

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 689 (2004) 502-514

Journal ofOrgano metallic Chemistry

www.elsevier.com/locate/jorganchem

Synthesis, characterization, and alkyne cyclotrimerization chemistry of titanium complexes supported by calixarene-derived bis(aryloxide) ligation $\stackrel{\text{transform}}{\approx}$

Folami T. Ladipo^{a,*}, Vallipuram Sarveswaran^{a,1}, Jesudoss V. Kingston^a, Rebecca A. Huyck^{a,2}, Sergei Y. Bylikin^{a,3}, Shana D. Carr^a, Randy Watts^a, Sean Parkin^a

^a Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA

Received 18 July 2003; accepted 31 October 2003

Abstract

Proximally bridged calix[4]arene compounds (DESC)H₂ (**3**), (DMSHC)H₂ (**4**), (DMSMC)H₂ (**5**), and (DPSC)H₂ (**6**), in which one R₂Si group (R = alkyl or aryl) bridges adjacent oxygens, were synthesized via reaction between dialkyl- or diaryldichlorosilane and the corresponding calix[4]arene. Treatment of *p-tert*-butylcalix[4]arene with Ph₂SiCl₂ at room temperature or (*o*-MeC₆H₄)₂SiCl₂ at 80 °C gave (ClPh₂SiCl)₂Calix-H₂ (**7**) and (*o*-Tol₂SiCl)₂Calix-H₂ (**8**), respectively. Titanium dichloride complexes **9–12** (L₂TiCl₂, where L₂ = DESC, DMSHC, DMSMC, or DPSC) were prepared in high yield from reaction of **3–6** with TiCl₄. The molecular structures of **7** and **12** were established by single-crystal X-ray diffraction studies. Reduction of **9**, **11**, and **12** with activated magnesium (Mg*) in the presence of an excess of Me₃SiC≡CH produced titananorbornadiene complexes L₂Ti{ η^{6} -1,2,4-C₆H₃(SiMe₃)₃} (**13–15**, L₂ = DESC, DMSMC, or DPSC), which were characterized in solution. Catalytic cyclotrimerization of both terminal and internal alkynes was achieved using catalyst systems derived from L₂TiCl₂ complexes **9–12** and Mg*. For unsymmetrically substituted internal alkynes, preference for 1,2,4-substitution decreased as the size difference of the substituent groups decreased. The cyclotrimerization of PhC≡CMe was more facile when the calixarene-derived bis(aryloxide) ligand was DPSC versus DMSMC, suggesting that the DPSC ligand may provide a less crowded titanium center and exert greater kinetic control over the course of the cyclotrimerization.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Calixarene compounds; Alkyne cyclotrimerization; Titanium(IV); Reduced titanium

1. Introduction

Metallocene complexes of the group 4 metals have been the focus of intense study, mainly because of their usefulness in organic and polymer chemistry [1]. Group 4 metal complexes containing non-cyclopentadienyl ligand arrays, such as aryloxides [2], chelating diamides [3], porphyrins [4], amine-bis(phenolate)s [5], bis(salicylaldiminate)s [6], carboranes [7], amidinates [8], boratabenzenes [9], Schiff bases [10], and calixarenes [11,12], have increasingly been investigated. While precise control of chemical reactivity is difficult, the expectation is that compounds with comparable or superior reactivity to group 4 metal metallocenes can be developed since steric and electronic properties of ancillary ligands profoundly influence the reactivity of transition metals.

We have been exploring the chemistry of titanium complexes supported by dianionic, proximally bridged *p*-*t*-butylcalix[4]arene ligands [12]. Previously, we reported the synthesis of conformationally stable Ti(IV)

^{*} Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem.2003.10.039.

^{*}Corresponding author. Tel.: +1-859-257-7084; fax: +1-859-323-1069.

E-mail address: fladip0@uky.edu (F.T. Ladipo).

¹ Present address: Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.

² Present address: Chemistry Department, Transylvania University, Lexington, KY 40508, USA.

³ Present address: Department of Chemistry, Russian State Medical University, 1 Ostrovityanov St., Moscow 117869, Russia.

dichlorides that contain calixarene-derived bis(aryloxide) ligands in 1,2-alternate conformation, (DMSC)- $TiCl_2$ (1a) [12b] and (*t*-BuPC) $TiCl_2$ (1b) [12a] (Fig. 1). In this conformation, a pair of bulky *tert*-butylated phenyl rings essentially define a cavity into which a coordination site at titanium must project. We found that 1a catalyzes cyclotrimerization of terminal alkynes at 80 °C and in the presence of excess Na (with respect to Ti) to give high yields of 1,2,4-substituted benzenes with excellent regioselectivity [12b]. The reaction of 1a with activated magnesium (Mg*) in the presence of an excess $Me_3SiC \equiv CH$ produced (DMSC)Ti{ η^6 -1,2,4of $C_6H_3(SiMe_3)_3$ (2a, Fig. 1), which is an efficient catalyst for regioselective cyclotrimerization of terminal alkynes to 1,2,4-substituted benzenes at room temperature [12c]. The steric bulk of the alkyne affects both the rate and regioselectivity of the cyclotrimerization reaction. Bulky terminal alkynes, such as $Pr_2^i SiC \equiv CH$, and most internal alkynes react very sluggishly with 2a, and are rarely cyclotrimerized even at elevated temperatures.

Our mechanistic investigations revealed that displacement of $1,2,4-C_6H_3(SiMe_3)_3$ from **2a** by alkyne is rate-limiting. Furthermore, the observed 1,2,4-regioselectivity is best explained by the directing influence (kinetic control) of the DMSC ligand [12b,12c]. That is, the size of the cavity defined by the DMSC ligand sterically governs the preferred orientation of a coordinated alkyne molecule by influencing placement of its substituent group inside or outside of the cavity. Accordingly, whether a larger cavity size will permit efficient cyclotrimerization of internal alkynes is of interest. A careful analysis of the molecular structures of DMSC-based titanium complexes revealed that the bridging SiMe₂ group can adopt different orientations, and thereby permit some degree of flexibility in the calixarene ligand. Herein, we describe results from a

1a, $E = SiMe_2$, (DMSC)TiCl₂ **1b**, $E = PBu^t$, (t-BuPC)TiCl₂

 Bu^{t} Bu^{t} B

study aimed at elucidating the effect of the steric properties of the SiR_2 bridging group of calixarene-derived bis(aryloxide) ligands on reactivity of titanium complexes.

2. Results and discussion

2.1. Calix[4]arene derivatives

The synthesis of proximally bridged calix[4]arene compounds 3–6 is summarized in Scheme 1. The method reported by Lattman and colleagues [13] for the synthesis of $(DMSC)H_2$ was adapted to prepare 3-5. At room temperature, reaction between Me2SiCl2 or Et₂SiCl₂ and the appropriate calix[4]arene derivative in the presence of 2 equiv of Et₃N for 24-48 h gave 3-5 in high yield after work-up. No reaction was observed between *p*-tert-butylcalix[4]arene and $Pr_2^i SiCl_2$ or Bu^t₂SiCl₂ under identical conditions while reaction with Ph_2SiCl_2 mainly produced (ClPh_2Si)_2Calix-H₂ (7, Scheme 1), along with minor amounts of $(DPSC)H_2$ (6). It is likely that formation of 7 occurs by sequential substitution of *p*-tert-butylcalix[4]arene with ClPh₂Si groups. This suggests that at room temperature intermolecular reaction of the presumed mono-substituted intermediate (ClPh₂Si)Calix-H₃ with Ph₂SiCl₂ to give 7 proceeds at a faster rate than intramolecular chloride substitution to produce $(DPSC)H_2$ (6). Reasoning that both initial substitution of *p*-tert-butylcalix[4]arene to give (ClPh₂Si)Calix-H₃ and "HCl" elimination from (ClPh₂Si)Calix-H₃ should be more facile at higher temperatures, we conducted the reaction at 80 °C and isolated (DPSC)H₂ (6) in 78% yield. In contrast, reaction between *p-tert*-butylcalix[4]arene and more bulky (o- $MeC_6H_4)_2SiCl_2$ at 80 °C gave (o-Tol_2SiCl)_2Calix-H_2 (8) in excellent yield (Scheme 1). Compounds 3-8 are airstable, hygroscopic white solids. While 3 and 5-8 are fairly soluble in aromatic hydrocarbon solvents, such as benzene and toluene, and in polar hydrocarbon solvents, such as ether, THF, chloroform, and dichloromethane $(DMSHC)H_2$ (4) is only sparingly soluble in these solvents. All of the compounds are considerably less soluble in aliphatic hydrocarbon solvents.

Mass spectral and solution NMR data of **3–8** are consistent with their proposed formulation and structure. The NMR data for **3–5** demonstrate that they possess C_s symmetry and adopt 1,2-alternate conformation in solution. ¹H and ¹³C NMR resonances for the *endo*-SiR group (located inside the calixarene cavity) of 1,2-alternate R₂Si-bridged calix[4]arene compounds are always strongly shielded compared to signals for the *exo*-SiR group (located outside the calixarene cavity) [12,13], due probably to ring current effect [14]. For example, ¹H NMR resonances for the *endo*-SiCH₂CH₃ group of (DESC)H₂ (**3**) show as a triplet at δ 0.65

(SiCH₂*CH*₃) and a quartet at δ –0.63 (Si*CH*₂CH₃) while the *exo*-SiCH₂CH₃ group is observed as a multiplet at δ 0.86–0.96. Similarly, in the ¹³C NMR spectrum of **3**, two resonances at δ 7.2 (SiCH₂*CH*₃) and δ 4.9 (Si*CH*₂CH₃) are observed for the *endo*-SiCH₂CH₃ group while resonances for the *exo*-SiCH₂CH₃ group are observed at δ 8.2 (Si*CH*₂CH₃) and 7.4 (SiCH₂*CH*₃). ¹H NMR spectra of **3–5** also show two pairs of doublets and an AB system for the bridging CH₂ protons. The AB system integrates as four protons and represents CH₂ groups not included in the mirror plane. Furthermore, coupling constants (J_{H-H} ~16 Hz) for the AB system are typical of 1,2-alternate conformation (16–17 Hz) [12a,12b].

The poor solubility of (DMSHC)H₂ (4) prevented acquisition of its solution ¹³C NMR data. However, ¹³C NMR spectra of 3 and 5 showed three resonances for the bridging methylene carbons at δ 32.8, 36.2, and 37.4 (doubly intense) (3) and δ 31.9, 35.2, and 36.1 (doubly intense) (5). These data parallel ¹³C NMR data reported for several calix[4]arene derivatives [13,15], which show

that methylene carbons of calix[4]arenes are characterized by a resonance around δ 31 ppm when the attached phenol rings are oriented *syn*. Whereas, a resonance around δ 37 ppm is characteristic when the phenol rings adopt *anti* orientation (Fig. 2). NMR data for (DPSC)H₂ (6) confirm its C_s symmetry in solution and show that it adopts the cone conformation. Hence two singlets and three pairs of doublets are observed in its

¹H NMR spectrum for Bu^{*t*} groups and methylene protons, respectively. The spectrum is distinct from the spectra of **3–5** in that an AB system is absent and the coupling constant (J_{H–H}) for the doubly intense pair of doublets is ~14 Hz while the corresponding J_{H–H} for **3–5** is ~16 Hz. In its ¹³C NMR spectrum, the bridging methylene carbons resonate at δ 38.0, 33.8 (overlapped with *C*(CH₃)₃ resonance), and 32.8 (doubly intense). The resonance at 38.0 belongs to CH₂ carbon connecting *syn*-oriented Ph₂Si-bridged phenol rings. Similar data have previously been reported for proximally bridged calixarenes in cone conformation [12a,16].

¹H and ¹³C NMR data for $(ClPh_2Si)_2Calix-H_2$ (7) and $(o-Tol_2SiCl)_2Calix-H_2$ (8) indicate that they are C_{2v} symmetric in solution. Their ¹H NMR spectra show two

Table 1

50% thermal ellipsoid probabilities.

equally intense doublets for the calixarene CH₂ groups at δ 4.64 and 3.10 for 7 and at δ 4.57 and 3.10 for 8. Their J_{H-H} coupling constants of ~14 Hz and the presence of a single resonance for calixarene CH₂ carbons in their ¹³C NMR spectrum at δ 33.1 for 7 and δ 33.2 for 8 reveal that the compounds exist in cone conformation. The structure assigned for 7 by spectroscopy was confirmed by single-crystal X-ray crystallographic analysis: the molecule adopts cone conformation with the ClPh₂Si groups substituted symmetrically. The molecular structure of 7 is shown in Fig. 3 and its crystallographic data and selected metrical parameters are presented in Tables 1 and 2. Metrical parameters for 7 are within the range observed for related calixarene compounds [12a,13,16].

2.2. Synthesis and reactivity of titanium complexes

Reaction between TiCl₄ and **3–6** produced L_2 TiCl₂ complexes **9–12** ($L_2 = DESC$, DMSHC, DMSMC, or DPSC) in high yield Eq. (1), as air- and moisturesensitive orange or orange-brown solids. Both microanalysis and NMR data strongly support the proposed formulation and structure of each compound. Compounds **9**, **11** and **12** are quite soluble in aromatic- and chlorinated hydrocarbon solvents while (DMSHC)TiCl₂ (**10**) is only sparingly soluble. All of the compounds are practically insoluble in aliphatic hydrocarbon solvents. ¹H and ¹³C NMR data show that **9–12** exist in 1,2-

$$TiCl_{4} \xrightarrow{L_{2}H_{2}} L_{2}TiCl_{2} \xrightarrow{10} L_{2}TiCl_{2} \qquad \begin{cases} 9, \ L_{2} = DESC; 87\% \\ 10, \ L_{2} = DMSHC; 84\% \\ 11, \ L_{2} = DMSMC; 95\% \\ 12, \ L_{2} = DPSC; 82\% \end{cases}$$
(1)

	7	12	$16 \cdot 1.5(C_5H_{12})$	
Formula	$C_{68}H_{74}Cl_2O_4Si_2$	C ₅₆ H ₆₂ Cl ₂ O ₄ SiTi	$C_{85.50}H_{104}O_5SiTi$	
Formula wt.	1082.35	945.97	1287.69	
$T(\mathbf{K})$	144(1)	173(1)	173(1)	
Crystal system	Triclinic	Triclinic	Monoclinic	
Space group	$P\overline{1}$	$P\overline{1}$	P21/n	
Ζ	2	2	4	
<i>a</i> (Å)	11.093(2)	9.392(3)	11.0560(10)	
b (Å)	14.490(2)	15.463(6)	30.443(3)	
c (Å)	20.103(2)	19.154	22.699(2)	
α (°)	87.288(10)	102.67(2)	90	
β (°)	77.736(10)	91.60(2)	100.649(10)	
γ (°)	76.081(10)	99.34(2)	90	
V (Å ³)	3064.8(8)	2672.2(17)	7508.4(12)	
$d_{\rm calc}$ (g/cm ³)	1.173	1.213	1.141	
Final <i>R</i> indices $[I > 2\sigma(I)]$: R_1 , wR_2	0.0657, 0.0919	0.0534, 0.1138	0.0818, 0.2188	
wR_2 , R_1 (all data)	0 1097 0 1015	0.0855.01267	0 1067 0 2328	

Table 3

Table 2 Selected hand distances (Å) and angles (\circ) for 7

Selected bond distances (A) and angles (°) for 7				
Si(1)–O(2)	1.650(2)			
Si(1)-C(45)	1.833(3)			
Si(1)–C(51)	1.841(3)			
Si(1)-Cl(1)	2.0522(13)			
Si(2)–O(4)	1.643(2)			
Si(2)–C(57)	1.837(3)			
Si(2)–C(63)	1.841(3)			
Si(2)–Cl(2)	2.0517(12)			
O(1)–C(25)	1.384(3)			
O(2)–C(26)	1.405(3)			
O(3)–C(27)	1.385(3)			
O(4)–C(28)	1.404(3)			
C(26)–O(2)–Si(1)	125.67(17)			
C(28)–O(4)–Si(2)	125.07(17)			

alternate conformation and possess C_s symmetry. Thus, a change in conformation of (DPSC)H2 occurs when it reacts with TiCl₄ to form (DPSC)TiCl₂ (12) [17]. ¹H NMR spectra of 9-12 contain two pairs of doublets and an AB system (integrating as four protons) for the bridging CH₂ protons. Also, we could identify endo- and exo-SiR (R = Me or Et) resonances for 9–11 (see Section 3). ¹³C NMR spectra of 9, 11 and 12 showed methylenes bridging *anti*-oriented phenolic rings at around δ 40 ppm while methylenes bridging syn-oriented phenolic rings generally appeared at around δ 36 ppm, consistent with previously reported data for related 1,2-alternate calix[4]arene derivatives [12a,13,15]. A single-crystal X-ray crystallographic study of 12 established that the DPSC ligand adopts 1,2-alternate conformation and that the geometry about Ti is tetrahedral (Fig. 4). Similar to the DMSC ligand [12b], DPSC imposes distinct stereochemical environments about the titanium-bound chlorides. Thus, access to the *endo* chloride Cl(2) is more

Fig. 4. An ORTEP diagram of the molecular structure of **12** showing 50% thermal ellipsoid probabilities.

Selected bond distances (Å) and angles (°) for 12				
Ti-O(1)	1.766(2)			
Ti-O(2)	1.769(2)			
Ti–Cl(1)	2.1980(14)			
Ti–Cl(2)	2.2332(14)			
Si–O(4)	1.631(2)			
Si–O(3)	1.642(2)			
Si-C(45)	1.840(3)			
Si-C(51)	1.867(4)			
O(1)-Ti-O(2)	103.56(10)			
O(1)-Ti-Cl (1)	110.06(8)			
O(2)–Ti–Cl(1)	117.51(8)			
O(1)-Ti-Cl(2)	108.90(9)			
O(2)-Ti-Cl(2)	111.73(9)			
Cl(1)-Ti-Cl(2)	104.95(5)			

hindered relative to the *exo* chloride Cl(1). Bond distances and angles for **12** (Table 3) are within the expected ranges [18].

Though the synthesis and chemistry of titananorbornadienes remain largely undeveloped [19], we have demonstrated that titananorbornadienes (DMSC) $Ti\{\eta^{6}-1, 2, 4-C_{6}H_{3}(SiMe_{3})_{3}\}$ (2a) and (DMSC) $Ti(\eta^{6}-1,$ 3,5-C₆H₃Bu₃^t) (**2b**) are excellent Ti(II) synthons [12b, 12c,12d]. Therefore, we saw benefit in extending the series of titananorbornadiene compounds and exploring their reactivity. Since 2a was isolated from the black mixture that resulted upon reaction of (DMSC)TiCl₂ (1a) with an excess of Me₃SiC \equiv CH and Mg^{*} (generated by degradation of $C_{14}H_{10}Mg(THF)_3$ [20]) in toluene containing $\sim 1-2\%$ by volume of THF, we examined the reduction of $L_2 TiCl_2$ complexes 9–12 with Mg* in the presence of 10 equivalents of Me₃SiC=CH in C₆D₆ containing $\sim 1-2\%$ by volume of THF. ¹H NMR analysis of the resulting black mixtures revealed that cyclotrimerization of Me₃SiC=CH occurred in all cases to give mixtures of 1,2,4- and 1,3,5-C₆H₃(SiMe₃)₃ (see Section 3). Moreover, titananorbornadiene complexes $L_2Ti\{\eta^6-1,2,4 C_6H_3(SiMe_3)_3$ (13–15) were observed in solution when $L_2 = DESC$, DMSMC, or DPSC Eq. (2). Efforts to prepare and cleanly isolate 13-15 via a variety of approaches have so far been unsuccessful because of low conversion of the L₂TiCl₂ precursors into a titananorbornadiene (vide infra). Therefore, the compounds were characterized only in solution by ¹H NMR data.

	(i) Mg*		
	(ii) $Me_3SiC \equiv CH$, (xs)		
L ₂ TiCl ₂		$L_2Ti\{\eta^6-1, 2, 4-C_6H_3(SiMe_3)_3\}$	}
	C ₆ D ₆ /THf	black solution	
$9, L_2 = DESC$		$13, L_2 = DESC$	
$11, \mathbf{L}_2 = \mathbf{DMSMC}$		$14, L_2 = DMSMC$	
$12, L_2 = DPSC$		$15, L_2 = DPSC$	
		(2)
		(-

The ¹H NMR data for 13–15 clearly demonstrate that they are C_1 -symmetric in solution although some

resonances were obstructed by signals due to other products and THF (see Section 3). For instance, three singlets are observed in their ¹H NMR spectra for the inequivalent η^6 -arene SiMe₃ groups. Furthermore, 13 and 15 each show four singlets between δ 1.2 and 1.6 ppm for Bu^t groups while the calixarene methyls of 14 show as four singlets between δ 2.0 and 2.4 ppm. That the calixarene ligand of 14 and 15 exists in 1,2-alternate conformation was deduced from the upfield shift of the endo-SiMe resonance (at δ -0.65 ppm for 14) and/or from the magnitude of the coupling constants for the calixarene methylene protons (J_{H-H} typically equal 16-17 Hz for CH₂ groups bridging *anti*-oriented phenolic units, vide supra). Resonances for six of the eight calixarene methylene protons of 13 could be identified, four of which have coupling constants ($J_{H-H} \sim 16$ Hz) typical of CH₂ groups bridging anti-oriented phenolic rings. However, a complex multiplet between δ 0.82– 0.92 ppm was observed for SiEt₂ protons and an upfield resonance typical of an endo-SiR group was not observed. Unambiguous assignment of the conformation of the calixarene ligand of 13 must therefore await further data.

The reduction of L_2TiCl_2 complexes 9, 11, and 12 in the presence of alkyne (≥ 10 equiv) was studied at different temperatures in a variety of solvents, including toluene, THF, and 1,4-dioxane. The reaction was investigated for a range of reducing agents (such as activated Zn [21], Na, activated Ca [22], Mg*, and C₈K [23]) and alkynes (such as Me₃SiC=CH, p-MeC₆H₄C=CH, Bu^tC≡CH, MeC≡CMe, and PhC≡CMe). Titananorbornadiene complexes were formed in significant amount only when the reductant was Mg*, the alkyne was Me₃SiC≡CH, and the reaction was conducted at room temperature in toluene containing 1-2% (by volume) of THF. Although catalytic cyclotrimerization of the alkynes occurred using other reducing agents, harsher conditions were generally required and reduction of L₂TiCl₂ proceeded at a slower rate than alkyne cyclotrimerization. High conversion of L2TiCl2 complexes 9, 11, and 12 into corresponding titananorbornadienes (13-15) requires complete reduction of the L_2 TiCl₂ precursor prior to catalytic Me₃SiC \equiv CH cyclotrimerization. Otherwise, reduced titanium species formed in the initial stages of L₂TiCl₂ reduction will consume all of the alkyne before the reduction was complete (since alkyne cyclotrimerization is catalytic).

Bogdanovic and colleagues [24] have reported that reduction of TiCl_x (x = 3 or 4) with Mg in THF produced black solutions containing paramagnetic Ti–Mg species TiMgCl₂(THF)_x and [Ti(MgCl)₂(THF)_x]_y (the local structure about Ti in the latter species was characterized by EXAFS, Eq. (3)). Since reactions of L₂TiCl₂ complexes **9–12** with Mg* and Me₃SiC≡CH (10 equiv) in toluene or C₆D₆ containing 1–2% of THF proceed immediately to form black

solutions, it is likely that the solutions also contained paramagnetic species similar to those proposed by Bogdanovic and colleagues. We presume that titananorbornadiene and paramagnetic calixarene-containing species are produced via competing pathways since black solutions result immediately upon addition of THF to a suspension of L_2TiCl_2 (9–12), Mg* and Me₃SiC=CH in toluene or C₆D₆. In contrast, very sluggish reaction of (DMSMC)TiCl₂ (11) or (DPSC)TiCl₂ (12) with Mg* and Me₃SiC=CH (10 equiv) occurred in toluene (in the absence of THF). The orange suspensions did not change color for 1.5 h and ¹H NMR revealed plenty of unreacted titanium dichloride.

We reasoned that increased MgCl₂ precipitation from reactions of L₂TiCl₂ complexes **9–12** with Mg* and Me₃SiC=CH should favor titananorbornadiene formation. Therefore, we explored reactions of (DESC)TiCl₂ (**9**) with Mg* and Me₃SiC=CH (\geq 10 equiv) in toluene/ THF containing different amounts of 1,4-dioxane. While precipitation of MgCl₂(dioxane)_n did improve conversion to(DESC)Ti{ η^{6} -1,2,4-C₆H₃(Si Me₃)₃} (**13**), the experimental results were irreproducible and depended on the mixing rate, the reaction scale, and solvent ratios. Finally, we explored reactions of various alkynes with L₂Ti(η^{2} alkene) or L₂Ti(η^{2} -alkyne) species (prepared in situ via modifications of the Neghishi [25], Eisch [26], or Sato [27] protocols). Titananorbornadiene formation was very seldom observed and in very small amount.

In an effort to examine the effect of calixarene-derived bis(aryloxide) ligands on reactivity of titanium, we decided to examine the scope of alkynes that can be cyclotrimerized using $L_2 TiCl_2$ complexes 9–12 in the presence of Mg* as catalyst (see Section 3). Table 4 outlines results from our preliminary investigations and show that both terminal and internal alkynes can be cyclotrimerized. Terminal alkynes are cyclotrimerized with high regioselectivity (Table 4, entries 1 and 2) while steric properties of the substituent groups of internal alkynes greatly influence both efficacy and regioselectivity of the reaction. Thus, an ethyl or phenyl unit is about the limit of a substituent that may be placed inside the calixarene cavity and still observe catalytic cyclotrimerization under our conditions (Table 4, entries 3-15). In the case of unsymmetrically substituted internal alkynes, preference for 1,2,4-substitution decreased as the size difference of the

Ŗ

Ŗ

		$\begin{array}{c} R-C=C-R' & \underbrace{L_2TiC}_{\text{toluen}} \\ (10 \text{ equiv}) & \underbrace{toluen}_2 \end{array}$	l₂/ Mg* R'∽ ie/THF R'^	R' R'	R' R'	
No.	Alkyne	$L_2 TiCl_2$	% Isomer ^c		C_6R_6	Rxn. time ^e
			1,2,4-	1,3,5-		
1	p -MeC ₆ H ₄ C \equiv CH ^a	12	92	8		${\sim}2$ h at 75 $^{\circ}\mathrm{C}$
2	PhC≡CH ^a	12	>92	$<\!\!8^{d}$		\sim 2 h at 75 °C
3	PhC=CMe ^a	11	72	28		${\sim}24$ h at 70 °C
4	$PhC \equiv CMe^{b}$	12	90	10		\sim 1 h at 70 °C
5	PhC≡CEt ^a	11	69	31		${\sim}24$ h at 70 °C
6	PhC≡CEt	12	68	32		\sim 24 h at 70 °C
7	MeC=CMe ^a	11			100	${\sim}18$ h at 70 °C
8	$MeC \equiv CMe^a$	12			100	~ 2 h at 75 °C
9	$MeC \equiv CEt^b$	12	~ 75	~ 25		\sim 2 h at 75 °C
10	$MeC \equiv CEt^a$	11	75	25		~ 20 h at 70 °C
11	EtC≡CEt ^a	11			100	\sim 48 h at 70 °C
12	EtC≡CEt ^b	12			100	\sim 48 h at 70 °C
13	$Me_2NCH_2C\equiv CEt^a$	9–12	_	_		5 days at 70–100 °C
14	$Me_3SiC\equiv CMe^a$	9–12	_	_		5 days at 70-100 °C
15	$Me_3SiC\equiv CSiMe_3^a$	9–12			_	5 days at 70-100 °C

^a A screw-capped NMR tube was charged with $C_{14}H_{10}Mg(THF)_3$ along with all other reactants and C_6D_6 in a glovebox. The NMR tube was then heated at 70–75 °C. See Section 3 (method 1) for full details.

 ${}^{b}C_{14}H_{10}Mg(THF)_{3}$ was first decomposed in C₆D₆ at 80 °C to Mg* and anthracene. All other reactants were added after cooling to ambient temperature. See Section 3 (method 2) for full details.

^c Isomer ratios were determined from GC-MS and ¹H NMR data. For unsymmetrical alkynes $RC \equiv CR'$, 1,2,4-substitution refers to substitution of R at 1-, 2-, and 4-positions of the benzene ring.

 d The yield of 1,3,5-Ph₃C₆H₃ was estimated based on the result obtained for *p*-tolylacetylene. 12 C NMR data confirmed the major product as 1,2,4-substituted isomer and GC-MS showed only one peak. 1 H NMR data could not be used to characterize the 1,3,5-substituted isomer, presumably because of extensive peak overlap.

^e For 100% conversion.

substituent groups decreased (Table 4, entries 2, 4, and 6). Nonetheless, 1,2,4-substitution was favored over 1,3,5substitution in all cases by about 3:1.

Fig. 5. An ORTEP diagram of the molecular structure of **16** showing 50% thermal ellipsoid probabilities.

It is noteworthy that cyclotrimerization of 1-phenyl-1-propyne was more facile when the calixarene-derived bis(aryloxide) ligand was DPSC versus DMSMC (Table 4, entries 3 and 4). This result suggests that the DPSC ligand may provide a less crowded titanium center and thereby reduce steric inhibition of alkyne coordination. Thus, the DPSC ligand may exert greater kinetic control over the course of cyclotrimerization and thereby explain the high regioselectivity [28]. When the reaction of (DPSC)TiCl₂ (12) with Mg* and PhC \equiv CMe (3 equiv) was conducted on a preparative scale in toluene/THF, we isolated a small amount of a titanacyclopent-2-ene derivative 16 [29]. The molecular structure of 16 (Fig. 5) was characterized by X-ray diffraction study and its crystallographic data are listed in Table 1. The poor crystal quality could be due to a small amount of unresolved twinning, and limits the accuracy of geometrical parameters. Nevertheless, connectivity is unambiguous and bond lengths and angles (Table 5) are within expected ranges [2h,2k,30]. Remarkably, the molecular structure of 16 revealed that the DPSC ligand has undergone activation of one of its methylene C-H bonds and that the methylene carbon is bonded to the α sp³-carbon of the titanacyclopent-2-ene. The calixarene ligand exists in 1,2-alternate conformation and the geometry about Ti can be described as distorted square pyramidal, with the basal plane defined by C57, C62, O2, and O1(T). Equally surprising, a phenyl substituent is positioned at the α -position of the titanacycle on the same side as a THF molecule coordinated on the *endo*face of titanium (directed toward the calixarene cavity) [31]. We propose that orientation of one of the phenyl units of the SiPh₂ bridging group such that it can fit between two phenolic units of the calixarene ligand (Fig. 5) allows the DPSC ligand to open up its cavity and accommodate more bulky substituents than the DMSC or DMSMC ligands.

In summary, it seems likely that the size of the cavity provided by proximally bridged calixarene ligands may be tuned through proper choice of bridging group. The observed regioselectivity for alkyne cyclotrimerization in the present study probably represent the lower-limit since paramagnetic calixarene-containing species that catalyze alkyne cyclotrimerization (with modest regioselectivity) are also generated under our reaction conditions. Efforts to isolate titananorbornadiene complexes and investigate their chemistry are continuing in our laboratory.

3. Experimental

3.1. General

Table 5

All experiments were performed under dry nitrogen atmosphere using standard Schlenk techniques or in a MBraun glovebox. All of the solvents were dried and distilled by standard methods [33] then stored in the glovebox over 4A molecular sieves, which had been dried under vacuum at 150 °C for at least 48 h prior to use. Alkynes were purchased from Aldrich or GFS Chemicals, Inc. and were distilled from CaH₂ prior to use. Calix[4]arene [34], p-methylcalix[4]arene [35], C₁₄ $H_{10}Mg(THF)_3$ [20], and (o-MeC₆H₄)₂SiCl₂ [36] were prepared by literature methods. All other chemicals were purchased from Aldrich Chemical Co. and used without further purification (unless otherwise stated). The calix[4]arene starting materials were dried in a vacuum oven at 150 °C for 48 h prior to use. ¹H and ¹²C NMR spectra were recorded on a Varian Gemini-200 spectrometer or a Varian VXR-400 spectrometer at ca. 22 °C. ¹H and ¹²C chemical shifts were referenced to residual solvent peaks. GC-MS analyses were performed on a Hewlett Packard 5890 series II gas chromatograph with a Hewlett Packard 5972 series mass selective detector at an ionizing potential of 70 eV. Other mass spectral data were obtained from the University of Kentucky Mass Spectrometry Center on a Thermo Finnigan (San Jose, CA) Polaris Q (quadruple ion trap) spectrometer. Elemental analyses were performed by Complete Analysis Laboratories, Inc., Parsippany, NJ.

3.2. Synthesis of calix [4] arene derivatives 3–8

3.2.1. $(DESC)H_2$ (3)

6.58 g (10.1 mmol) of p-t-Bu-calix[4]arene was charged into a 250 mL Schlenk flask followed by toluene (120 mL) and then 1.52 mL (10.1 mmol) of Et₂SiCl₂ in toluene (6 mL). Next, a solution of Et₃N (2.82 mL, 10.3 mmol) in toluene (10 mL) was added dropwise to the suspension over a 20 min period. After stirring for 48 h, the reaction mixture was filtered and Et₃NHCl was extracted with additional toluene (10 mL) and pentane (20 mL). The filtrate and extracts were combined and stripped to dryness under reduced pressure. The resulting white solid was washed with pentane $(3 \times 10 \text{ mL})$ and dried under vacuum. Yield: 6.51 g, 88%. ¹H NMR $(C_6D_6) \delta$: 7.24 (d, J = 2.6 Hz, 2H, arom CH), 7.17 (d, 2H, J = 2.6 Hz, arom CH), 7.11 (d, J = 2.6 Hz, 2H, arom CH), 6.98 (d, 2H, J = 2.6 Hz, arom CH), 6.15 (s, 2H, OH), 4.38 (d, J = 14 Hz, 1H, calix-CH₂), 4.27 (d, J = 16.2 Hz, 2H, calix-CH₂), 4.08 (d, J = 13.6 Hz, 1H, calix-CH₂), 3.82 (d, J = 16.2 Hz, 2H, calix-CH₂), 3.44 $(d, J = 14 \text{ Hz}, 1\text{H}, \text{calix-CH}_2), 3.41 (d, J = 14.8 \text{ Hz}, 1\text{H},$ calix-CH₂), 1.29 (s, 18H, t-Bu), 1.24 (s, 18H, t-Bu), 0.86-0.96 (m, 5H, $exo-SiCH_2CH_3$), 0.65 (t, 3H, endo-SiCH₂CH₃), -0.63 (q, 2H, endo-SiCH₂CH₃). ¹³C NMR (C₆D₆): 150.6, 150.5, 145.0, 143.4, 130.1, 130.0, 128.8, 127.5, 126.9, 126.2, 126.1, 125.8, 37.4 (calix-CH₂), 36.2 (calix-CH₂), 34.5 (C(CH₃)₃), 34.4 (C(CH₃)₃, 32.8 (calix-CH₂), 32.1 (C(CH₃)₃), 31.9 (C(CH₃)₃), 8.2 $(exo-SiCH_2CH_3)$, 7.4 $(exo-SiCH_2CH_3)$, 7.2 (endo-SiCH₂*CH*₃), 4.9 (*endo*-Si*CH*₂CH₃). MS(EI): M⁺ (732).

3.2.2. $(DMSHC)H_2$ (4)

2.37 g (5.58 mmol) of calix[4]arene was charged into a 250 mL Schlenk flask followed by toluene (60 mL) and

Selected bond distances (Å) and angles (°) for $16 \cdot 1.5(C_5H_{12})$					
O(1)–Ti	1.817(3)	O(1)-Ti-C(57)	90.54(15)		
O(2)–Ti	1.853(3)	O(2)-Ti-C(57)	85.94(15)		
Ti-O(1T)	2.105(3)	O(1T)-Ti-C(57)	138.55(15)		
Ti-C(57)	2.143(5)	O(1)-Ti-C(62)	110.31(16)		
Ti-C(62)	2.177(4)	O(2)-Ti-C(62)	141.03(16)		
C(2)–C(57)	1.534(6)	O(1T)-Ti-C(62)	85.23(16)		
C(1)–C(2)	1.528(6)	C(57)-Ti-C(62)	77.27(17)		
C(2)–C(3)	1.536(6)	C(1)-C(2)-C(57)	114.3(3)		
C(57)-C(58)	1.528(6)	C(1)-C(2)-C(3)	109.8(3)		
C(57)-C(59)	1.552(6)	C(57)–C(2)–C(3)	114.9(4)		
C(59)-C(60)	1.520(6)	C(58)-C(57)-C(2)	111.1(4)		
C(60)-C(62)	1.337(7)	C(58)-C(57)-C(59)	113.5(4)		
C(60)-C(61)	1.497(6)	C(2)-C(57)-C(59)	112.2(4)		
O(1)-Ti-O(2)	104.68(14)	C(58)-C(57)-Ti	109.1(3)		
O(1)-Ti-O(1T)	130.88(13)	C(2)-C(57)-Ti	105.6(3)		
O(2)-Ti-O(1T)	84.67(13)	C(59)-C(57)-Ti	104.9(3)		

then 0.710 mL (5.86 mmol) of Me₂SiCl₂ in toluene (5 mL). Next, a solution of Et₃N (1.87 mL, 13.4 mmol) in toluene (10 mL) was added dropwise to the suspension over a 20 min period. After stirring for 48 h, the reaction mixture was filtered and the filtrate was stripped to dryness under reduced pressure. The resulting white solid was washed with pentane (3×15 mL) and dried under vacuum. Yield: 2.38 g, 89%. ¹H NMR (C₆D₆) δ : 6.78–6.96 (m, 8H, arom CH), 6.62–6.74 (m, 4H, arom CH), 6.10 (s, 2H, OH), 4.24 (d, J = 14.4 Hz, 1H, calix-CH₂), 3.90 (d, J = 14.4 Hz, 1H, calix-CH₂), 3.64 (d, J = 15.8 Hz, 2H, calix-CH₂), 3.43 (d, J = 14.4 Hz, 1H, calix-CH₂), 0.27 (s, 3H, *exo*-SiMe), -0.69 (s, 3H, *endo*-SiMe). MS(EI): M⁺ (480).

3.2.3. $(DMSMC)H_2$ (5)

A toluene (90 mL) solution of Et₃N (1.07 mL, 7.68 mmol) and Me₂SiCl₂ (0.460 mL, 3.79 mmol) was added very slowly into a 500 mL toluene solution of *p*-methylcalix[4]arene (1.84 g, 3.83 mmol) at room temperature with vigorous stirring. After 24 h, the reaction mixture was filtered and the filtrate was stripped to dryness under reduced pressure. The residue was washed with cold pentane $(3 \times 10 \text{ mL})$ and dried under vacuum to give a pure white powder (1.83 g, 90%). ¹H NMR (CDCl₃) δ : 6.97 (br s, 4H, arom CH), 6.84 (br d, 2H, arom CH), 6.72 (br d, arom CH), 5.96 (s, 2H, OH), 4.25 (d, J = 14.8 Hz, 1H, calix-CH₂), 4.12 (d, J = 16 Hz, 2H, calix-CH₂), 3.90 (d, J = 14 Hz, 1H, calix-CH₂), 3.80 (d, J = 16 Hz, 2H, calix-CH₂), 3.43 (d, J = 14 Hz, 1H, calix-CH₂), 3.42 (d, J = 14.8 Hz, 1H, calix-CH₂), 2.26 (s, 6H, Me), 2.22 (s, 6H, Me), 0.42 (s, 3H, exo-SiMe), -0.97 (s, 3H, endo-SiMe). ¹³C NMR (CDCl₃): 149.6, 131.4, 130.4, 130.3, 129.8, 129.6, 129.5, 129.3, 128.8, 128.5, 126.2, 36.1 (calix-CH₂), 35.2 (calix-CH₂), 31.9 (calix-CH₂), 20.8 (calix-Me), 20.7 (calix-Me), 2.8 (exo- $SiCH_2CH_3$, -2.06 (endo- $SiCH_2CH_3$). MS(EI): M⁺ (536).

$3.2.4. (DPSC)H_2 (6)$

A toluene (30 mL) solution of Et₃N (6.45 mL, 46.2 mmol) and Ph₂SiCl₂ (4.86 mL, 23.1 mmol) was charged into an addition funnel. The addition funnel was connected via a reflux condenser to a 250 mL Schlenk flask containing a toluene (120 mL) solution of *p*-*t*-Bucalix[4]arene (15.0 g, 23.1 mmol), which was heated at 80 °C. The Et₃N/Ph₂SiCl₂ solution was added dropwise into the *p*-*t*-Bu-calix[4]arene solution (over a 30 min period) and the resulting mixture was stirred at 80 °C for another 4h. After cooling to room temperature, the reaction mixture was filtered and the filtrate was stripped to dryness under reduced pressure. The resulting white solid was washed with pentane (3 × 15 mL) and dried under vacuum. Yield: 15.0 g, 78%. ¹H NMR (C₆D₆) δ :

8.23 (m, 2H, arom CH), 7.80 (m, 2H, arom CH), 7.52 (s, 2H, OH), 7.20-7.30 (m, 4H, arom CH), 6.80–7.10 (m, 10H, J = 2.6 Hz, arom CH), 5.02 (d, J = 14 Hz, 1H, calix-CH₂), 4.94 (d, J = 13.6 Hz, 2H, calix-CH₂), 3.93 (d, J = 14.4 Hz, 1H, calix-CH₂), 3.59 (d, J = 13.6 Hz, 2H, calix-CH₂), 3.26 (d, J = 14 Hz, 1H, calix-CH₂), 3.15 (d, J = 15.4 Hz, 1H, calix-CH₂), 1.14 (s, 18H, *t*-Bu), 1.10 (s, 18H, *t*-Bu). ¹³C NMR (C₆D₆): 148.9, 145.1, 142.9, 138.6, 134.7, 134.5, 132.5, 131.7, 130.6, 130.3, 129.3, 128.9, 128.2, 127.7, 127.1, 126.7, 125.6, 125.5, 38.0 (calix-CH₂), 33.8 {*C*(CH₃)₃ and calix-CH₂}, 32.8 (calix-CH₂), 31.4 (C(*C*H₃)₃), 31.2 (C(*C*H₃)₃). MS(EI): M⁺ (828).

3.2.5. $(Ph_2SiCl)_2Calix-H_2$ (7)

5.00 g (7.70 mmol) of *p-t*-Bu-calix[4]arene was charged into a 250 mL Schlenk flask followed by toluene (100 mL) and then 1.62 mL (7.70 mmol) of Ph_2SiCl_2 in toluene (6 mL). Next, a solution of Et₃N (2.15 mL, 15.4 mmol) in toluene (10 mL) was added dropwise into the suspension over a 20 min period. After stirring for 48 h, the reaction mixture was filtered and the filtrate was stripped to dryness under reduced pressure. The resulting white solid was washed with pentane $(3 \times 15 \text{ mL})$, dried under vacuum, and identified as (Ph₂SiCl)₂Calix- H_2 (7) on the basis of NMR, MS, and X-ray diffraction data. Yield: 1.58 g (1.46 mmol), 38% on the basis of the maximum yield possible under these conditions (3.85) mmol). ¹H NMR (C₆D₆) δ : 7.98–8.10 (m, 8H, arom CH), 7.06–7.14 (m, 12H, arom CH), 7.03 (s, 4H, arom CH), 6.87 (s, 2H, OH), 6.78 (s, 4H, arom CH), 4.64 (d, J = 13.4 Hz, 4H, calix-CH₂), 3.10 (d, J = 13.6 Hz, 4H, calix-CH₂), 1.32 (s, 18H, *t*-Bu), 0.84 (s, 18H, *t*-Bu). ¹³C NMR (C₆D₆): 151.2, 146.1, 144.8, 142.1, 135.4, 131.8, 131.6, 130.9, 128.9, 128.5, 126.0, 125.6, 33.8 (C(CH₃)₃), 33.7 ($C(CH_3)_3$, 33.1 (calix-CH₂), 31.8 ($C(CH_3)_3$), 30.9 $(C(CH_3)_3)$. MS(EI): M⁺ (1082).

The pentane washings were combined, concentrated under vacuum to ~ 5 mL, and then cooled at -78 °C for 30 min. The resulting solids were collected by filtration, dried under vacuum, and identified as (DPSC)H₂ (6). Yield of 0.68 g (0.82 mmol), 11% on the basis of the maximum yield possible (7.70 mmol).

3.2.6. $(o-Tol_2SiCl)_2calix-H_2$ (8)

A toluene (30 mL) solution of Et_3N (2.00 mL, 14.3 mmol) and *o*-Tol₂SiCl₂ (2.00 g, 7.11 mmol) was charged into an addition funnel. The addition funnel was connected via a reflux condenser to a 250 mL Schlenk flask containing a toluene (120 mL) solution of *p*-*t*-Bu-calix[4]arene (4.61 g, 7.11 mmol), which was heated at 80 °C. The Et_3N/o -Tol₂SiCl₂ solution was added dropwise into the *p*-*t*-Bu-calix[4]arene solution (over a 30 min period) and the resulting mixture was stirred at 80 °C for another 3h. After cooling to room temperature, the

reaction mixture was filtered and the filtrate was stripped to dryness under reduced pressure. The resulting white solid was washed with pentane $(5 \times 10 \text{ mL})$ and toluene (5 mL) then dried under vacuum. Yield: 4.00 g (3.51 mmol), 98% on the basis of the maximum yield possible under these conditions (3.56 mmol). ¹H NMR (C₆D₆) δ: 8.61 (m, 4H, arom CH), 7.10–7.20 (m, 8H, arom CH), 6.99 (s, 4H arom CH), 6.92 (m, 4H, arom CH), 6.79 (s, 4H arom CH), 6.22 (s, 2H, OH), 4.57 (d, J = 14 Hz, 4H, calix-CH₂), 3.10 (d, J = 14 Hz, 1H, calix-CH₂), 2.39 (s, 12H, o-Me C₆H₄), 1.28 (s, 18H, t-Bu), 0.93 (s, 18H, t-Bu). ¹³C NMR (C₆D₆): 151.4, 146.4, 145.6, 144.6, 142.7, 136.8, 132.5, 132.1, 131.6, 131.3, 129.7, 126.7, 126.4, 125.9, 34.3 (C(CH₃)₃), 33.2 (calix-CH₂), 33.1 (C(CH₃)₃), 32.2 (C(CH₃)₃), 31.5 (C(CH₃)₃). MS(EI): M⁺ (1138).

3.3. Synthesis of titanium complexes 9–12

3.3.1. $(DESC)TiCl_2$ (9)

A pentane (10 mL) solution of TiCl₄ (0.544 g, 2.86 mmol) was added dropwise into a stirred suspension of (DESC)H₂ (2.00 g, 2.73 mmol) in ether (50 mL) at -40 °C. The mixture turned orange-brown and was warmed gradually to room temperature and let stir for 24 h. Volatiles were then removed under vacuum, the residue was washed with pentane $(3 \times 10 \text{ mL})$, and the orange product was dried in vacuo. Yield: 2.01 g, 87%. ¹H NMR (CDCl₃) δ : 7.23 (s, 2H, arom CH), 7.12 (s, 2H, arom CH), 7.10 (s, 2H, arom CH), 7.04 (s, 2H, arom CH), 4.40 $(d, J = 14 Hz, 1H, calix-CH_2), 4.38 (d, J = 14.2 Hz, 1H,$ calix-CH₂), 4.02 (d, AB, J = 16 Hz, 2H, calix-CH₂), 3.96 $(d, AB, J = 16 Hz, 2H, calix-CH_2), 3.60 (d, J = 14.2 Hz,$ 1H, calix-CH₂), 3.47 (d, J = 14 Hz, 1H, calix-CH₂), 1.32 (s, 18H, t-Bu), 1.31 (s, 18H, t-Bu), 0.88 (br m, 5H, exo-SiCH₂CH₃), 0.29 (t, 3H, endo-SiCH₂CH₃), -1.40 (q, 2H, endo-SiCH₂CH₃). ¹³C NMR (CDCl₃): 162.2, 149.1, 147.9, 144.5, 137.5, 128.6, 128.5, 127.2, 126.9, 126.4, 125.6, 124.9, 39.9 (calix-CH₂), 36.6 (calix-CH₂), 35.9 (calix-CH₂), 34.6 (C(CH₃)₃), 34.2 (C(CH₃)₃, 31.7 (C(CH₃)₃), 31.6 (C(CH₃)₃), 8.9 (exo-SiCH₂CH₃), 7.6 $(exo-SiCH_2CH_3)$, 6.9 $(endo-SiCH_2CH_3)$, 3.8 $(endo-SiCH_2CH_3)$, $SiCH_2CH_3$). Anal. Calcd. for $C_{48}H_{62}O_4SiTiCl_2$: C, 67.84; H, 7.35. Found: C, 67.64; H, 7.42.

3.3.2. (DMSHC)TiCl₂ (10)

A pentane (8.0 mL) solution of TiCl₄ (0.379 g, 2.00 mmol) was added dropwise into a stirred suspension of (DMSHC)H₂ (0.805 g, 1.67 mmol) in ether (50 mL) at -50 °C. The mixture turned orange-brown and was warmed gradually to room temperature and let stir for 24 h. The precipitate was filtered, washed with pentane (3 × 7 mL), and the orange product was dried in vacuo. Yield: 0.838 g, 84% based on the amount of (DMSHC)H₂. ¹H NMR (CDCl₃) δ : 6.84-7.24 (m, 12H, arom CH), 4.40 (d, J = 14.8 Hz, 1H, calix-CH₂), 4.34 (d,

J = 14.2 Hz, 1H, calix-CH₂), 4.11 (d, AB, J = 17.6 Hz, 2H, calix-CH₂), 3.97 (d, AB, J = 17.6 Hz, 2H, calix-CH₂), 3.66 (d, J = 14.2 Hz, 1H, calix-CH₂), 3.51 (d, J = 14.2 Hz, 1H, calix-CH₂), 0.38 (s, 3H, *exo*-SiCH₃), -1.60 (s, 3H, *endo*-SiCH₃). Anal. Calcd. for C₃₀H₂₆ O₄SiTiCl₂: C, 60.32; H, 4.39. Found: C, 59.97; H, 4.33.

3.3.3. (DMSMC)TiCl₂ (11)

A pentane (5.0 mL) solution of TiCl₄ (0.208 g, 1.09 mmol) was added dropwise into a stirred suspension of $(DMSMC)H_2$ (0.536 g, 1.00 mmol) in ether (30 mL) at -40 °C. The mixture turned orange-brown and was warmed slowly to room temperature and let stir for 12 h. Volatiles were then removed under vacuum, the residue was washed with pentane $(3 \times 10 \text{ mL})$, and the orange product was dried in vacuo. Yield: 0.62 g, 95%. ¹H NMR (C_6D_6) δ : 6.88 (d, J = 2 Hz, 2H, arom CH), 6.77 (d, J = 2 Hz, 2H, arom CH), 6.73 (d, J = 2 Hz, 2H, arom CH), 6.55 (d, J = 2 Hz, 2H, arom CH), 4.54 (d, J = 14.4 Hz, 1H, calix-CH₂), 4.39 (d, J = 14.8 Hz, 1H, calix-CH₂), 3.86 (d, AB, J = 16.8 Hz, 2H, calix-CH₂), 3.76 (d, AB, J = 17.6 Hz, 2H, calix-CH₂), 3.33 (d, J = 14.8 Hz, 1H, calix-CH₂), 3.24 (d, J = 14.4 Hz, 1H, calix-CH₂), 2.21 (s, 3H, p-Me-calix), 2.00 (s, 3H, p-Mecalix), 0.29 (s, 3H, exo-SiCH₃), -1.38 (s, 3H, endo-SiCH₃). ¹²C NMR (CDCl₃): 163.3, 149.7, 138.4, 134.8, 132.1, 131.3, 131.2, 130.7, 129.7, 129.1, 128.8. 127.0, 39.3 (calix-CH₂), 36.2 (calix-CH₂), 35.8 (calix-CH₂), 21.0 (p-Me-calix), 4.0 (exo-SiCH₃), -2.6 (endo-SiCH₃). Anal. Calcd. for C₃₄H₃₄O₄SiTiCl₂: C, 62.49; H, 5.24. Found: C, 62.30; H, 5.36.

3.3.4. (DPSC)TiCl₂ (12)

A pentane (10 mL) solution of TiCl₄ (0.458 g, 2.41 mmol) was added dropwise into a stirred suspension of $(DPSC)H_2$ (2.00 g, 2.41 mmol) in ether (50 mL) at -40 °C. The mixture turned orange-brown and was warmed slowly to room temperature and let stir for 12 h. Volatiles were then removed under vacuum, the residue was washed with pentane $(3 \times 5 \text{ mL})$, and the orange product was dried in vacuo. Yield: 1.88 g, 82%. ¹H NMR (C₆D₆) δ: 7.65 (m, 2H, arom CH), 7.24 (br d, 2H, arom CH), 6.99-7.13 (m, 8H, arom CH), 6.82 (br d, 2H, arom CH), 6.66 (br t, 2H, arom CH), 6.27 (d, J = 7 Hz, 2H, arom CH), 5.16 (d, J = 15.4 Hz, 1H, calix-CH₂), 4.93 $(d, J = 14.2 \text{ Hz}, 1\text{H}, \text{ calix-CH}_2), 4.17 (d, AB, J = 17.2)$ Hz, 2H, calix-CH₂), 3.81 (d, AB, J = 17.2 Hz, 2H, calix-CH₂), 3.38 (d, J = 15.4 Hz, 1H, calix-CH₂), 3.12 (d, J = 15.0 Hz, 1H, calix-CH₂), 1.40 (s, 18H, *t*-Bu), 1.16 (s, 18H, *t-Bu*). ¹²C NMR (C₆D₆): 163.3, 150.4, 147.2, 145.3, 138.9, 138.4, 135.4, 133.6, 133.5, 130.6, 130.5, 129.4, 129.3, 129.1. 128.2, 125.6, 125.2, 40.1 (calix-CH₂), 38.7 $(calix-CH_2)$, 38.4 $(calix-CH_2)$, 34.5 $(C(CH_3)_3)$, 34.4 (C(CH₃)₃), 32.0 (s, C(CH₃)₃), 31.6 (s, C(CH₃)₃). Anal. Calcd. for C₅₆H₆₂O₄SiTiCl₂: C, 71.10; H, 6.60. Found: C, 70.98; H, 6.41.

3.4. Reactivity studies

3.4.1. In situ formation of titananorbornadienes L_2Ti { η^6 -1,2,4- $C_6H_3(SiMe_3)_3$ } ($L_2 = DESC$, DMSMC or DPSC)

12.6 µmol of C₁₄H₁₀Mg(THF)₃ was charged into a screw-capped 5-mm NMR tube along with 0.8 mL of C₆D₆. The mixture was heated at 80 °C for 5 min to produce Mg* and release anthracene. The tube was transferred into a glovebox after cooling to room temperature. 106 µmol of Me₃SiC≡CH was introduced followed by 10.6 μ mol of the L₂TiCl₂ complex. The NMR tube was vigorously shaken and the reaction mixture turned dark brown-black. The reaction was monitored at room temperature by ¹H NMR spectroscopy until all of the Me₃SiC \equiv CH was completely consumed. The formation of a titananorbornadiene complex was confirmed by the observed ¹H NMR data and by comparison of the data with that previously reported for structurally characterized (DMSC)Ti{ η^6 - $C_6H_3(SiMe_3)_3$ (2a) [12c].

 $(DESC)Ti\{\eta^{6}-1,2,4-C_{6}H_{3}(SiMe_{3})_{3}\}$ (13). ¹H NMR (unobstructed resonances, C_6D_6): δ 6.80 (br s, 1H, arom CH), 6.57 (br s, 1H, arom CH), 5.77 (d, J = 12.8 Hz, 1H, calix-CH₂), 5.40 (br d, 1H, C₆H₃{SiMe₃}₃), 5.06 (br d, 1H, C_6H_3 {SiMe₃}₃), 4.68 (br s, 1H, C_6H_3 {SiMe₃}₃), 4.48 (d, J = 15.6 Hz, 1H, calix-CH₂), 4.18 (br d, J = 16.4 Hz, 1H, calix-CH₂), 4.08 (d, J = 12.8 Hz, 1H, calix-CH₂), 3.86 (d, 1H, J = 16.4 Hz, calix-CH₂), 3.20 $(d, J = 15.6 \text{ Hz}, 1\text{H}, \text{ calix-CH}_2), 1.52 (s, 9\text{H}, t-\text{Bu}), 1.48$ (s, 9H, t-Bu), 1.35 (s, 9H, t-Bu), 1.25 (s, 9H, t-Bu), 0.82-0.92 (m, 10H, SiEt₂), -0.05 (s, 9H, $C_6H_3{SiMe_3}_3$), -0.29 (s, 9H, C₆H₃{SiMe₃}₃), -0.35 (s, 9H, $C_6H_3\{SiMe_3\}_3$). After complete consumption of Me₃SiC \equiv CH, ¹H NMR revealed ~3:1 ratio of 1,2,4- $C_6H_3(SiMe_3)_3$ and $1,3,5-C_6H_3(SiMe_3)_3$, along with minor amounts unidentified Ti(IV) species.

 $(DMSMC)Ti\{\eta^{6}-C_{6}H_{3}(SiMe_{3})_{3}\}$ (14). ¹H NMR (unobstructed resonances, C₆D₆): 6.56 (br s, 1H, arom CH), 6.39 (br s, 1H, arom CH), 6.16 (br s, 1H, arom CH), 5.78 (d, J = 12.8 Hz, 1H, calix-CH₂), 5.48 (br d, 1H, C_6H_3 {SiMe₃}₃), 5.21 (br d, 1H, C_6H_3 {SiMe₃}₃), 4.71 (br s, 1H, $C_6H_3{SiMe_3}_3$), 4.31 (d, J = 15.2 Hz, 1H, calix-CH₂), 4.11 (d, J = 16.8 Hz 1H, calix-CH₂), 3.93 (d, J = 12.8 Hz, 1H, calix-CH₂), 3.69 (m, 2H, calix-CH₂) 3.48 (d, 1H, J = 16 Hz, calix-CH₂), 3.14 $(d, J = 16 \text{ Hz}, 1\text{H}, \text{ calix-CH}_2), 2.34 \text{ (s, 3H, calix-Me)},$ 2.30 (s, 3H, calix-Me), 2.14 (s, 3H, calix-Me), 2.08 (s, 3H, calix-Me), -0.02 (s, 9H, C₆H₃{SiMe₃}₃), -0.23 (s, 9H, $C_6H_3\{SiMe_3\}_3$, -0.34 (s, 9H, $C_6H_3\{SiMe_3\}_3$), -0.65 (s, *endo*-SiMe). After complete consumption of Me₃SiC \equiv CH, ¹H NMR revealed ~2:1 ratio of 1,2,4- $C_6H_3(SiMe_3)_3$ and $1,3,5-C_6H_3(SiMe_3)_3$, along with minor amounts of an unidentified Ti(IV) species.

 $(DPSC)Ti\{\eta^6-C_6H_3(SiMe_3)_3\}$ (15). ¹H NMR (unobstructed resonances, C₆D₆): δ 6.86 (br d, 1H, arom CH), 6.72 (br d, 1H, arom CH), 6.60 (br d, 1H, arom CH), 5.37 (br d, 1H, $C_6H_3\{SiMe_3\}_3$), 5.26 (d, 1H, calix-CH₂), 5.03 (br d, 1H, $C_6H_3\{SiMe_3\}_3$), 4.99 (d, J = 16.4 Hz, 1H, calix-CH₂), 4.71 (br s, 1H, $C_6H_3\{SiMe_3\}_3$), 4.43 (d, J = 17.2 Hz, 1H, calix-CH₂), 4.20 (d, J = 17.6 Hz, 1H, calix-CH₂), 4.04 (d, 1H, calix-CH₂), 4.03 (d, 1H, calix-CH₂), 3.15 (d, J = 16.4 Hz, 1H, calix-CH₂), 1.40 (s, 9H, *t*-Bu), 1.37 (s, 9H, *t*-Bu), 1.31 (s, 9H, *t*-Bu), 1.22 (s, 9H, *t*-Bu), -0.09 (s, 9H, $C_6H_3\{SiMe_3\}_3$), -0.30 (s, 9H, $C_6H_3\{SiMe_3\}_3$), -0.34 (s, 9H, $C_6H_3\{SiMe_3\}_3$). After complete consumption of Me₃SiC=CH, ¹H NMR revealed ~3:1 ratio of 1,2,4- $C_6H_3(SiMe_3)_3$ and 1,3,5- $C_6H_3(SiMe_3)_3$, along with minor amounts unidentified Ti(IV) species.

3.4.2. Typical alkyne cyclotrimerization procedure using $[L_2TiCl_2]/Mg^*$ ($L_2 = DESC$, DPSC, DMSMC or DMSHC) as catalyst

Method 1: 10.6 µmol of (DPSC)TiCl₂ (12), 12.6 µmol of C₁₄H₁₀Mg(THF)₃, and 106 µmol of 2-pentyne were charged into a screw-capped 5-mm NMR tube along with 0.8 mL of C₆D₆. The reaction mixture was heated at 75 °C and the course of the reaction was monitored by ¹H NMR until the alkyne was completely consumed. At this point, the C₆D₆ solution was poured into pentane (15 mL) and treated with MeOH (0.5 mL). This solution was allowed to stand for 20 min in the air and was then passed through a plug of silica gel. An appropriate aliquot of the solution was subjected to GC-MS analysis.

Method 2: 12.6 μ mol of C₁₄H₁₀Mg(THF)₃ was decomposed into Mg* and anthracene in C₆D₆ (0.8 mL) in a screw-capped 5-mm NMR tube at 80 °C. After cooling to ambient temperature, 10.6 μ mol of L₂TiCl₂ and 106 μ mol of alkyne were then charged into the NMR tube. The reaction was monitored by ¹H NMR and workedup as described in method 1.

The substituted benzene products were characterized by ¹H NMR and MS data, as well as by comparison to literature data (see Supplementary Material).

3.5. Crystallographic study

The crystal data for $(ClPh_2Si)_2Calix-H_2$ (7), $(DPSC)TiCl_2$ (12), and the titanacyclopentene derivative 16 $\cdot 1.5(C_5H_{12})$ are collected in Table 1. Further details of the crystallographic study are given in the supplementary material.

4. Supplementary material

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC Nos. 215560–215562 for **7**, **12**, and 16 \cdot 1.5(C₅H₁₂), respectively. Copies of the information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or http://www.Ccdc.cam.ac.uk).

Acknowledgements

Thanks are expressed to the US National Science Foundation (Grant No. CHE-9984776) for financial support of this work. NMR instruments utilized in this research were funded in part by the CRIF program of the US National Science Foundation (Grant No. CHE-9974810). Thanks are expressed to Professor Carl Hertzel (Transylvania University) for recruitment of R.A. Huyck, and to Mr. Marc Maynor for his help with mass spectral data.

References

[1] (a) See for example: A. Togni, R.L. Halterman (Eds.), Metallcocenes: Synthesis, Reactivity, and Applications, vols. 1 and 2, Wiley-VCH, Weinheim, 1998; (b) I. Marek (Ed.), Titanium and Zirconium in Organic Synthesis, Wiley-VCH, Weinheim, 2002. [2] (a) See for example: R.A. Himes, P.E. Fanwick, I.P. Rothwell, Chem. Commun. (2003) 18; (b) T. Hanazawa, K. Sasaki, Y. Takayama, F. Sato, J. Org. Chem. 68 (2003) 4980: (c) M.C.W. Chan, K.-H. Tam, Y.-L. Pui, N. Zhu, J. Chem. Soc., Dalton Trans. 16 (2002) 3085; (d) L.G. Quan, J.K. Cha, Tetrahedron Lett. 42 (2001) 8567; (e) M.G. Thorn, J.S. Vilardo, P.E. Fanwick, I.P. Rothwell, J. Chem. Soc., Chem. Commun. (1998) 2127; (f) H. Mack, M.S. Eisen, J. Chem. Soc., Dalton Trans. (1998) 917; (g) E.S. Johnson, G.J. Balaich, P.E. Fanwick, I.P. Rothwell, J. Am. Chem. Soc. 119 (1997) 11086; (h) A. van der Linden, C.J. Schaverien, N. Meijboom, C. Ganter, A.G. Orpen, J. Am. Chem. Soc. 117 (1995) 3008; (i) G.J. Balaich, J.E. Hill, S.A. Waratuke, P.E. Fanwick, I.P. Rothwell, Organometallics 14 (1995) 656; (j) S. Fokken, T.P. Spaniol, H.-C. Kang, W. Massa, J. Okuda, Organometallics 15 (1996) 5069; (k) G. Balaich, P.E. Fanwick, I.P. Rothwell, Organometallics 13 (1994) 4117. [3] (a) See for example: A. Shafir, M.P. Power, G.D. Whitener, J. Arnold, Organometallics 20 (2001) 1365; (b) C. Lorber, B. Donnadieu, R. Choukroun, Organometallics 19 (2000) 1963; (c) R. Baumann, R. Stumpf, W.M. Davis, L.-C. Liang, R.R. Schrock, J. Am. Chem. Soc. 121 (1999) 7822; (d) B. Tsuie, D.C. Swenson, R.F. Jordan, Organometallics 16 (1997) 1392; (e) T.H. Warren, R.R. Schrock, W.M. Davis, Organometallics 17 (1998) 308; (f) F. Guerin, D.H. McConville, N.C. Payne, Organometallics 15 (1996) 5085; (g) A.D. Horton, J. de With, A.J. van der Linden, H. van de Weg, Organometallics 15 (1996) 2672; (h) J.D. Scollard, D.H. McConville, N.C. Payne, J.J. Vittal, Macromolecules 29 (1996) 5241;

(i) H. Mack, M.S. Eisen, J. Organomet. Chem. 525 (1996) 81;
(j) V.C. Gibson, B.S. Kimberley, A.J.P. White, D.J. Williams, P. Howard, J. Chem. Soc., Chem. Commun. (1998) 313;
(k) Y.-M. Jeon, S.J. Park, J. Heo, K. Kim, Organometallics 17 (1998) 3161.

- [4] (a) G. Du, L.K. Woo, Organometallics 22 (2003) 450;
 (b) J.L. Thorman, L.K. Woo, Inorg. Chem. 39 (2000) 1301;
 (c) H.-J. Kim, S. Jung, Y.-M. Jeon, D. Whang, K. Kim, Chem. Commun. (1999) 1033;
 (d) S.D. Gray, J.L. Thorman, V.A. Adamian, K.M. Kadish, K.L. Woo, Inorg. Chem. 37 (1998) 1;
 (e) X. Wang, S.D. Gray, J. Chen, K.L. Woo, Inorg. Chem. 37 (1998) 5.
- [5] E.Y. Tshuva, I. Goldberg, M. Kol, H. Weitman, H.Z. Goldschmidt, Chem. Commun. (2000) 379.

[6] (a) Y. Yoshida, S. Matsui, Y. Takagi, M. Mitani, T. Nakano, H. Tanaka, N. Kashiwa, T. Fujita, Organometallics 20 (2001) 4793;
(b) S.-i. Ishii, J. Saito, M. Mitani, J.-i. Mohri, N. Matsukawa, Y. Tohi, S. Matsui, N. Kashiwa, T. Fujita, J. Mol. Catal. A 179 (2002) 11;
(c) J. Tian, P.D. Hustad, G.W. Coates, J. Am. Chem. Soc. 123 (2001) 5134;
(d) P.D. Hustad, J. Tian, G.W. Coates, J. Am. Chem. Soc. 124

(d) P.D. Hustad, J. Han, G.W. Coates, J. Am. Chem. Soc. 124 (2002) 3614.

- [7] (a) E. Hong, Y. Han, M.H. Lee, H. Jang, Y. Do, Spec. Publ., Royal Soc. Chem. 253 (2000) 20;
 (b) D.J. Crowther, N.C. Baenziger, R.F. Jordan, J. Am. Chem. Soc. 113 (1991) 1455.
- [8] (a) Y. Zhang, D.A. Kissounko, J.C. Fettinger, L.R. Sita, Organometallics 22 (2003) 21;
 (b) J.A.R. Schmidt, J. Arnold, J. Chem. Soc., Dalton Trans (2002) 3454;
 (c) J.R. Hagadorn, J. Arnold, Organometallics 17 (1998) 1355;
 (d) J.R. Hagadorn, J. Arnold, J. Chem. Soc., Dalton Trans. (1997) 3087;
 (e) J.C. Flores, J.C.W. Chien, M.D. Rausch, Organometallics 14 (1995) 1827.
- [9] (a) A.J. Ashe III, J.W. Kampf, M.W. Schiesher, Organometallics 22 (2003) 203;

(b) A.J. Ashe III, S. Al-Ahmad, J.W. Kampf, Organometallics 18 (1999) 4234;

(c) Z.J.A. Komon, G.C. Bazan, Spec. Publ., Royal Soc. Chem. 253 (2000) 3;

(d) G.C. Bazan, G. Rodriguez, A.J. Ashe III, S. Al-Ahmad, C. Muller, J. Am. Chem. Soc. 118 (1996) 2291.

- [10] (a) D. Owiny, S. Parkin, F.T. Ladipo, J. Organomet. Chem. (2003) 678, 134;
 (b) E.B. Tjaden, D.C. Sewnson, R.F. Jordan, J.L. Petersen, Organometallics 14 (1995) 371;
 (c) E. Solari, C. Floriani, A. Chiesi-Villa, C. Rizzoli, J. Chem. Soc., Dalton Trans. (1992) 367.
- [11] (a) See for example: S. Fantacci, F. De Angelis, A. Sgamellotti, N. Re, Organometallics 20 (2001) 4031;
 (b) D.R. Evans, M. Huang, J.C. Fettinger, T.L. Williams, Inorg. Chem. 41 (2002) 5986;
 (c) F.A. Cotton, E.V. Dikarev, C.A. Murillo, M.A. Petrukhina, Inorg. Chim. Acta 332 (2002) 41;
 (d) F. Corazza, C. Floriani, W. Lesueur, A. Chiesi-Villa, C. Guastini, J. Chem. Soc., Chem. Commun. (1990) 1083;
 (e) F. Corazza, C. Floriani, A. Chiesi-Villa, C. Guastini, J. Chem. Soc., Chem. Commun. (1990) 640;
 (f) B. Castellano, A. Zanotti-Gerosa, E. Solari, C. Floriani,
 - Organometallics 15 (1996) 4894; (g) L. Giannini, A. Caselli, E. Solari, C. Floriani, A. Chiesi-Villa, C. Rizzoli, N. Re, A. Sgamellotti, J. Am. Chem. Soc. 119 (1997) 9198:
 - (h) L. Giannini, A. Caselli, E. Solari, C. Floriani, A. Chiesi-Villa,

C. Rizzoli, N. Re, A. Sgamellotti, J. Am. Chem. Soc. 119 (1997) 9709;

- (i) L. Giannini, E. Solari, A. Zanotti-Gerosa, C. Floriani, A. Chiesi-Villa, C. Rizzoli, Angew. Chem. Int. Ed. Engl. 36 (1996) 85;
- (j) A. Zanotti-Gerosa, E. Solari, C. Floriani, A. Chiesi-Villa, C. Rizzoli, J. Chem. Soc., Chem. Commun. (1997) 183;
- (k) A. Caselli, L. Giannini, E. Solari, C. Floriani, N. Re, A. Chiesi-Villa, C. Rizzoli, Organometallics 16 (1997) 5457;
- (l) A. Zanotti-Gerosa, E. Solari, L. Giannini, C. Floriani, N. Re, A. Chiesi-Villa, C. Rizzoli, Inorg. Chim. Acta 270 (1998) 298;
- (m) M.M. Olmstead, G. Sigel, H. Hope, X. Xu, P.P. Power, J. Am. Chem. Soc. 107 (1985) 8087;

(n) X. Delaigue, M.W. Hosseini, E. Leize, S. Kieffer, A. van Doersselaer, Tetrahedron Lett. 34 (1993) 7561;

(o) J.A. Acho, S.J. Lippard, Inorg. Chim. Acta 229 (1995) 5.

[12] (a) O.V. Ozerov, F.T. Ladipo, N.P. Rath, J. Organomet. Chem. 586 (1999) 223;

(b) O.V. Ozerov, B.O. Patrick, F.T. Ladipo, J. Am. Chem. Soc. 121 (1999) 7941;

(c) O.V. Ozerov, B.O. Patrick, F.T. Ladipo, J. Am. Chem. Soc. 122 (2000) 6423;

(d) O.V. Ozerov, S. Parkin, C.P. Brock, F.T. Ladipo, Organometallics 19 (2000) 4187;

(e) O.V. Ozerov, C.P. Brock, S. Carr, S. Parkin, F.T. Ladipo, Organometallics 19 (2000) 5016;

(f) J.V. Kingston, O.V. Ozerov, S. Parkin, C.P. Brock, F.T. Ladipo, J. Am. Chem. Soc. 124 (2002) 12217;

(g) J.V. Kingston, V. Sarveswaran, S. Parkin, F.T. Ladipo, Organometallics 22 (2003) 136.

- [13] M. Fan, H. Zhang, M. Lattman, Organometallics 15 (1996) 5216.
- [14] H. Gunther, NMR Spectroscopy: An Introduction, Wiley, New York, 1980, pp.77–86.
- [15] C. Jaime, J. de Mendoza, P. Prados, P.M. Nieto, C. Sanchez, J. Org. Chem. 56 (1991) 3372.
- [16] O. Aleksiuk, F. Grynszpan, S.E. Biali, J. Incl. Phenom. 19 (1994) 237.
- [17] We have previously observed changes in conformation for proximally bridged calixarene compounds upon reaction with TiCl₄. For example, crystallographically-characterized (PhPC)H₂
 [12a] exists in the 1,2-alternate conformation but forms cone-(PhPC)TiCl₂ upon reaction with TiCl₄. See Ref. [12a] for more details as well as other examples..
- [18] (a) See for example: S.A. Waratuke, M.G. Thorn, P.E. Fanwick, A.P. Rothwell, I.P. Rothwell, J. Am. Chem. Soc. 121 (1999) 9111;
 (b) N. Kanehisa, Y. Kai, N. Kasai, H. Yasuda, Y. Nakayama, K. Takei, A. Nakamura, Chem. Lett. (1990) 2167.
- [19] (a) J.R. Hagadorn, J. Arnold, Angew. Chem. Int. Ed. Engl. 37 (1998) 1729;

(b) F. Calderazzo, I. Ferri, G. Pampaloni, U. Englert, M.L.H. Green, Organometallics 16 (1997) 3100;

(c) S. Troyanov, J. Organomet. Chem. 475 (1994) 139;

(d) S. Troyanov, J. Polacek, H. Antropiusova, K. Mach, J. Organomet. Chem. 431 (1992) 317;

(e) U. Thewalt, F. Stollmaier, J. Organomet. Chem. 228 (1982) 149;

(f) U. Thewalt, F. Osterle, J. Organomet. Chem. 172 (1979) 317;
(g) E.O. Fischer, F. Rohrschied, J. Organomet. Chem. 6 (1966) 53;
(h) F. Martin, F. Vohwinkel, Chem. Ber. 94 (1961) 2416.

- [20] (a) B. Bogdanovic, S. Liao, M. Schwickardi, P. Sikorsky, B. Spliethoff, Angew. Chem., Int. Ed. Engl. 19 (1980) 818;
 (b) B. Bogdanovic, Acc. Chem. Res. 21 (1988) 261;
 (c) W.M. Brooks, C.L. Raston, R.E. Sue, F.J. Lincoln, J.J. McGinnity, Organometallics 10 (1991) 2098.
- [21] (a) X. Wu, R.D. Rieke, J. Org. Chem. 60 (1995) 6658;
 (b) M.V. Hanson, J.D. Brown, R.D. Rieke, Q.J. Niu, Tetrahedron Lett. 35 (1994) 7205;

(c) R.D. Rieke, T.P. Burns, R.M. Wehmeyer, B.E. Kahn, in: High-Energy Processes in Organometallic Chemistry, ACS Symp. Ser., vol. 333, American Chemical Society, Washington, DC, 1987, p. 223.

- [22] M.J. McCormick, K.B. Moon, S.R. Jones, T.P. Hanusa, J. Chem. Soc., Chem. Commun. (1990) 778.
- [23] A. Furstner, H. Weidmann, J. Organomet. Chem. 354 (1988) 15.
- [24] L.E. Aleandri, B. Bogdanovic, A. Gaidies, D.J. Jones, S. Liao, A. Michalowicz, J. Roziere, A. Schott, J. Organomet. Chem. 459 (1993) 87.
- [25] E. Neghishi, T. Takahashi, Bull. Chem. Soc. Jpn. 71 (1998) 755.
- [26] J.J. Eisch, J.N. Gitua, P.O. Otieno, X. Shi, J. Organomet. Chem. 624 (2001) 229.
- [27] F. Sato, H. Urabe, in: I. Marek (Ed.), Titanium and Zirconium in Organic Synthesis, Wiley-VCH, Weinheim, 2002, p. 319.
- [28] A reaction proceeding via a statistical distribution of the four possible titanacyclopentadiene intermediates (A–D, below) with identical rates would yield a 3:1 ratio of 1,2,4- and 1,3,5substitutional isomers. For relevant mechanistic discussion, see Ref. [12b] and J.E. Hill, G. Balaich, P.E. Fanwick, I.P. Rothwell, Organometallics 12 (1993) 2911.

- [29] The black mixture obtained on reaction of 1.20 g (1.27 mmol) of (DPSC)TiCl₂ (12) with 0.950 mg (2.26 mmol) of Mg* and 0.646 mL (5.16 mmol) of PhC \equiv CMe in toluene/THF at room temperature was concentrated to dryness and then the volatiles were removed in vacuo. The remaining solids were triturated with heptane, extracted with pentane until the washings were colorless and then filtered. The pentane extract was concentrated and the residue was treated with ~5 mL of ether. Crystals of the titanacyclopent-2-ene derivative 16 were obtained from the resulting solution at -15 °C.
- [30] D.B. Millward, A.P. Cole, R.M. Waymouth, Organometallics 19 (2000) 1870.
- [31] Placement of the more bulky phenyl group at the α -position of the titanacycle on the same side of the calixarene and of a THF molecule oriented toward the calixarene cavity is unexpected since unfavorable steric interactions with nearby aromatic rings and the attached Bu' groups should decrease the thermodynamic stability and kinetic accessibility of **16**. For example, in a related tantalacyclopentadiene system, the thermodynamic stability and kinetic accessibility of the α, α' (or 2,5)-substituted regioisomer is lost as steric congestion at the metal center increases [32].
- [32] D.P. Smith, J.R. Strickler, S.D. Gray, M.A. Bruck, R.S. Holmes, D.E. Wigley, Organometallics 11 (1992) 1275.
- [33] D.D. Perrin, W.L.F. Armarego, Purification of Laboratory Chemicals, Butterworth-Heinemann, Oxford, 1988.
- [34] (a) C.D. Gutsche, L.-G. Lin, Tetrahedron 42 (1986) 1633;
 (b) C.D. Gutsche, J.A. Levine, P.K. Sujeeth, J. Org. Chem. 50 (1985) 5802.
- [35] (a) F. Hajek, E. Graf, M.W. Hosseini, Tetrahedron Lett. 37 (1996) 1409;

(b) M. Almi, A. Arduini, A. Casnati, A. Pochini, R. Ungaro, Tetrahedron 45 (1989) 2177.

[36] H. Gilman, G.N.R. Smart, J. Org. Chem. 15 (1950) 720.