7 \mathrm{~Hz}, \mathrm{CONH}), 7.29-7 . \overline{3} 6(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$. A Jeneer experiment was consistent with the connectivity as indicated ${ }^{13}$; m / e ($\left.\mathrm{NH}_{3}, \mathrm{C} . \mathrm{I}.\right) 459\left(\mathrm{MH}^{+}\right.$, 100\%), 351 (65), 108 (22), 91 (48).
(2R,4R and 2S,4R)-[(2S)-2-(Benzyloxycarbonylaminopropanoic acid benzyl ester)]-3-aza-4(methoxycarbonyl)tetrahydrothiophene (9a and 9b) - From L-cysteine.

Prepared by a procedure analogous to that used for the preparation of 9 c and 9 d. Rapid chromatographic separation on silica gel could separate the epimers to a reasonable extent, but they equilibrated rapidly in CDCl_{3} at $20^{\circ} \mathrm{C}$. Selected ' H NMR data: δ_{H} (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) one epimer showed peaks at $2.86\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9,11 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~S}\right)$ and $3.29(1 \mathrm{H}$, dd, $\left.\mathrm{J} 7,11 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~S}\right)$ and the other epimer showed peaks at $2.93\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9,11 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~S}\right)$ and $\overline{3} .25\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7,11 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~S}\right)$.
(2S,5R,7S)-1-Aza-7-benzyloxycarbonylamino-8-oxo-4-thiabicycio[3.3.0]octane-2-carboxylic acid methyl ester (12) - From D-cysteine

D-Cysteine methyl ester hydrochloride monohydrate ($80.0 \mathrm{mg}, 0.42 \mathrm{mmol}$) and the aldehyde (8) ($146 \mathrm{mg}, 0.43 \mathrm{mmol}$) were dissolved in pyridine (3.5 ml) and stirred for ca 3 h , at $20^{\circ} \mathrm{C}$, then refluxed for 15 h under an inert atmosphere. The excess pyridine was evaporated in vacuo (0.1 mmHg) and the residue partitioned between diethyl ether (30 ml) and water (30 ml). The organic layer was washed with brine (30 ml), dried (sodium sulphate) and evaporated in vacuo to yield an oil. The crude product was purified by chromatography [(flash silica, 10 g), diethyl ether] to yield (12) ($55.5 \mathrm{mg}, 38 \%$) as an oil; $[\alpha]]^{\circ}+175.3^{\circ}\left(\mathrm{CHCl}_{3}, c=0.6\right) ;$ t.l.c. [diethyl ether] $\mathrm{R}_{\mathrm{f}} 0.35$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) 3026 \mathrm{~m}$, $3013 \mathrm{~m}, 2956 \mathrm{~m}, 1715 \mathrm{bs}(\mathrm{CO}), 1512 \mathrm{~s}, 1455 \mathrm{~m}, 1438 \mathrm{~m}, 1407 \mathrm{~s}, 1341 \mathrm{~m}, 1279 \mathrm{~m}, 1223 \mathrm{~s}$, $1171 \mathrm{~m}, 1132 \mathrm{~m}, 865 \mathrm{~m}$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.03-2.12(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.19-3.27(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$, $3.36-3.42(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.78\left(3 \mathrm{H}, \mathrm{s}, 0 \mathrm{CH}_{3}\right), 4.63-4.74(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.11-5.20(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PhCH}_{2}, 2-\mathrm{H}, 5-\mathrm{H}\right), 5.37(1 \mathrm{H}, \mathrm{bd}, \mathrm{J} 5 \mathrm{~Hz}, \mathrm{NH}), 7.32-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$. A Jeneer experiment was consistent with the connectivity as indicated ${ }^{13}$; [Selected n.0.e. data; irradiation at 5.11-5.20 (5-H) showed enhancements at 2.03-2.12 (6- $\mathbf{~} \mathrm{H}$) $=5 \%$ and $3.36-3.42(3-\alpha \mathrm{H})=3 \%$. Irradiation at $2.03-2.12(6-\alpha H)$ showed enhancements at 3.19-3.27 ($6-\beta \mathrm{H})=30 \%$ and $4.63-4.74(7-H)=8 \%] ; \delta_{C}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 35.0(\mathrm{t}, 3-\mathrm{C}), 38.5(\mathrm{t}, 6-\mathrm{C}), 52.9\left(\mathrm{q}, 0 \mathrm{CH}_{3}\right)$, $54.6,57.7,61.7(3 \mathrm{x}$ d, $2-\mathrm{C}, 5-\mathrm{C}, 7-\mathrm{C}), 67.1\left(\mathrm{t}, \mathrm{PhCH}_{2}\right), 128.1,128.2,128.5$ (3 x d , Arc), 136.0 (s , phenyl-ipso-C), 155.9 (s, CO), 169.4 (s, CO), 171.1 (s, CO); m/e (I.B.E.I.), $350\left(\mathrm{M}^{+}, 10 \%\right), 259\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, 22\right), 156$ (20), 91 (100), 86 (25); [Found C, $54.71 \% ; \mathrm{H}, 5.38 \% ; \mathrm{N}, 8.04 \% . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $\left.\mathrm{C}, 54.86 \% ; \mathrm{H}, 5.18 \% ; \mathrm{N}, 8.00 \%\right]$.
(2S,5R,7R)-1-Aza-7-benzyloxycarbonylamino-8-oxo-4-thiabicyclo[3.3.0]octane-2-carboxylic acid methyl ester (13) and (2R,5S,7S)-1-Aza-7-benzyloxycarbonylamino-8-oxo-4-thiabicyclo [3.3.0] ootane-2-carboxylic acid methyl ester (10) From D-cysteine

Prepared by a procedure analogous to that used for the preparation of (12). Yield $\left[143 \mathrm{mg}, 5 \%\right.$ from (8) ($3.00 \mathrm{~g}, 8.79 \mathrm{mmol}$)]; $[\alpha]^{\circ}{ }^{\circ}+168^{\circ}$ ($\mathrm{CHCl}_{3}, \mathrm{c}=1.13$); t.1.c. [diethyl ether] $R_{f} 0.5 ; \delta_{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.40-2.50(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.69-2.78(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.36-$ $3.54(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.78\left(3 \mathrm{H}, \mathrm{s}, 0 \mathrm{CH}_{3}\right), 4.42-4.50(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.06(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9,5 \mathrm{~Hz}$, $2-\mathrm{H}), 5.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 5.18(1 \mathrm{H}$, ca d, J $7 \mathrm{~Hz}, 5-\mathrm{H}), 5.26(1 \mathrm{H}, \mathrm{bd}, \mathrm{J} 5 \mathrm{~Hz}, \mathrm{NH})$, $7.30-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$. A Jeneer experiment was consistent with the connectivity as indicated ${ }^{1 a}$; [Selected n.0.e. data: irradiation at 5.18 ($5-\mathrm{H}$) showed enhancements at 2.40-2.50 $(6-B H)=8 \%$. Irradiation at $2.40-2.50(6-\alpha H)$ showed enhancements at 5.18
$(5-\mathrm{H})$ and $2.67-2.78(6-\mathrm{BH})=15 \%$. Irradiation at $2.67-2.78(6-\alpha \mathrm{H})$ showed enhancement at $2.40-2.50(6-\mathrm{BH})=>15 \%$ and $4.42-4.50(7-\mathrm{H})=20 \%]$; $\mathrm{m} / \mathrm{e}\left(\mathrm{NH}_{3}\right.$, D.C.I.) $368\left(\mathrm{MNH}_{4}{ }^{+}, 98 \%\right), 351\left(\mathrm{MH}^{+}, 50 \%\right), 260(100), 243$ (27), 108 (10).
(2R,5S,7S)-1-Aza-7-benzyloxycarbonylamino-8-oxo-4-thiabicyclo[3.3.0]octane-2-carboxylic acid methyl ester (10) From L-cysteine

Prepared by a procedure analogous to that used for the preparation of (12), using the aldehyde (8) ($49.0 \mathrm{mg}, 0.14 \mathrm{mmol}$) and L-cysteine methyl ester hydrochloride ($26.0 \mathrm{mg}, 0.15$ mmol). Yield [22 mg, 45% from (8)]; $[\alpha]_{D}^{2}-208^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.48\right) \nu_{\max }\left(\mathrm{CHCl}_{3}\right) 2956 \mathrm{~m}$, $1715 \mathrm{bs}(\mathrm{CO}), 1510 \mathrm{~s}, 1439 \mathrm{~m}, 1400 \mathrm{~m}, 1300 \mathrm{~s}, 1222 \mathrm{~s}, 1060 \mathrm{~m} ; \mathrm{t} .1 . c$. [diethyl ether] R_{f} $0.5 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.41-2.48(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.71-2.74(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.37-3.53(2 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 3.79\left(3 \mathrm{H}, \mathrm{s}, 0 \mathrm{CH}_{3}\right), 4.44-4.48(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.07(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.5,4.5 \mathrm{~Hz}, 2-\mathrm{H}), 5.14$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 5.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7 \mathrm{~Hz}, 5-\mathrm{H}), 5.27(1 \mathrm{H}, \mathrm{bd}, \mathrm{J} 5 \mathrm{~Hz}, \mathrm{NH}), 7.32-7.39(5 \mathrm{H}, \mathrm{m}$, ArH). A Jeneer experiment was consistent with the connectivity as indicated ${ }^{13}$; δ_{C} (62.5 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $29.9(\mathrm{t}, 3-\mathrm{C}), 36.9(\mathrm{t}, 6-\mathrm{C}), 52.8\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 52.1,58.4,63.8(3 \mathrm{x} \mathrm{d}, 2-\mathrm{C}$, $5-\mathrm{C}, 7-\mathrm{C}$) , $67.1\left(\mathrm{t}, \mathrm{PhCH}_{2}\right.$), 128.05, 128.10, 128.43 ($3 \mathrm{x} \mathrm{d}, \mathrm{Ar}$), 136.0 (s, phenyl-ipso-C), $155.9(\mathrm{~s}, \mathrm{CO}), 170.0(\mathrm{~s}, \mathrm{CO}), 174.7(\mathrm{~s}, \mathrm{CO}) ; \mathrm{m} / \mathrm{e}\left(\mathrm{NH}_{3}, \mathrm{D} . \mathrm{C} . \mathrm{I}.\right) 368\left(\mathrm{MNH}_{4}{ }^{+}, 50 \%\right), 351 \mathrm{MH}^{+}$, 92\%), $260(100), 243(48) 217(22), 108(18), 91(12) ;$ [Found C, $54.66 \% ; \mathrm{H}, 5.21 \%$; N, 7.87%. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 54.86 \%$; $\mathrm{H}, 5.18 \% ; \mathrm{N}, 8.00 \%$].
(2S,5R,7S)-1-Aza-7-benzyloxycarbonylamino-8-oxo-4-thiabicyclo[3.3.0]octane-2-carboxylic acid methyl ester (12) and (2R,5S,7R)-1Aza-7-benzyloxycarbonylamino-8-oxo-4-thiabicyclo [3.3.0] octane-2-carboxylic acid methyl ester (11) - From L- cysteine

Prepared by a procedure analogous to that used for the preparation of (12). Yield [2.0 mg, 4% from (8) ($49.0 \mathrm{mg}, 0.14 \mathrm{mmol})] ;[\alpha]^{\circ}-117^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.11\right)$; t.1.c. [diethyl ether] $\mathrm{R}_{\mathrm{f}} 0.35 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.04-2.11(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.20-3.27(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$, $3.36-$ $3.41(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.63-4.73(1 \mathrm{H}, \mathrm{m}, \mathrm{T}-\mathrm{H}), 5.12-5.19\left(4 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right.$, $2-\mathrm{H}, 5-\mathrm{H}), 5.38(1 \mathrm{H}, \mathrm{bd}, \mathrm{J} 5 \mathrm{~Hz}, \mathrm{NH}), 7.33-7.42(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$. A Jeneer experiment was consistent with the connectivity as indicated. ${ }^{3}$
(2S,5R,7S)-1-Aza-7-benzyloxycarbonylamino-8-oxo-4-thiabicyclo[3.3.0]octane-2-carboxylic acid(38)

The saturated bicyclic lactam (12) ($25.0 \mathrm{mg}, 7.14 \times 10^{-2} \mathrm{mmol}$) was dissolved in tetrahydrofuran: water ($3: 1$) (1.0 ml), and cooled to ca $4^{\circ} \mathrm{C}$. Lithium hydroxide monohydrate ($7.0 \mathrm{mg}, 0.17 \mathrm{mmol}$) was then added, and the reaction mixture stirred for 6 h at $5-10^{\circ} \mathrm{C}$. The tetrahydrofuran was evaporated in vacuo, the residue dissolved in water and acidified (to ca pH 2) by dropwise addition of 2 N hydrochloric acid. The solution was extracted into ethyl acetate ($2 \times 10 \mathrm{ml}$), the combined organic extracts were dried (sodium sulphate) and evaporated in vacuo to yield (38) ($20.6 \mathrm{mg}, 86 \%$) as an oil; (38) showed no antibacterial activity against E.coli or S.aureus at a concentration of $100 \mathrm{mg} \mathrm{ml}^{-1}$. Vmax $3432 \mathrm{bw}(\mathrm{OH}), 1718 \mathrm{bs}(\mathrm{CO}), 1507 \mathrm{~m}, 1420 \mathrm{~m}, 1282 \mathrm{~m}, 1225 \mathrm{~m} ; \delta_{\mathrm{H}}$ (500 MHz acetone $-\mathrm{d}_{6}$) 2.12$2.18\left(\mathrm{CHCl}_{\mathrm{g}}\right)(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.03-3.09(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.32-3.41(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.71-4.74(1 \mathrm{H}$, $\mathrm{m}, 7-\mathrm{H}), 5.09 \sim 5.15\left(4 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}, 2-\mathrm{H}, 5-\mathrm{H}\right), 6.71(1 \mathrm{H}, \mathrm{bd}, \mathrm{J} 8 \mathrm{~Hz}, \mathrm{NH}), 7.28-7.36(5 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$; m/e (I.B.E.I.) $336\left(\mathrm{M}^{+}, \overline{8} \%\right), 245\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, 30\right), 91{ }^{-1}(100)$.
(2S,5R,7S)-1-Aza-7-benzyloxycarbonylamino-8-oxo-4-thiabicycio[3.3.0]octane-2-carboxylic acid p-nitrobenzyl ester (39)

The free acid (38) ($13 \mathrm{mg}, 3.9 \times 10^{-2} \mathrm{mmol}$) was dissolved in dry, distilled dimethylformamide (0.5 ml). Sodium hydrogen carbonate ($3.3 \mathrm{mg}, 3.9 \times 10^{-2} \mathrm{mmol}$) was then added, followed by p nitrobenzyl bromide ($9.2 \mathrm{mg}, 4.3 \times 10^{-2} \mathrm{mmol}$) and a catalytic amount of sodium iodide ($<1 \mathrm{mg}$). This mixture was stirred for ca 16 h at room temperature $\left(20^{\circ} \mathrm{C}\right)$, quenched with water (5 ml) and extracted into ethyl acetate (3 x 5 ml). The combined organic layers were washed with brine (10 ml), dried (sodium suiphate) and evaporated in vacuo to yield crude (39). This residue was purified by PLC [diethyl ether: acetic acid (99:1)] $\mathrm{R}_{\mathrm{f}} 0.4$ to yield (39) ($12 \mathrm{mg}, 67 \%$); $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) 3026 \mathrm{~m}$, $1721 \mathrm{bs}(\mathrm{CO}), 1609 \mathrm{~m}, 1526 \mathrm{~s}, 1456 \mathrm{~m}, 1350 \mathrm{~m}$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.07-2.13(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$, $3.19-3.23(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.47-3.50(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.65-4.70(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.11-5.13(3 \mathrm{H}, \mathrm{m}$
$\mathrm{PhCH}_{2}, 5-\mathrm{H}$), $5.24-5.26$ (1 H , dd, $\mathrm{J} 6,5 \mathrm{~Hz}, 2-\mathrm{H}$), $5.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right.$), 5.34 (1 H , bs, $\mathrm{NH}), 7.32-7.39\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7 . \overline{51}\left[2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\left(\mathrm{o}^{-} \mathrm{H}\right)\right], 8.25[2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5$ $\left.\mathrm{Hz}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}(\underline{m}-\mathrm{H})\right]$. A Jeneer experiment was consistent with the connectivity as indicated ${ }^{13} ; \mathrm{m} / \mathrm{e}$ (I.B.E.I.) $471\left(\mathrm{M}^{+}, 3 \%\right), 380\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, 15\right), 91$ (100).
(2R,3S,5S,7S)-1-Aza-3-benzoyloxy-7-benzyloxycarbonylamino-8-oxo-4-thiabicyclo[3.3.0] octane-2-carboxylic acid methyl ester (18) and ($2 \mathrm{R}, 3 \mathrm{R}, 5 \mathrm{~S}, 7 \mathrm{~S}$)-1-Aza-3-benzoyloxy-7-benzyloxycarbonyl-amino-8-ox $0^{-4-t h i a b i c y c l o[3.3 .0] o c t a n e-2-c a r b o x y l i c ~ a c i d ~ m e t h y l ~ e s t e r ~}$ (19)
(10) ($36 \mathrm{mg}, 0.10 \mathrm{mmol}$) was dissolved in dry benzene (10 ml) and benzoyl peroxide ($68 \mathrm{mg}, 2.81 \mathrm{mmol}$) was added. The mixture was refluxed for 1.5 h , evaporated to dryness and the residue purified by chromatography [(flash silica 25 g), diethyl ether] to yield (18) ($14 \mathrm{mg} .30 \%$) and 19 ($4 \mathrm{mg} .9 \%$) as colourles oils. For (18): t.l.c. (diethyl ether) $\mathrm{H}_{\mathrm{f}} 0.45 ; \delta \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.52-2.64(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.71-2.84(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.85(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.40-4.49(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.14\left(2 \mathrm{H}, \mathrm{ca} \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.47(1 \mathrm{H}, \mathrm{d}$, $\sqrt{J} 7 \mathrm{~Hz}, 5-\mathrm{H}), 5.63(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.28-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) 7.45(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\overline{7} .5 \mathrm{~Hz}, \mathrm{ArH}), 7.59(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.93(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7 \mathrm{~Hz}, \mathrm{ArH}) ; \mathrm{m} / \mathrm{e}\left(\mathrm{NH}_{3}, \mathrm{D} . \mathrm{C} . \mathrm{I}.\right)$) $488\left(\mathrm{MNH}_{4}{ }^{+}, 7 \%\right), 471\left(\mathrm{MH}^{+}, 2\right), 366\left(\mathrm{MNH}_{4}{ }^{+}-\mathrm{PhCO}_{2} \mathrm{H}, 76\right), 349\left(\mathrm{MH}^{+}-\mathrm{PhCO}_{2} \mathrm{H}, 100\right)$. For (19): t.l.c. [diethyl ether] $\mathrm{R}_{\mathrm{f}} 0.5 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.52-2.59(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$, $2.77-2.84(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.71\left(3 \mathrm{H}, \mathrm{s}, 0 \mathrm{CH}_{3}\right), 4.45-4.48(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.15\left(2 \mathrm{H}, \mathrm{s}, 0 \mathrm{CH}_{2} \mathrm{Ph}\right)$, $5.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7 \mathrm{~Hz}, 2-\mathrm{H}), 5.31(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) 5.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6 \mathrm{~Hz}, 5-\mathrm{H}), 7.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7$ $\mathrm{Hz}, 3-\mathrm{H}), 7.3 \overline{7}(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.45(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5 \mathrm{~Hz}, \mathrm{ArH}), 7 . \overline{6} 1(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5 \mathrm{~Hz}, \mathrm{ArH})$, $7.96(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7 \mathrm{~Hz}, \mathrm{ArH}) ; \mathrm{m} / \mathrm{e}\left(\mathrm{NH}_{3}, \mathrm{D} . \mathrm{C} . \mathrm{I}.\right) 488\left(\mathrm{MNH}_{4}{ }^{+}, 5 \%\right), 471\left(\mathrm{MH}^{+}, 3 \%\right), 366\left(\mathrm{MNH}_{4}{ }^{+}\right.$ $\left.-\mathrm{PhCO}_{2} \mathrm{H}, 48\right), 349\left(\mathrm{MH}^{+}-\mathrm{PhCO}_{2} \mathrm{H}, 100\right)$.
(2S,3R,5R,7S)-1-Aza-3-benzoyloxy-7-benzyloxycarbonylamino-8-oxo-4-thiabicyclo[3.3.0] octane-2-carboxylic acid methyl ester (17)

The bicyclic compound (12) ($505 \mathrm{mg}, 1.07 \mathrm{mmol}$) was dissolved in dry benzene (20 ml). Benzoyl peroxide ($1.50 \mathrm{~g}, 6.20 \mathrm{mmol}$) and cupric acetoacetate ($45.0 \mathrm{mg}, 0.17 \mathrm{mmol}$) were added to a solution, which was then stirred at $55^{\circ} \mathrm{C}$ for 2 h . The benzene was evaporated in vacuo and the residue purified by chromatography [(flash silica, 200 g$)$, ethyl acetate: $40-60$ petroleum ether ($50: 50$)] to yield (17) ($286 \mathrm{mg}, 57 \%$) as an oil; t.l.c. [diethyl ether] $\mathrm{R}_{\mathrm{f}} 0.5$; $v_{\max }\left(\mathrm{CHCl}_{\mathrm{g}}\right) 1758 \mathrm{~m}, 1726 \mathrm{~s}, 1507 \mathrm{~m}, 1453 \mathrm{~m}, 1400 \mathrm{~m}, 1263 \mathrm{~m}, 1225 \mathrm{~s}$, $1090 \mathrm{~m}, 1068 \mathrm{~m}, 1026 \mathrm{~m}, 909 \mathrm{~m} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDC1}_{3}\right) 2.12-2.17(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{C}), 3.31-3.34(1 \mathrm{H}$, $\mathrm{m}, 6-\mathrm{H}), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.73-4.78(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 5.30(1 \mathrm{H}, \mathrm{ca} \mathrm{dd}$, J $7,6.5 \mathrm{~Hz}), 5.39(1 \mathrm{H}, \mathrm{d}, \mathrm{NH}), 5.66(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 6.74(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.30-7.62(8 \mathrm{H}, \mathrm{m}$, $\overline{\mathrm{A}} \mathrm{H} \mathrm{H}), 7.95[2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8 \mathrm{~Hz}, 0 \mathrm{Ph}(\mathrm{O}-\mathrm{H})] ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 41.0(\mathrm{t}, 6-\mathrm{C}), 53.4$ (q, $0 \mathrm{CH}_{3}$), $53.9,61.9,64.7(3 \mathrm{x} \mathrm{d}, 2-\mathrm{C}, 5-\overline{\mathrm{C}}, 7-\mathrm{C}), 67.2\left(\mathrm{t}, \mathrm{PhCH}_{2}\right), 83.2(\mathrm{~d}, 3-\mathrm{C}), 128.1,128.3$, $128.4,128.6,128.7,129.8$ ($6 \times \mathrm{d}, \mathrm{Ar}$), 133.8 ($\mathrm{s}, \mathrm{phenyl}$ ipso- C), 135.9 (s, phenylipso -C). $156.0(\mathrm{~s}, \mathrm{CO}), 164.9(\mathrm{~s}, \mathrm{CO}), 166.3(\mathrm{~s}, \mathrm{CO}), 172.5(\mathrm{~s}, \mathrm{CO}) ; \mathrm{m} / \mathrm{e}\left(\mathrm{NH}_{3}, \mathrm{D} . \mathrm{C} . \mathrm{I}.\right) 488$ $\left(\mathrm{MNH}_{4}{ }^{+}, 3 \%\right), 471\left(\mathrm{MH}^{+}, 1 \%\right), 366\left(\mathrm{MNH}_{4}{ }^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}, 42\right), 349\left(\mathrm{MH}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}, 100\right), 108$ (20).

Preparation of (20) and (5S,7S)-1-Aza-7-benzyloxycarbonylamino-8-oxo-4-thiabicyclo[3.3.0] oct-2-ene-2-carboxylic acid methyl ester (21) from (18).
(18) ($50 \mathrm{mg}, 0.11 \mathrm{mmol}$) was dissolved in $\mathrm{N}, \underline{\mathrm{N}}^{-}$-dimethylaniline (10 ml) and the solution refluxed for 25 minutes. Work up as $\bar{f} \bar{r}$ the preparation of (20), followed by chromatography [(flash silica), diethyl ether: ethyl acetate (3:1)] gave (20) (16 mg, 42\%) and (21) ($3.5 \mathrm{mg}, 9 \%$) as colourless oils. For (21): t.l.c. [diethyl ether: ethyl acetate (3:1)] $\mathrm{R}_{\mathrm{f}} 0.55 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.55-2.61(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.00-3.03(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.85$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.61-4.64(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.14\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.34(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 5.98-$ $6.10(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 7.33(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.29-7.42(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$. A Jeneer experiment was consistent with the connectivity as indicated ${ }^{13}$; m/e (I.B.E.I.) 348 ($M^{+}, 7 \%$), 234 (23), 91 (100).
(5R,7S)-1-Aza-7-benzyloxycarbonylamino-8-oxo-4-thiabicyclo[3.3.0]oct-2-ene-2-carboxylic acid methyl ester (20)
(17) ($220 \mathrm{mg}, 0.47 \mathrm{mmol}$) was dissolved in $\mathrm{N}, \mathrm{N}^{\prime}$-dimethylaniline (30 ml) and refluxed at $194^{\circ} \mathrm{C}$ under nitrogen for 45 min . The reaction mixture was partitioned between ethyl
acetate (100 ml) and 2 N hydrochloric acid (100 ml), the organic layer washed with 2 N hydrochloric acid ($2 \times 100 \mathrm{ml}$) and sodium bicarbonate solution (100 ml), dried (sodium sulphate) and evaporated in vacuo to yield an oll. The crude product was purified by chromatography [(flash silica, 40 g$)$, diethyl ether: ethyl acetate (3:1)] to yield the olefin (20) ($60.5 \mathrm{mg}, 37 \%$) as an oil; $[\alpha] \mathrm{D}^{\circ}+84.3^{\circ}\left(\mathrm{CHC1}_{3}, \mathrm{c}=0.195\right)$; t.1.c. [diethyl ether: ethyl acetate ($3: 1$)] $\mathrm{R}_{\mathrm{f}} 0.5 \mathrm{v}_{\max }\left(\mathrm{CHCl}_{3}\right) 1739 \mathrm{~s}$ (lactam CO), 1721 s (ester CO), 1671 m (urethane CO), $1510 \mathrm{~m}, 1440 \mathrm{~m}, 1375 \mathrm{~m}, 1273 \mathrm{~m}, 1222 \mathrm{~s}, 1081 \mathrm{~m} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDC1} \mathrm{~s}^{2}\right)$ $2.42-2.47(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.34-3.40(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.84\left(3 \mathrm{H}, \mathrm{s}, 0 \mathrm{CH}_{3}\right), 4.64-4.69(1 \mathrm{H}, \mathrm{m}$, $7-\mathrm{H}), 5.15\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 5.51(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}), 5.91-5.95(1 \mathrm{H}$, ca dd, J 8, $6.5 \mathrm{~Hz}, 5-\mathrm{H})$, $7.21(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.3 \overline{4}-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$. A Jeneer experiment was consistent with the connectivity as indicated ${ }^{13}$; $\delta^{\delta} C_{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 37.9(\mathrm{t}, 6-\mathrm{C}) 52.3\left(\mathrm{q}, 0 \mathrm{CH}_{3}\right), 54.0$ (d , $7-\mathrm{C}), 67.2\left(\mathrm{t}, \mathrm{PhCH}_{2}\right), 68.1(\mathrm{~d}, 5-\mathrm{C}), 126.3(\mathrm{~d}, 3-\mathrm{C}), 130.8(\mathrm{~s}, 2-\mathrm{C}), 128.1,128.4$, 128.6 ($3 \mathrm{x} \mathrm{d}, \mathrm{Ar}$), 136.0 (s , phenyl-ipso- C), 156.0 ($\mathrm{s}, \mathrm{C} 0$), 158.5 (s, CO), 172.2 (s, CO); $\mathrm{m} / \mathrm{e}(\mathrm{I} . \mathrm{B}, \mathrm{E} . \mathrm{I}) .348\left(\mathrm{M}^{+}, 8 \%\right), 224$ (26), 91 (100).
(5R,7S)-1-Aza-7-benzyloxycarbonylamino-8-oxo-4-thiabicyclo[3.3.0]oct-2-ene-carboxylic acid ethyl ester (24)

Aqueous lithium hydroxide monohydrate solution ($0.29 \mathrm{M}, 0.1 \mathrm{ml}, 2.9 \times 10^{-2} \mathrm{mmol}$) was added to a solution of the olefin (20) ($\left.9.0 \mathrm{mg}, 2.6 \times 10^{-2} \mathrm{mmol}\right)$ in tetrahydrofuran $(0.3 \mathrm{ml})$ and stirred at $0^{\circ} \mathrm{C}$ for 30 minutes. The solvent was evaporated in vacuo, the residue dried thoroughly on a high vacuum Iine (ca 1 mmHg) and then redissolved in dry, distilled dimethylformamide (0.3 ml). Ethyl iodide ($3.0 \mu \mathrm{l}, 3.8 \times 10^{-2} \mathrm{mmol}$) was added and the reaction mixture stirred at $20^{\circ} \mathrm{C}$ for 20 h . The reaction was quenched with water (5 ml) and extracted with ethyl acetate ($3 \times 10 \mathrm{ml}$). The combined organic layers were washed with brine (10 ml), dried (sodium sulphate) and evaporated in vacuo to yield an oil which was purified by PLC [diethyl ether: acetic acid (99:1)] $\mathrm{R}_{\mathrm{f}} 0.5$ to yield (24) (5.6 mg , 60%) as an oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) 1727 \mathrm{bs}(\mathrm{CO}), 1603 \mathrm{~m}, 1514 \mathrm{~m} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{\mathrm{s}}\right) 1.31$ ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7$ $\mathrm{Hz}, 0 \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.41-2.45(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.34-3.39(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.27-4.32(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4,63-4.68(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.13\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 5.45(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}), 5.91(\overline{1} \mathrm{H}, \mathrm{ca} \mathrm{dd}$, $\mathrm{J}, 76 \mathrm{~Hz}, 5-\mathrm{H}), 7.18(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.18(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.34-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$. A Jeneer experiment was consistent with the connectivity as indicated ${ }^{13}$;m/e (I.B.E.I.) 362 (M^{+}, $6 \%), 91$ (100).

(2S,5R,7S)-1-Aza-7-phenoxymethylamido-8-oxo-4-thiabicyclo[3.3.0]-2-carboxylic acid

 methyl ester (25)The bicyclic lactam (12) ($394 \mathrm{mg}, 1.12 \mathrm{mmol}$) was dissolved in dry dichloromethane (4.0 ml) and cooled to $0^{\circ} \mathrm{C}$ in an ice-water bath. A solution of hydrogen bromide in acetic acid ($45 \% \mathrm{w} / \mathrm{v}$, ca 2 ml) was added and a calcium chloride drying tube attached to the reation vessel to exclude atmospheric moisture. The reaction mixture was allowed to warm to $20^{\circ} \mathrm{C}$ and stirred until evolution of carbon dioxide had ceased (ca 0.5 h) and for a further 0.5 h . The solvent was then evaporated in vacuo ($<2 \mathrm{mmHg}$) and the residue redissolved in dry dichloromethane (4.0 ml). Dry triethylamine ($235 \mu \mathrm{l}, 1.68 \mathrm{mmol}$) was added to the solution at $0^{\circ} \mathrm{C}$, after which phenoxyacetyl chloride ($170 \mu \mathrm{l}, 1.23 \mathrm{mmol}$) and triethylamine ($160 \mu \mathrm{l}, 1.15 \mathrm{mmol}$) were added simultaneously to the solution (over ca 15 min) and the reaction mixture stirred for a further 4 h at room temperature. Dichloromethane (10 ml) was then added and the resultant solution was washed with 1 N hydrochloric acid (10 ml) and aqueous sodium hydrogen carbonate solution ($5 \% \mathrm{w} / \mathrm{v} 10 \mathrm{ml}$), dried (sodium sulphate) and evaporated in vacuo to yield the crude product which was purified by chromatography [(flash silica, 400 g), diethyl ether: ethyl acetate (1:1)] to yield (25) ($260 \mathrm{mg}, 66 \%$) as an oil; t.l.c. [diethyl ether:ethyl acetate (1:1)] $\mathrm{R}_{\mathrm{f}} 0.5 ; v_{\max }$ (CHCl_{3}) $1756 \mathrm{~m}, 1718 \mathrm{~s}, 1685 \mathrm{~s}, 1600 \mathrm{~m}, 1522 \mathrm{~m}, 1496 \mathrm{~m}, 1442 \mathrm{~m}, 1405 \mathrm{~m} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{\mathrm{g}}\right)$ $2.03-2.10(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.24-3.29(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.37-3.43(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.79(3 \mathrm{H}, \mathrm{s}$, $\left.0 \mathrm{CH}_{3}\right), 4.53,4.54\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 16 \mathrm{~Hz}, \mathrm{PhOCH}_{2}\right), 4.90-4.96(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.16-5.21(2 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}, 5-\mathrm{H}), 6.94[2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8 \mathrm{~Hz}, \mathrm{OPh}(\underline{\mathrm{o}}-\mathrm{H})], 7.04[1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5 \mathrm{~Hz}, \mathrm{OPn}(\underline{p}-\mathrm{H})], 7.16(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J} 6 \mathrm{~Hz}, \mathrm{NH}), 7.33$ [2H, dd, J $8.5, \overline{7} .5 \mathrm{~Hz}, \mathrm{OPh}(\underline{\mathrm{m}}-\mathrm{H}]$. A Jeneer experiment was consistent with the connectivity as indicated ${ }^{3}$; $\delta_{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 35.0(\mathrm{t}, 3-\mathrm{C}), 38.0(\mathrm{t}, 6-\mathrm{C})$, $52.8\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 52.9,57.8,61.8(3 \mathrm{x} \mathrm{d}, 2-\mathrm{C}, 5-\mathrm{C}, 7-\mathrm{C}), 67.3\left(\mathrm{t}, \mathrm{PhOCH}_{2}\right) 114.8$ [d, OPh (o-C)], 122.2 [d, OPh (p-c)], 129.7 (d, OPh (m-C)], 157.1 (s , phenyl-ipso-C), 168.6 (s ,

CO), $169.4(\mathrm{~s}, \mathrm{CO}), 170.9(\mathrm{~s}, \mathrm{CO}) ; \mathrm{m} / \mathrm{e}(\mathrm{I} . \mathrm{B} . \mathrm{E} . \mathrm{I}) .350\left(\mathrm{M}^{+}, 100 \%\right), 257\left(\mathrm{M}^{+}-0 \mathrm{C}_{6} \mathrm{H}_{5}, 18\right)$, $215\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{2} \mathrm{CO}, 27\right), 199(70), 107$ (43), 86 (50), 77 (92), 59 (25).
(2S,3R,5R,7S)-1-Aza-3-benzoyloxy-7-phenoxymethylamido-8-oxo-4-thiabicyclo[3.3.0]octane-2carboxylic acid methyl ester (27)

The bicyclic lactam (25) ($750 \mathrm{mg}, 2.14 \mathrm{mmol}$) was dissolved in dry benzene (2.0 ml). To this solution was added dry benzoyl peroxide ($1.84 \mathrm{~g}, 7.60 \mathrm{mmol}$) and cupric acetoacetate ($50.0 \mathrm{mg}, 0.19 \mathrm{mmol}$), and the mixture stirred under nitrogen at $70^{\circ} \mathrm{C}$ for 2 h . The solvent was evaporated in vacuo and the residue purified by chromatography [(flash silica, 200 g), diethyl ether] to yield (27) ($344 \mathrm{mg}, 34 \%$) as an oil; $v_{\max }$ (CHCl,) 1729 $\mathrm{s}, 1695 \mathrm{~s}, 1603 \mathrm{~m}, 1496 \mathrm{~m}, 1452 \mathrm{~m}, 1375 \mathrm{~m} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.11-2.17(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$, $3.38-3.43(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.52,4.53\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 15 \mathrm{~Hz}, \mathrm{PhOCH}_{2}\right), 5.01-5.06(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$, $5.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7,6 \mathrm{~Hz}, 5-\mathrm{H}), 5.69(1 \mathrm{H}, \mathrm{s}, \overline{2}-\mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 6.87[2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9$ $\mathrm{Hz}, \operatorname{OPh}(\mathrm{o}-\mathrm{H})], 7.03[1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5 \mathrm{~Hz}, 0 \mathrm{Ph}(\mathrm{p}-\mathrm{H})], 7.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6 \mathrm{~Hz}, \mathrm{NH}), 7.27-7.64$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \mathrm{O}, \mathrm{PhCOO}[\underline{m}-\mathrm{H}, \underline{p}-\mathrm{H}]$), $7.96\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5 \mathrm{~Hz}, \mathrm{PhCOO}[\underline{o}-\overline{\mathrm{H}}] ; \mathrm{m} / \mathrm{e}\left(\mathrm{NH}_{3}, \mathrm{D} . \mathrm{C} . \mathrm{I}.\right) 471\right.$ $\left(\mathrm{MH}^{+}, 2 \%\right) 366\left(\mathrm{MNH}_{4}{ }^{+}-\mathrm{PhCO}_{2} \mathrm{H}, 30\right), 349\left(\mathrm{MH}^{+}-\mathrm{PhCO}_{2} \mathrm{H}\right)$.
(5R,7S)-1-Aza-7-phenoxymethylamido-8-oxo-4-thiabicyclo[3.3.0]oct-2-ene-2-carboxylic acid methyl ester (26)

The benzoate (27) ($280 \mathrm{mg}, 0.60 \mathrm{mmol}$) was dissolved in $\mathrm{N}, \mathrm{N}^{\prime}$-dimethylaniline (50 ml)
 reaction mixture was dissolved in ethyl acetate (100 ml) and washed with 2 N hydrochloric acid ($4 \times 100 \mathrm{ml}$) to remove all traces of $\mathrm{N}, \mathrm{N}^{\prime}$-dimethylaniline. The organ $\overline{1} \mathrm{c}$ layer was then washed with aqueous sodium hydrogen carbonate (solution 100 mI), dried (sodium sulphate) and evaporated in vacuo to yield the crude product. This was purified by chromatography [(flash silica, 20 g), diethyl ether: ethyl acetate (1:1)] to yield (26) ($76 \mathrm{mg}, 37 \%$) as an oil; t.l.c. [diethyl ether: ethyl acetate ($1: 1$)] $\mathrm{R}_{\mathrm{f}} 0.5 ; v_{\max }\left(\mathrm{CHCl}_{3}\right)$ $1740 \mathrm{~s}, 1719 \mathrm{~s}, 1685 \mathrm{~s}, 1601 \mathrm{~s}, 1522 \mathrm{~m}, 1496 \mathrm{~m}, 1441 \mathrm{~m}, 1383 \mathrm{~m}, 1325 \mathrm{~m} ; \delta \mathrm{H}$ (500 MHz , CDCl_{3}) $2.40-2.47(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.44-3.49(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.84\left(3 \mathrm{H}, \mathrm{s}, 0 \mathrm{CH}_{3}\right), 4.55(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{PhOCH}_{2}\right), 4.86-4.91(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.5,6 \mathrm{~Hz}, 5-\mathrm{H}), 6.94[2 \mathrm{H}, \mathrm{ca} \mathrm{d}, \mathrm{J} 8 \mathrm{~Hz}$, $0 \mathrm{Ph}(\underline{o}-\mathrm{H})], 7.04[1 \mathrm{H}$, са $\mathrm{t}, \mathrm{J} 7.5 \mathrm{~Hz}, 0 \mathrm{Ph}(\mathrm{p}-\mathrm{H})], 7.22(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.33[2 \mathrm{H}, \mathrm{ca} \mathrm{dd}, \mathrm{J}$ $8.5, \overline{7} .5 \mathrm{~Hz}, 0 \mathrm{Ph}(\underline{m}-\mathrm{H})]$. A Jeneer experiment was consistent with the connectivity as indicated ${ }^{13}$; [Selected n.0.e. data: irradiation at 2.40-2.47 (6-8H) showed enhancement at $3.44-3.69(6-\alpha H)=26 \%$. Irradiation at $3.44-3.69(6-\alpha H)$ showed enhancements at 2.40-$2.47(6-8 \mathrm{H})=28 \%, 4.86-4.91(7-\mathrm{H})=10 \%$ and $5.97(5-\mathrm{H})=18 \%$. Irradiation at 4.86-4.91 $(7-H)$ showed enhancements at $2.40-2.47(6-\beta H)<2 \%, 3.44-3.69(6-\alpha H)=6 \%$, and $5.97(5-H)$ $=9 \%] ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 37.6(\mathrm{t}, 6-\mathrm{C}), 52.2\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 52.3(\mathrm{~d}, 7-\mathrm{C}), 67.3\left(\mathrm{t}, \mathrm{PhOCH}_{2}\right)$, $68.3(\mathrm{~d}, 5-\mathrm{C}), 114.8[\mathrm{~d}, \mathrm{OPh}(\mathrm{O}-\mathrm{C})], 122.3[\mathrm{~d}, 0 \mathrm{Ph}(\mathrm{p}-\mathrm{C})], 126.3(\mathrm{~s}, 2-\mathrm{C}), 127.1(\mathrm{~d}, 3-\mathrm{C})$, 129.8 [d, oph (m-C)], 157.1 (s , phenyl-ipso-C), 158.5 (s, CO), 168.9 ($\mathrm{s}, \mathrm{C} 0$), 172.4 (s , CO); m/e (I.B.E.I) 348 ($\mathrm{M}^{+}, 24 \%$), $44(100), 107(50), 77$ (90).
(5R,7S)-1-Aza-7-phenoxymethylamido-8-oxo-4-thiabicyclo[3.3.0]oct-2-ene-2-carboxylic acid benzyl ester (28)

To a stirred solution of the olefin (26) ($14.3 \mathrm{mg}, 4.11 \times 10^{-2} \mathrm{mmol}$) in tetrahydrofuran $(500 \mu \mathrm{l})$ was added an aqueous solution of lithium hydroxide ($0.24 \mathrm{M}, 180 \mu \mathrm{l}, 4.20$ $x 10^{-2} \mathrm{mmol}$). The pale yellow solution was stirred at $0^{\circ} \mathrm{C}$ for ca 30 minutes. The solvent was evaporated in vacuo to yield the crude carboxylate which was thoroughly dried on a high vacuum line. This was dissolved in dry, distilled dimethylformamide ($450 \mu \mathrm{l}$); benzyl bromide ($99 \% \mathrm{w} / \mathrm{w}$) ($12 \mu \mathrm{l}, 0.10 \mathrm{mmol}$) and sodium iodide (ca 1 mg) were then added, and the solution stirred for ca 20 h under nitrogen at $20^{\circ} \mathrm{C}$. The reaction was quenched with water $(10 \mathrm{ml})$ and extracted into ethyl acetate ($3 \times 10 \mathrm{ml}$). The combined organic layers were washed with brine (20 ml), dried (sodium sulphate) and evaporated in vacuo to yield the crude product which was purified by PLC (diethyl ether) to yield (28) [6.3 mg , 368 from (26)] as an oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) 1740 \mathrm{~s}, 1711 \mathrm{~s}, 1685 \mathrm{~s}, 1598 \mathrm{~m}, 1522 \mathrm{~m}, 1497 \mathrm{~s}, 1442 \mathrm{~m}$, $1363 \mathrm{~m}, 1242 \mathrm{~m} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.40-2.47(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.43-3.48(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.55$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhOCH}_{2}\right), 4.86-4.91(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.28\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 5.94-5.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.5$, $6 \mathrm{~Hz}, 5-\mathrm{H}), 6.96[2 \mathrm{H}$, ca $d, \mathrm{~J} 8 \mathrm{~Hz}, 0 \mathrm{Ph}(\mathrm{o}-\mathrm{H})], 7.04(1 \mathrm{H}, \mathrm{ca} \mathrm{t}, \mathrm{J} 7 \mathrm{~Hz}, \mathrm{OPh}(\mathrm{p}-\mathrm{H})], 7.21$ $(1 \mathrm{H}, \mathrm{ca} \mathrm{d}, \mathrm{J} 8 \mathrm{~Hz}, \mathrm{NH}), 7.25^{-}(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.28-7.42(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \mathrm{m} / \mathrm{e}$ (I.B.E.I.) 424
$\left(\mathrm{M}^{+}, 10 \%\right), 333\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, 30\right), 305(22), 107(23), 91(100), 77(28) ; \mathrm{m} / \mathrm{e}\left(\mathrm{NH}_{3}\right.$, D.C.I.) $442\left(\mathrm{MNH}_{4}{ }^{+}, 35 \%\right), 425\left(\mathrm{MH}^{+}, 100\right), 108(40)$.
(2S,5R,7S)-1-Aza-7-t-butyloxycarbonylamino-8-oxo-4-thiabicyclo[3.3.0]octane-2-carboxylic acid p-nitrobenzyl ester (33)

Aldehyde (31) ($2.78 \mathrm{~g}, 9.07 \mathrm{mmol}$) and D-cysteine hydrochloride monohydrate (1.59 g , 9.07 mmol) were dissolved in pyridine (30 ml) and refluxed for 16 h . The reaction mixture was then evaporated to dryness in vacuo and the residue partitioned between ethyl acetate (100 ml) and 5% aqueous sodium bicarbonate (100 ml); the aqueous phase was separated, acidified and re-extracted with ethyl acetate ($2 \times 100 \mathrm{ml}$). The organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo to give crude (32) ($2.00 \mathrm{~g}, 6.62 \mathrm{mmol}$). The crude acid (32) was dissolved in dry dimethylformamide (50 ml), to which potassium bicarbonate ($729 \mathrm{mg}, 7.28 \mathrm{mmol}$), potassium iodide (ca 20 mg), sodium sulphate (ca 20 mg), and p-nitrobenzylbromide ($1.57 \mathrm{~g}, 7.28 \mathrm{mmol}$), were added. The reaction mixture was stirred for 72 h , after which the solvent was removed in vacuo and the residue dissolved in ethyl acetate (100 ml), washed $[5 \%$ aqueous sodium bicarbonate solution (100 ml) and brine (100 ml)], dried (sodium sulphate) and evaporated in vacuo to give (33) (2.89 g , $73 \%) ;[20]]^{\circ}+142.3^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.5\right)$ t.l.c. [(diethyl ether)] $\mathrm{R}_{\mathrm{f}} 0.45 ; v_{\max }\left(\mathrm{CHCl}_{3}\right)$ $3430 \mathrm{~m}, 2980 \mathrm{~s}, 2880 \mathrm{~m}, 1750 \mathrm{~m}, 1710 \mathrm{~s}, 1610 \mathrm{~m}, 1525 \mathrm{~s}, 1350 \mathrm{~s}, 1160 \mathrm{~s} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{\mathrm{g}}\right) 1.46\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 1.95-2.10(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.10-3.26(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.35(2 \mathrm{H}$, ca d, J $6 \mathrm{~Hz}, 3-\mathrm{H}), 4.59-4.70(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.10(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7 \mathrm{~Hz}, 2-\mathrm{H}), 5.23(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5$ $\overline{\mathrm{Hz}}, 5-\overline{\mathrm{H}}), 5.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 7.52,8.26\left(4 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}, \mathrm{~J} 8 . \overline{5} \mathrm{~Hz}, \mathrm{ArH}\right)$. A Jeneer experiment was consistent with the connectivity as indicated ${ }^{13}$; [Selected n.0.e. data: irradiation at $1.95-2.10(6-8 H)$ showed enhancement at $3.10-3.26(6-\alpha H)=24 \%$. Irradiation at 3.10-$3.26(6-\alpha H)$ showed enhancements at $1.95-2.10(6-\beta H)=29 \%, 4.59-4.70(7-H)=13 \%$, and $5.23(5-H)=19 \%$. Irradiation at $4.59-4.70(7-H)$ showed enhancements at 3.10-3.26 $(6-\mathrm{aH})=7 \%$ and $5.23(5-\mathrm{H})=11 \%] ; \delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 28.1\left[\mathrm{q},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right] 34.9$ ($\left.\mathrm{t}, 3-\mathrm{C}\right)$, $38.8(\mathrm{t}, 6-\mathrm{C}), 54.2(\mathrm{~d}, 7-\mathrm{C}), 57.8(\mathrm{~d}, 2-\mathrm{C}), 61.7(\mathrm{~d}, 5-\mathrm{C}), 66.1\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{Ar}\right), 80.1$ [s, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$], $124.1(\mathrm{~d}, \mathrm{ArC}), 128.6(\mathrm{~d}, \mathrm{ArC}), 142.2(\mathrm{~s}, 1 \mathrm{pso}-\mathrm{ArC}), 148.2(\mathrm{~s}, 1 \mathrm{pso}-\mathrm{ArC}), 155.6$ (s, CO) , 168.9 ($\mathrm{s}, \mathrm{CO}), 171.9$ (s, CO) ; m/e ($\left.\mathrm{NH}_{3}, \mathrm{D} . \mathrm{C} . \mathrm{I}.\right) 4 \overline{5} 5\left(\mathrm{MNH}_{4}{ }^{+}, 17 \%\right.$), $48\left(\overline{\mathrm{MH}}{ }^{+}, 22\right)$, 399 (100). [Found $\mathrm{C}, 52.13$; H, 5.40 ; $\mathrm{N}, 9.39 \%$. $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{SO}_{7}$ requires C , 52.17 ; 3H, 5.26; N, 9.61\%].
(2S,5R,7S)-1-Aza-7-phenoxymethylamido-8-oxo-4-thiabicyclo[3.3.0]octane-2-carboxylic acid p-nitrobenzyl ester (34)
(33) (2.89 g, 6.62 mmol) was dissolved in formic acid (25 ml) and stirred at $20^{\circ} \mathrm{C}$ for 3 h , after which the reaction mixture was evaporated to dryness. The residue was partitioned between ethyl acetate (100 ml) and 2 N hydrochloric acid (3 x 100 ml). The aqueous extracts were combined, basified (to $\mathrm{pH} \overline{10}$, with 2 N sodium hydroxide) and extracted with ethyl acetate ($3 \times 50 \mathrm{ml}$). The organic extracts were dried (sodium sulphate) and evaporated in vacuo to give the crude amine as an oil. T.1.c. [(diethyl ether)] $\mathrm{R}_{\mathrm{f}} 0.1 ; \nu_{\max }\left(\mathrm{CHCl}_{3}\right) 3690 \mathrm{~m}, 3010 \mathrm{~s}, 1755 \mathrm{~m}, 1712 \mathrm{~s}, 1605 \mathrm{~m}, 1525 \mathrm{~s}, 1350 \mathrm{~s}, 1205$ $\mathrm{s}, 718 \mathrm{~s} ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.79\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 1.80-1.91(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.91-3.05(1 \mathrm{H}$, $\mathrm{m}, 6-\mathrm{H}), 3.35(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5 \mathrm{~Hz}, 3-\mathrm{H}), 3.80-3.90(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.05(1 \mathrm{H}, \mathrm{ca} \mathrm{t}, \mathrm{J} 6.5 \mathrm{~Hz}$, $2-\mathrm{H}), 5.17(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.5 \mathrm{~Hz}, 5-\mathrm{H}), 5.25\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 7.48,8.19\left(4 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}, \mathrm{~J} 9 \mathrm{~Hz}\right.$, ArH). A Jeneer experiment was consistent with the connectivity as indicated ${ }^{13}$; $\delta_{C}(62.5$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $35.1(\mathrm{t}, 3-\mathrm{C}$) , $39.3(\mathrm{t}, 6-\mathrm{C}), 55.2,57.5,61.7(3 \mathrm{x} \mathrm{d}, 7-\mathrm{C}, 2-\mathrm{C}, 5-\mathrm{C}$), 65.9 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{Ar}$), $124.0,128.5$ ($2 \mathrm{x} \mathrm{d}, \mathrm{ArC}$), 142.3 ($\mathrm{s}, 1 \mathrm{pso}-\mathrm{ArC}$), 147.9 ($\mathrm{s}, \mathrm{ipso}-\mathrm{ArC}$), 169.2 ($\mathrm{s}, \overline{\mathrm{C}} 0$), $175.6(\mathrm{~s}, \mathrm{C} 0) ; \mathrm{m} / \mathrm{e}\left(\mathrm{NH}_{3}, \mathrm{D} . \mathrm{C} . \mathrm{I}.\right) 355\left(\mathrm{MNH}_{4}{ }^{+}, 7 \% \overline{\mathrm{~h}}, 338\left(\mathrm{MH}^{+}, 100\right)\right.$. The crude amine ($1.49 \mathrm{~g}, 4.43 \mathrm{mmol}$) was dissolved in dichioromethane (30 ml), the solution cooled to $0^{\circ} \mathrm{C}$ and triethylamine ($0.92 \mathrm{ml}, 6.64 \mathrm{mmol}$) was added. Then further triethylamine ($0.68 \mathrm{ml}, 4.87 \mathrm{mmol}$) and phenoxyacetyl chloride ($0.67 \mathrm{ml}, 4.87 \mathrm{mmol}$) were added simultaneously over 15 minutes. The reaction mixture was allowed to warm to $20^{\circ} \mathrm{C}$ and stirred for 16 h . The solvent was removed in vacuo, the residue dissolved in ethyl acetate (100 ml) and washed [5% sodium bicarbonate solution (100 ml), 2 N hydrochloric acid (100 ml) and brine (100 ml)], dried (magnesium sulphate) and evaporated in vacuo. The residue was chromatographed [(flash silica) ethyl acetate: diethyl ether (1:1)] to give
(34) ($1.92 \mathrm{~g}, 92 \%$); t.l.c. [diethyl ether: ethyl acetate (2:1)] $\mathrm{R}_{\mathrm{f}} 0.6 ; \mathrm{v}_{\max }\left(\mathrm{CHCl}_{\mathrm{s}}\right)$ $3690 \mathrm{~m}, 3410 \mathrm{w}, 3010 \mathrm{~s}, 1755 \mathrm{~s}, 1720 \mathrm{~s}, 1685 \mathrm{~s}, 1525 \mathrm{~s}, 1350 \mathrm{~s} ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.07-$ $2.19(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.11-3.24(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.39(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5 \mathrm{~Hz}, 3 \mathrm{H}), 4.49(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{OPh}\right), 4.90-4.97(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.13(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7 \mathrm{~Hz}, 5-\mathrm{H}), 5.23-5.27(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 6.90(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8 \mathrm{~Hz}, \mathrm{ArH}), 7.00(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8 \mathrm{~Hz}, \mathrm{ArH}), 7.25-7.34(3 \mathrm{H}, \mathrm{m}, \mathrm{NH}, \mathrm{ArH})$, $7.50,8.21\left(4 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}, \mathrm{~J} 8 \mathrm{~Hz}, \mathrm{ArH}\right)$. A Jeneer experiment was consistent with the connectivity as indicated ${ }^{1:}$; ($3 \mathrm{H}, \mathrm{m}, \mathrm{NH}, \mathrm{ArH}$) ${ }^{\mathrm{\delta}} \mathrm{C}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 34.9$ ($\left.\mathrm{t}, 3-\mathrm{C}\right), 37.8$ $(t, 6-C), 52.7,57.9,61.7(3 \mathrm{x} \mathrm{d}, 7-\mathrm{C}, 2-\mathrm{C}, 5-\mathrm{C}), 66.1\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{Ar}\right), 67.1\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{OPh}\right)$, $114.8,122.3,124.0,128.6,129.9(5 \mathrm{xd} \mathrm{d}, \mathrm{ArC}), 142.2$ ($\mathrm{s}, \mathrm{ipso}-\mathrm{ArC}$), 148.0 (s, ipso- ArC). 157.2 ($\mathrm{s}, \mathrm{fpso}-\mathrm{ArC}$), $168.9(\mathrm{~s}, \mathrm{CO}), 171.4(\mathrm{~s}, \mathrm{CO}), 171.4(\mathrm{~s}, \mathrm{CO}) ; \mathrm{m} / \mathrm{e}\left(\mathrm{NH}_{\mathrm{s}}, \mathrm{D} . \mathrm{C} . \mathrm{I} . \mathrm{C}\right) 48 \overline{9}$ $\left(\mathrm{MNH}_{4}{ }^{+}, 5 \%\right), 472\left(\mathrm{MH}^{+}, 75\right), 357\left(\mathrm{M}^{+}-134,100\right)$.
(2S,3R,5R,7S)-1-Aza-3-benzyloxy-7-phenoxymethylamido-8-oxo-4-thiabicyclo[3.3.0]octane-2carboxylic acid p-nitrobenzyl ester (35)

To (34) ($1.28 \mathrm{~g}, 2.72 \mathrm{mmol}$) in benzene (40 ml) was added dry benzoyl peroxide (3.79 $\mathrm{g}, 16.3 \mathrm{mmol}$) and cupric acetoacetate and the solution stirred at $55^{\circ} \mathrm{C}$ for 1 h . The benzene was removed in vacuo and the residue purified by chromatography [flash silica (diethyl ether)] to give (35) (360 mg, 23\%); t.l.c. [(diethyl ether)] $\mathrm{R}_{\mathrm{f}} 0.3$; $\mathrm{v}_{\max }\left(\mathrm{CHCl}_{3}\right)$ $3420 \mathrm{w}, 3020 \mathrm{~m}, 1770 \mathrm{~m}, 1755 \mathrm{~s}, 1740 \mathrm{~s}, 1730 \mathrm{~s}, 1685 \mathrm{~s}, 1605 \mathrm{~s}, 1525 \mathrm{~s}, 1495 \mathrm{~s}, 1350 \mathrm{~s}, \delta_{\mathrm{H}}$ ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $2.06-2.22(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.33-3.50(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OPh}\right)$, $4.95-5.08(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.28-5.48\left(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 5.75(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 6.75$ (1 H, s, $3-H), 6.87(2 H, d, J 9 \mathrm{~Hz}, \mathrm{ArH}), 7.03(1 \mathrm{H}, \mathrm{t}, \mathrm{J} \overline{7} .5 \mathrm{~Hz}, \mathrm{ArH}), 7.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J} \mathrm{J} \mathrm{Hz}, \mathrm{NH})$, $7.25-7.42(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.56,8.26\left(4 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{~J} 9 \mathrm{~Hz}, \mathrm{ArH}\right), 7.91-7.95(2 \mathrm{H}, \mathrm{m}, \mathrm{J} \mathrm{ArH}) ; \mathrm{\delta}_{\mathrm{C}}$ $\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 40.3(\mathrm{t}, 6-\mathrm{C}), 51.8(\mathrm{~d}, 7-\mathrm{C}), 62.1,65.0(2 \times \mathrm{d}, 5-\mathrm{C}, 2-\mathrm{C}), 67.2,66.6$ ($2 \mathrm{xt}, 2 \times \mathrm{CH}_{2} \mathrm{Ar}$) , $83.0(\mathrm{~d}, 3-\mathrm{C}), 114.9,122.5,124.2,128.3,129.9,134.1$ ($5 \mathrm{x} \mathrm{d}, 5 \mathrm{x}$
 $165.1(\mathrm{~s}, \mathrm{C} 0), 165.8(\mathrm{~s}, \mathrm{C} 0), 168.3(\mathrm{~s}, \mathrm{C} 0), 172.9(\mathrm{~s}, \mathrm{CO}) ; \mathrm{m} / \mathrm{e}\left(\overline{\mathrm{N}}_{3}, \mathrm{D} . C . I.\right) 5 \overline{91}\left(\mathrm{MH}^{+}\right.$, 1\%), $487\left(\mathrm{MNH}_{4}{ }^{+}-\mathrm{PhCO}_{2} \mathrm{H}, 40\right), 470\left(\mathrm{MH}^{+}-\mathrm{PhCO}_{2} \mathrm{H}, 50\right)$.
(5R,7S)- and (5S,7S) 1-Aza-7-phenoxymethylamido-8-oxo-4-thiabicyolo[3.3.0]oct-2-ene-2carboxylic acid -nitrobenzyl ester (36) and (37)

A solution of $35(360 \mathrm{mg}, 0.61 \mathrm{mmol})$ in N, N^{\prime}-dimethylaniline (30 ml) was refluxed for 45 minutes. The reaction mixture was cooled, diluted with ethyl acetate (100 ml), washed [2 N hydrochloric acid ($5 \times 100 \mathrm{ml}$), 5% aqueous sodium carbonate ($3 \times 100 \mathrm{ml}$) and brine $(100 \mathrm{ml})]$, dried (magnesium sulphate) and evaporated to dryness. The residue was chromatographed [flash silica, (diethyl ether)] to give (36) and (37) as a colourless o11. For (36) : ($136 \mathrm{mg}, 47 \%$) $[\alpha]^{\circ}+75.4 \mathrm{t.1.c}$. (diethyl ether) $\mathrm{R}_{\mathrm{f}} 0.30$; $\mathrm{v}_{\max }\left(\mathrm{CHCl}_{3}\right)$ $3690 \mathrm{~m}, 3625 \mathrm{~m}, 3040 \mathrm{~s}, 3020 \mathrm{~s}, 1720 \mathrm{~s}, 1690 \mathrm{~s}, 1604 \mathrm{~m}, 1525 \mathrm{~s}, 1500 \mathrm{~s}, 1482 \mathrm{~m}, 1325 \mathrm{~s}$, $1220 \mathrm{~s}, 1050 \mathrm{~s} ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.31-2.55(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.34-3.53(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.56$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OPh}\right), 4.86-4.99(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.30,5.38\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 14 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ar}\right), 5.95(1 \mathrm{H}$, $t, ~ J ~ 7 ~ H z, ~ 5-H), ~ 6.92(2 H, ~ d, ~ J ~ 8 ~ H z, ~ A r H), ~ 7.03 ~(1 H, ~ t, ~ J ~ 7 ~ H z, ~ A r H), ~ 7.28 ~(1 H, ~ s, ~ 3-H), ~$ $7.3 \overline{3}(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 9 \mathrm{~Hz}, \mathrm{ArH}), 7.4 \overline{3}(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7 \mathrm{~Hz}, \mathrm{NH}), 7.5 \overline{6}, 8.21\left(4 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}, \mathrm{~J} 9 \mathrm{~Hz}, \mathrm{ArH}\right)$. A Jeneer experiment was consistent with the connectivity as indicated 13; [Selected n.0.e. data: irradiation at $3.34-3.53(6-\alpha H)$ showed enhancements at $2.31-2.55(6-8 H)=21 \%$; 4.86-$4.99(7-H)=9 \%$, and $5.95(5-H)=12 \%] . \delta \mathrm{C}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 37.3(\mathrm{t}, 6-\mathrm{C}), 52.0(\mathrm{~d}, 7-\mathrm{C})$, 65.7, $67.1\left(2 \mathrm{xt}, 2 \mathrm{x} \mathrm{CH}_{2} \mathrm{Ar}\right), 68.4(\mathrm{~d}, 5-\mathrm{C}), 122.5,123.9,125.9,128.7,130.0(5 \mathrm{x} \mathrm{d}$, $\operatorname{ArC}), 132.7(\mathrm{~d}, 3-\mathrm{C}) .142 .8,147.9,157.3(3 \mathrm{x} \mathrm{s,3x} \mathbf{i p s o - A r C}), 158.0,169.1,172.9$ (3 x $\mathrm{s}, 3 \times \mathrm{CO})$; $\mathrm{m} / \mathrm{e}\left(\mathrm{NH}_{3}\right.$, D.C.I.) $470\left(\mathrm{MH}^{+}, 7 \%\right), 122\left(\mathrm{MH}^{+}-348, \mathrm{TOO}\right)$. For (37): ($<5 \%$); t.l.c. (diethyl ether) $\mathrm{R}_{\mathrm{f}} 0.35 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 2.50-2.66(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.05-3.18$ $(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.55\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \bigcirc \mathrm{Ph}\right), 4.83-4.95(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 5.33,5.43(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 13 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 6.35\left(1 \mathrm{H}, \mathrm{ca} \mathrm{d}, \mathrm{J} 5^{-} \mathrm{Hz}, 5-\mathrm{H}\right), 6.93(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7 \mathrm{~Hz}, \mathrm{ArH}), 7.05(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7 \mathrm{~Hz}$, $\operatorname{ArH}), 7.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7 \mathrm{~Hz}, \mathrm{NH}), 7.27(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.38(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7 \mathrm{~Hz}, \mathrm{ArH}), 7.59,8.23$ ($\left.4 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}, \mathrm{~J} 9 \mathrm{~Hz}, \overline{\mathrm{~A}} \mathrm{H} \mathrm{H}\right) ; \mathrm{m} / \mathrm{e}\left(\mathrm{NH}_{3}, \mathrm{D} . \mathrm{C} . \mathrm{I}.\right) 470\left(\mathrm{MH}^{+}, 10 \%\right), 122\left(\mathrm{MH}^{+}-348,100\right)$.

Preparation of (6) from (36)

To a solution of (36) (43 mg, 0.09 mmol) in tetrahydrofuran/water ($3 \mathrm{ml}, 3: 5$) was added potassium bicarbonate ($9.1 \mathrm{mg}, 0.09 \mathrm{mmol}$) and 10% palladium on charcoal (ca 400 mg).

The reaction mixture was hydrogenated at atmospheric pressure for 45 minutes, after which it was filtered (Celite) and evaporated to dryness in vacuo. The residue was partitioned between ethyl acetate ($3 \times 20 \mathrm{ml}$) and water (20 ml). The aqueous layer was evaporated in vacuo to yield (6) (13mg, 44%) $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right.$, TSP referenced) $2.35-2.41$ ($1 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H}), 2.87-2.93(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OPh}\right), 4.78(1 \mathrm{H}, \mathrm{cat}, \mathrm{J} 9 \mathrm{~Hz}, 7-\mathrm{H}), 5.83$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7 \mathrm{~Hz}, 5-\mathrm{H}), 6.79(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 6.84(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7 \mathrm{~Hz}, \overline{\mathrm{Ar}} \mathrm{H}), \mathbf{6} .90(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7 \mathrm{~Hz}$, $\mathrm{Ar} \mathrm{H}), 7 . \overline{2} \mathrm{O}(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7 \mathrm{~Hz}, \mathrm{Ar} \mathrm{H})$. A Jeneer experiment was consistent with the connectivity as indicated ${ }^{13}$; [Selected n.0.e. data: irradiation at 2.87-2.93 (6-aH) showed enhancements at $2.35-2.41(6-\beta H)=32 \%, 4.78(7-H)=19 \%$, and $5.83(5-H)=12 \%] ; \delta_{C}\left(125 \mathrm{MHz}, D_{2} 0\right) 28.0$ $(t, 6-C), 4.67(d, 7-C), 60.5\left(t, \mathrm{CH}_{2} \mathrm{Ar}\right), 61.9(\mathrm{~d}, 5-\mathrm{C}), 108.7,116.0,123.8(3 \mathrm{x} \mathrm{t}, \mathrm{ArC})$,
 m / e (fast atom bombardment) $373 \mathrm{MH}^{+}$). (6) Showed ca 5% of the biological activity of penicillin G against S. aureus NC No. 6071.

This work has been published in a preliminary form:
J.E. Baldwin, C. Lowe, C.J. Schofield, and E. Lee, Tetrahedron Lett. . 1986, 3461. After completion of this work we were informed by Dr. L.D. Hatfield (Eli Lilly \& Co., Indianapolis, U.S.A.) that they had prepared examples of similar substances, see: D.B. Boyd, T.K. Elzey, L.D. Hatfield, M.D. Kinnick, and John M. Morin Jr., Tetrahedron Lett., 1986, 3453; D. Boyd, B.J. Foster, L.D. Hatfield, W.J. Hornback, N.D. Jones, J.E. Munroe, and J.K. Swartzendruber, ibid., 1986, 3457; L.N. Jungheim, S.K. Sigmund, and J.W. Fisher, ibid., 1987, 285; L.N. Jungheim, S.K. Sigmund, N. Jones, and J.K. Swartzendruber, ibid., 1987, 289. See also S. Hashiguchi, H. Natsugari, and M. Ochiai, J.Chem.Soc., Perkin Trans. 1, 1988, 2345.
E.F. Gale, E. Cundliffe, P.E. Reynolds, N.H. Richmond, and M.J. Waring, "The Molecular Basis of Antibiotic Action", John Wiley and Sons, Ltd., London, 1981, pp 79-136.
J.E. Baldwin, M.F. Chan, G. Gallacher, P. Monk, and K. Prout, J.Chem.Soc., Chem. Commun., 1983, 250; J.E. Baldwin, M.F. Chan, G. Gallacher, P. Monk, and K. Prout, Tetrahedron, 1984, 40, 4513.
J.E. Baldwin, R.M. Adlington, R.H. Jones, C.J. Schofield, C. Zaracostas,
C.W. Greengrass, J.Chem.Soc.Chem.Commun., 1985, 194; idem, Tetrahedron, 1986, 42, 4879.
V. Vigneaud, and F.H. Carpenter, in "The Chemistry of Penicillin", Eds., H.T. Clarke, J.R. Johnson, and R. Robinson, Princeton University Press, Ithaca, New York, 1949, p. 1004; H. Wasserman, F.M. Precopio, and T.C. Liu, J.Am.Chem.Soc., 1952, 74, 4093; E.M. Gorden and J. Pluscec, Tetrahedron Lett., 1983, 3419. United States Pat. 4, 428, 960 (1984); Chem Abstr., 1984, 100, (23), 191655. There is evidence for a correlation of the reactivity of the $\beta-l a c t a m$ ring of certain cephalosporins and their antibacterial activity. See e.g. D.B. Boyd, J.Med.Chem. 1973, 16, 1195. For alternative viewpoints see M.I. Page, Acc.Chem.Res., 1984, 17, 144 and N.C. Cohen, J.Med.Chem., 1983, 26, 259.
H.R. Pfaendler, J. Gosteli, and R.B. Woodward, J.Am.Chem.Soc., 1980, 102, 2039; I. Ernest, J. Gosteli, C.W. Greengrass, W. Holick, D.E. Jackman, H.R. Pfaendler, and R.B. Woodward, J.Am.Chem.Soc., 1978, 100 , 8214; M. Lang, K. Prasad, W. Holik, J. Gosteli, and R.B. Woodward, J.Am.Chem. $\overline{\text { Soc }} ., 1979,101,6296$; I. Ernest, J. Gostel1, and R.B. Woodward, J.Am.Chem.Soc., 1979, 101, 6301. I. Ernest in "Chemistry and Biology of β-Lactam Antibiotics", Eds., R.B. Morin and M. Gorman, Academic Press, 1982, 1, pp 357-358.
D.D. Keith, J.A. Tortora, K. Ineichen, and W. Leimgruber, Tetrahedron, 1975, 31, 2633
J.E. Baldwin, M.A. Christie, S.B. Haber, and L.I. Kruse, J.Am.Chem.Soc., 1976, 98, 3405; J.E. Baldwin, A. Au, M. Christie, S.B. Haber and D. Hesson, J.Am.Chem.Soc., 1975, 97, 5957.
A. Bax, "Two Dimensional Nuclear Magnetic Resonance in Liquid", Reidel, London, 1982. J.P. Greenstein and M. Winitz, "Chemistry of the Amino Acids", John Wiley, New York, 1961, p. 1901.

