Article

Stereoselective Total Synthesis of (-)-Renieramycin T

Masashi Yokoya, Ryoko Toyoshima, Toshihiro Suzuki, Vy H. Le, Robert M. Williams, and Naoki Saito J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.6b00327•Publication Date (Web): 28 Mar 2016

Downloaded from http://pubs.acs.org on April 2, 2016

Just Accepted

Abstract

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Stereoselective Total Synthesis of (-)-Renieramycin T

Masashi Yokoya,* \dagger Ryoko Toyoshima, \dagger Toshihiro Suzuki, \dagger Vy H. Le, \ddagger Robert M. Williams, ${ }^{*} \ddagger$ and Naoki Saito \dagger
\dagger Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
\ddagger Department of Chemistry Colorado State University Fort Collins, Colorado 80523 and The University of Colorado Cancer Center, Aurora, Colorado 80045
*yokoya@my-pharm.ac.jp
*robert.williams@colostate.edu

Abstract

A stereoselective total synthesis of (-)-Renieramycin T (1t) from a key tetrahydroisoquinoline intermediate previously utilized in our formal total synthesis of Ecteinascidin 743 is described. The synthesis features a concise approach for construction of the pentacyclic framework using a Pictet-Spengler cyclization of bromo-substituted carbinolamine 17 , which obviates the regioselectivity problem of the Pictet-Spengler cyclization. The results of cytotoxicity studies are also presented.

\section*{Introduction}

The Renieramycins and Ecteinascidins are 1,2,3,4-tetrahydroisoquinoline (THIQ) marine natural products that are structurally and biologically related to other tetrahydroisoquinoline-based natural products, including the Saframycins, Bioxalomycins, Jorumycin, Tetrazomine and Quinocarcin, among others. ${ }^{1}$ Ecteinascidin 743 (2a:

Yondelis ${ }^{\circledR}$) has been demonstrated to possess the most potent cytotoxic activity in this family and it has been approved and marketed in eighty countries worldwide for the treatment of human soft tissue sarcoma and is undergoing additional clinical trials in other countries. ${ }^{2}$ In our continuing chemical studies on THIQ marine natural products, we succeeded in identifying the trace metabolites Renieramycin T (1t) along with Renieramycin $\mathrm{U}(\mathbf{1 u})$ from the Thai blue sponge Xestospongia sp. that was pretreated with KCN (Figure 1). ${ }^{3}$ These natural substances were also discovered from the Philippine blue sponge Xestospongia sp., growing in the vicinity of Puerto Galera, Oriental Mindoro, Mindoro Island along with three new Renieramycin type compounds Renieramycins W-Y $(\mathbf{1 w}-\mathbf{y}) .{ }^{4}$ Compounds $\mathbf{1 t}, \mathbf{1 u}$ and $\mathbf{1 x}$ possess a highly functionalized aromatic A ring, which bear the same substitution pattern as that of the Ecteinascidins, and are the first examples of Ecteinascidin-Renieramycin hybrids from natural sources. The structural similarity of $\mathbf{1 t}$ and 2a suggested that a comparison of the anti-cancer activities of these natural products might be informative. However, the severely limited supply of these new Renieramycins from marine organisms has thus far precluded detailed biological evaluation. To date, several natural Renieramycins have been successfully synthesized by several laboratories, ${ }^{5}$ and we also reported the enantioselective total synthesis of Renieramycin G, Cribrostatin 4 (Renieramycin H) and Renieramycin I. ${ }^{6}$

Renieramycins
$T(1 t): R_{1}=M e, R_{2}=H, X=H$
$U(1 u): R_{1}=M e, R_{2}=H, X=O H$

$$
\hat{(I X}): R_{1}=H, R_{2}=M e, X=\digamma
$$

Figure 1. Antitumor THIQ marine natural products.

We previously reported a formal synthesis of 2a (Scheme 1$)^{7}$ that commences with 1,3-cis tetrahydroisoquinoline 3, which was obtained via an intramolecular 6-endo radical closure on a glyoxalimine, and was then coupled with a tyrosine derivative and further manipulated to provide 4. Pentacyclic framework formation of 4 provided an unfavorable $0.72: 1$ ratio of regioisomers 5a:5b. Following chromatographic separation, desired species 5a was converted into compound $\mathbf{6}$ which intersects intermediates reported in the formal total synthesis of Et-743 by the Danishefsky laboratory, ${ }^{8}$ which further relayed into the total synthesis of Et-743 reported by Fukuyama and co-workers. ${ }^{9}$ We envisioned that this general strategy could be improved upon, particularly the non-regioselective Pictet-Spengler cyclization, to enable a more practical and efficient total synthesis of

Et-743 and congeners. Herein, we report the successful realization of this goal to an enantioselective total synthesis of Renieramycin T (1t).

Scheme 1. Formal synthesis of Et-743.

As shown in Scheme 2, we envisioned that the final steps in the synthesis of Renieramycin T , would involve an esterification of the primary alcohol to install the angelate and late-stage oxidation to the quinone. An additional challenge, is the planned saturation of the alkene in dihydroisoquinoline \mathbf{B} to the tetrahydroisoquinoline (A) that has proven hard and in some instances, impossible on structurally-related substrates under hydrogenation conditions. To overcome the regioselectivity problem encountered in our
first-generation synthesis, we designed substrate \mathbf{C}, which has a bromine atom para- to the phenolic residue that would obviate the regioselectivity problem (vide supra). The construction of \mathbf{C} was planned to proceed through the coupling of tetrahydroisoquinoline (D) and the bromo-substituted tyrosine derivative (E).

Scheme 2. Retrosynthetic analysis of Renieramycin T.

Results and Discussion

Our synthesis commences with methyl ester $\mathbf{8}$ which can be prepared from commercially available L-tyrosine according to a published procedure (Scheme 3). ${ }^{5 \mathrm{~b}}$ The brominated phenol $\mathbf{8}$ was submitted to hydrolysis under acidic conditions to provide amino acid 9 , that was subsequently Fmoc-protection to afford carboxylic acid 10 in 79% yield
over the two steps. Finally, TBS protection of the phenolic group afforded carboxylic acid 11 which could used as a right hand segment of $\mathbf{1 t}$.

Scheme 3. Preparation of Tyrosine derivative 11.

With the bromo-protected acid $\mathbf{1 1}$ in hand, our efforts were directed toward the preparation of a pentacyclic compound according to our previously reported procedure (Scheme 4). ${ }^{7}$ Acylation of tetrahydroisoquinoline $\mathbf{1 2}$ was achieved via the N-Fmoc-protected amino acid chloride 13 to give amide $\mathbf{1 4}$ without epimerization. Treatment of $\mathbf{1 4}$ with diethylamine provided the corresponding primary amine, which was subjected to Boc-protection providing amide 15 in 89% yield. Deprotection of the acetonide group from 15 was accomplished with Dowex $50 \mathrm{~W}-\mathrm{X} 8$ cationic resin in methanol. Instead of providing the expected 1,3-diol product, this product incorporated methanol at the benzylic position via the incipient ortho-quinonemethide species. The
${ }^{1} H-N M R$ spectra of methyl ether 16 was extremely complex due to amide and carbamate rotamers, which was more clearly resolved with increased temperature $\left(140{ }^{\circ} \mathrm{C}\right)$, and was identified a single diastereomer. The relative stereochemistry of the benzylic methoxy group, being ultimately inconsequential, was not definitively assigned. With the alcohol 16 in hand, oxidation with Dess-Martin periodinane afforded the hemi-aminal compound 17, whose ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra was also complicated by amide and carbamate rotamers. Hemi-aminal 17 was treated with TBAF to remove the TBS ether and the obtained crude material was directly treated with TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of anisole to afford the desired pentacyclic compound $\mathbf{1 8}$ (77% yield, three steps).

Scheme 4. Construction of pentacyclic core.

The final stages of the synthesis of Renieramycin T are illustrated in Scheme 5. Reductive amination of $\mathbf{1 8}$ resulted in N-methylation providing 19 in 95% yield. After introduction of an acetyl residue at the phenolic hydroxyl of 19, removing the allyl group of 20 with tributyltin hydride, $\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{PdCl}_{2}$, and AcOH in THF afforded phenol 21. Although compound 21 was homogeneous from TLC analysis, its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum is extremely complex and the structure was confirmed after conversion to the corresponding MOM ether 21a. Reduction of the double bond of 21 under the action of hydrogen (1 MPa) on Raney ${ }^{\circledR}$ nickel, ${ }^{10}$ proceeded stereoselectively delivering the desired relative stereochemistry which concomitantly resulted in cleavage of benzyl group and removal of the bromine atom to furnish $\mathbf{2 2}$ in 80% yield. After benzylation of the phenolic hydroxyl group of $\mathbf{2 2}$ gave 23, we next investigated the conversion of lactam 23 into amino nitrile 24b by following the procedure previously published in our model study. ${ }^{11}$ The partial reduction of the lactam carbonyl of 23 with sodium bis(2-methoxyethoxy)aluminum hydride (Red-Al ${ }^{\circledR}$) in THF, followed by the addition of aqueous KCN and AcOH unfortunately led to the recovery of unreacted 23. After the extensive investigation, we found that the partial reduction of 23 with 5 equiv of $\mathrm{LiAlH}_{2}(\mathrm{OEt})_{2},{ }^{12}$ followed by treatment with KCN and AcOH gave 24a in 39% yield along with recovered 23 (38\%). Increasing the amount of $\mathrm{LiAlH}_{2}(\mathrm{OEt})_{2}(15$ equiv) afforded desired $\mathbf{2 4 b}$ in 75% yield. Oxidation of $\mathbf{2 4 b}$ with O_{2} in the presence of salcomine gave quinone $\mathbf{2 5}$ in 61% yield. The O-debenzylation of $\mathbf{2 5}$ under hydrogenolysis conditions $\left(10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}\right)$ resulted in the reduction of the quinone to the corresponding hydroquinone, which was easily oxidized and restored to starting material $\mathbf{2 5}$ during the work up. On the other hand, the debenzylation was achieved smoothly with BCl_{3} in the
presence of pentamethylbenzene at $-78^{\circ} \mathrm{C}$ to furnish the desired phenol $\mathbf{2 6}$ in 95% yield. ${ }^{13}$ Finally, esterification of $\mathbf{2 6}$ with angeloyl chloride in 1,2-dichloroethane at $80^{\circ} \mathrm{C}$ afforded (-)-Renieramycin $\mathrm{T}(\mathbf{1 t})$. The spectroscopic data of synthetic $\mathbf{1 t}$ are consistent with those for the natural product.

Scheme 5. Construction of Renieramycin T.

We reported that natural Renieramycin $\mathrm{T}(\mathbf{1 t})$ showed moderate cytotoxicity to four human cancer cell lines, human colon carcinoma (HCT116), human lung carcinoma (QG56), human pancreatic adenocarcinoma (AsPC1) and human ductal breast epithelial tumor (T74D) with IC_{50} values of $0.039,0.077,0.098$ and $0.0047 \mu \mathrm{M}$, respectively. ${ }^{3}$ The compounds synthesized here, including natural Ecteinascidin 770 (2b), ${ }^{14}$ were evaluated in terms of their inhibitory activity against two human cancer cell lines (Table 1). ${ }^{15}$ The data revealed that the introduction of the cyano group at C-21 significantly enhances the in vitro cytotoxic activity within this series of compounds as expected. Moreover, we found that the introduction of a benzyl ether in the A-ring and angelate ester at B-ring side chain slightly increase the cytotoxicity to the both cell lines.

Table 1. Cytotoxicities of Renieramycin T and related compounds to human cancer cell lines

	$\mathrm{IC}_{50} \pm \mathrm{SD}(\mu \mathrm{M})$			
Compound	$\mathrm{HCT} 116^{\mathrm{a}}$	$\mathrm{DU} 145^{\mathrm{a}}$		
$\mathbf{1 8}$	>3	>3		
$\mathbf{1 9}$	>3	>3		
$\mathbf{2 0}$	>3	>3		
$\mathbf{2 1}$	>3	>3		
$\mathbf{2 2}$	>3	>3		
$\mathbf{2 3}$	>3	>3		
$\mathbf{2 4 b}$	1.3 ± 0.1	1.6 ± 0.1		
$\mathbf{2 5}$	0.8 ± 0.08	0.6 ± 0.03		
$\mathbf{2 6}$	2.6 ± 0.06	2.1 ± 0.09		
Renieramycin T $(\mathbf{1 t})$	$(9.6 \pm 0.4) \times 10^{-2}$	$(8.2 \pm 0.4) \times 10^{-2}$		
Ecteinascidin $770(\mathbf{2 b})$	$(3.2 \pm 0.3) \times 10^{-3}$	$(4.8 \pm 0.7) \times 10^{-3}$		

[^0]
Conclusions

An enantioselective total synthesis of Renieramycin T has been accomplished in seventeen steps from readily available tetrahydroisoquinoline (12) and L-tyrosine derivative (11). Our synthesis features a concise approach for construction of the pentacyclic framework using the intramolecular Pictet-Spengler cyclization of compound 17, which has the bromine atom para- to the phenolic hydroxyl group obviating the previous regioselectivity problem. We confirm that the introduction of a cyano group at the C-21 position is necessary for cytotoxicity and is consistent with the accepted modes of DNA-alkylation by this family of tetrahydroisoquinoline alkaloids. ${ }^{1}$ Moreover, the protection of phenol hydroxy group at A-ring and acylation of alcohol at C-1 side chain enhanced the cytotoxicity of these compounds. We are currently exploring a more practical synthetic route that could be applied on larger scale to supply Renieramycin T for SAR studies.

Experimental Section

General procedures. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded at 500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$; at 400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$; at 300 MHz for ${ }^{1} \mathrm{H}$ and 75 MHz for ${ }^{13} \mathrm{C}$ (ppm, J in Hz with TMS as internal standard). All proton and carbon signals were assigned by extensive NMR measurements using COSY, HMBC, and HMQC techniques. Mass spectra were recorded with a direct inlet system operating at 70 eV . High-resolution mass spectra were obtained on a double-focusing high-resolution magnetic-sector mass analyzer operating in a fast atom bombardment (FAB) mode or an electron impact (EI)
mode.

(S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(2-bromo-5-hydroxy-4-

 methoxy-3-methylphenyl)propanoic acid (10). To a solution of compound $\mathbf{8}(15.65 \mathrm{~g}$, $43.5 \mathrm{mmol})$ in dioxane $(250 \mathrm{~mL})$ was added $4 \mathrm{~N} \mathrm{HCl}(250 \mathrm{~mL})$ and then heated at $95^{\circ} \mathrm{C}$ for 19 h . The solvent was removed and the residue was suspended in saturated aqueous $\mathrm{NaHCO}_{3}(900 \mathrm{~mL})$ and acetone $(450 \mathrm{~mL})$, and the solution was added Fmoc-OSu (16.12 g, $47.8 \mathrm{mmol})$. Then the mixture was stirred at $25^{\circ} \mathrm{C}$ for 18 h . The solvent was removed and the residue was acidified with 1 N HCl aq. and extracted with $\mathrm{CHCl}_{3}(3 \times 1 \mathrm{~L})$. The combined extracts were washed with water, dried, and concentrated in vacuo, and the residue was subjected to SiO_{2} flash column chromatography with $\mathrm{MeOH}-\mathrm{CHCl}_{3}=1: 19$ to afford 10 ($17.95 \mathrm{~g}, 79 \%$) as a colorless amorphous powder. $[\alpha]_{\mathrm{D}}^{25}+0.9\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{IR}(\mathrm{KBr}) 3393,3337,2945,1701,1578,1522,1474,1449,1412$, 1339, 1250, 1055, 1005, 760, $741 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are extremely complex due to carbamate rotamers. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}, \mathrm{~d}_{6}, 400 \mathrm{MHz}, 413 \mathrm{~K}\right) \delta: 7.82(2 \mathrm{H}, \mathrm{d}, J=7.8$ $\mathrm{Hz}), 7.77(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.39(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.32(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{s})$, $6.18(2 \mathrm{H}, \mathrm{s}), 3.73(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}$, overlapped $), 3.60(1 \mathrm{H}, \mathrm{dd}, J=8.3,5.4 \mathrm{~Hz}), 3.25(1 \mathrm{H}$, dd, $J=14.6,5.4 \mathrm{~Hz}), 2.81(1 \mathrm{H}, \mathrm{dd}, J=14.6,8.3 \mathrm{~Hz}), 2.30(3 \mathrm{H}, \mathrm{s})$; EIMS $m / z(\%): 525(1)$, 349 (7), 347 (7), 331 (7), 329 (7), 231 (65), 229 (66), 196 (17), 179 (37), 178 (100), 166 (39), 165 (62), 151 (10); HREIMS $m / z 525.0784\left(\mathrm{M}^{+}\right.$, calcd for $\left.\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{Br} 525.0787\right)$.(S)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-3-(2-bromo-5-((tert-butyldimethy Isilyl)oxy)-4-methoxy-3-methylphenyl)propanoic acid (11). To a solution of compound
$10(526 \mathrm{mg}, 1 \mathrm{mmol})$ in DMF (5 mL) was added $\mathrm{TBSCl}(452 \mathrm{mg}, 3 \mathrm{mmol})$ and imidazole ($408 \mathrm{mg}, 6 \mathrm{mmol}$). The solution was stirred at $25^{\circ} \mathrm{C}$ for 4 h . After dilution with $\mathrm{H}_{2} \mathrm{O}$ (13 $\mathrm{mL})$, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined extracts were washed with water $(2 \times 10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$, dried, and concentrated in vacuo, and the residue was subjected to SiO_{2} flash column chromatography with $\mathrm{MeOH}-\mathrm{CHCl}_{3}=1: 49$ to afford $11(578.9 \mathrm{~g}, 77 \%)$ as a colorless amorphous powder.
$[\alpha]_{\mathrm{D}}^{25}-2.92\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{IR}(\mathrm{KBr}) 3325,2955,2930,2859,1717,1522,1472,1450$, 1417, 1341, 1325, 1254, 1231, 1080, 1011, $839 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.73$ $(2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 7.53(2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 7.37(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 7.27(2 \mathrm{H}, \mathrm{t}, J=7.1$ $\mathrm{Hz}), 6.68(1 \mathrm{H}, \mathrm{s}), 5.37(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.6 \mathrm{~Hz}), 4.73(1 \mathrm{H}, \mathrm{m}), 4.30(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 4.16$ $(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 3.68(3 \mathrm{H}, \mathrm{s}), 3.41(1 \mathrm{H}, \mathrm{dd}, J=14.0,4.8 \mathrm{~Hz}), 3.11(1 \mathrm{H}, \mathrm{dd}, J=14.0,9.4$ $\mathrm{Hz}), 2.35(3 \mathrm{H}, \mathrm{s}), 0.97(9 \mathrm{H}, \mathrm{s}), 0.14(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 176.0(\mathrm{~s})$, 156.0 (s), 149.3 (s), 147.9 (s), 143.7 (s), 141.2 (s), 133.3 (s), 131.3 (s), 127.7 (d), 127.1 (d), 125.2 (d), 120.9 (d), 119.9 (s), 119.4 (d), 67.3 (t), 60.1 (q), 54.1 (d), 47.0 (d), 38.2 (t), 25.6 (q), 18.2 (s), 17.1 (q), -4.6 (q); FABMS $m / z 640\left([M+H]^{+} ;\right.$HRFABMS $m / z 640.1738$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd for $\left.\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{NO}_{6} \mathrm{BrSi} 640.1730\right)$.
(9H-Fluoren-9-yl)methyl (S)-1-((4R,5aR,9aS)-10-(allyloxy)-4-((benzyloxy)methyl)-8,8,11-trimethyl-4,5a,6,9a-tetrahydro-5H-[1,3]dioxino[5,4-c][1,3]dioxolo[4,5-h]isoquinolin-5-yl)-3-(2-bromo-5-((tert-butyldimethylsilyl)oxy)-4-methoxy-3-methylphenyl)-1-oxopropan-2-yl)carbamate (14). Fmoc amino acid 11 ($868 \mathrm{mg}, 1.15$ mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.5 \mathrm{~mL})$ and oxalyl chloride ($2.1 \mathrm{~mL}, 24.6 \mathrm{mmol}$) at room temperature under Ar, to which was added dry DMF ($10 \mu \mathrm{~L}$) drop-wise. After stirring for 1
h , the solution was concentrated and dried under high vacuum. The acid chloride was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. To this was added a solution of THIQ $\mathbf{1 2}$ ($372 \mathrm{mg}, 0.821 \mathrm{mmol}$) and 2,6-lutidine $(133 \mu \mathrm{~L}, 1.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$ drop-wise. The reaction was stirred 3 h , and then quenched with aq. saturated NaHCO_{3} solution (20 mL) and extracted to CHCl_{3} (20 mL x 3). The combined extracts were dried over MgSO_{4}, filtered and concentrated (1.23 g , pale brown amorphous), and the residue was subjected to SiO_{2} flash column chromatography (n-hexane $-\mathrm{EtOAc}=3: 1$) to provide peptide $\mathbf{1 4}(883 \mathrm{mg}$, 100%) as a colorless amorphous powder.
$\mathrm{Rf}=0.30$ (hexanes- $\mathrm{EtOAc}=3: 1$); $[\alpha]_{\mathrm{D}}^{24}-30.5\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}) 3296,2930,2859$, 1721, 1647, 1420, 1400, 1252, 1225, 1103, 1011, $839 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are extremely complex due to carbamate rotamers. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 400 \mathrm{MHz}, 413 \mathrm{~K}\right) \delta$: $7.83(2 \mathrm{H}, \mathrm{d} J=7.6 \mathrm{~Hz}), 7.61(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.38(2 \mathrm{H}, \mathrm{td}, J=7.6,4.4 \mathrm{~Hz}), 7.28-7.22$ $(7 \mathrm{H}, \mathrm{m}), 6.82(1 \mathrm{H}, \mathrm{s}$, Ar-H), $6.02(1 \mathrm{H}, \mathrm{ddt}, J=17.4,10.7,5.4 \mathrm{~Hz},-\mathrm{OAllyl}), 5.86(1 \mathrm{H}, \mathrm{s}$, $\left.-\mathrm{OCH}_{2} \mathrm{O}-\right), 5.72\left(1 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{2} \mathrm{O}-\right), 5.60(1 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}), 5.33(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}), 5.30$ ($1 \mathrm{H}, \mathrm{dq}, J=17.4,1.7 \mathrm{~Hz},-\mathrm{OAllyl}), 5.16(1 \mathrm{H}, \mathrm{dq}, J=10.7,1.7 \mathrm{~Hz},-\mathrm{OAllyl}), 4.96(1 \mathrm{H}, \mathrm{dd}$, $J=15.6,7.3 \mathrm{~Hz}), 4.42(2 \mathrm{H}, \mathrm{s}), 4.29-4.19(5 \mathrm{H}, \mathrm{m}), 4.27-4.15(2 \mathrm{H}, \mathrm{m},-\mathrm{OAllyl}), 4.13(1 \mathrm{H}, \mathrm{t}$, $J=7.1 \mathrm{~Hz}), 3.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.62-3.51(2 \mathrm{H}, \mathrm{m}), 3.11(1 \mathrm{H}, \mathrm{dd}, J=14.0,7.1 \mathrm{~Hz}), 3.05$ $(1 \mathrm{H}, \mathrm{dd}, J=14.0,7.1 \mathrm{~Hz}), 2.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 1.40(3 \mathrm{H}, \mathrm{s}$, $\left.-\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}-\right), 1.33\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}-\right), 0.99(9 \mathrm{H}, \mathrm{s},-\mathrm{OTBS}), 0.19(6 \mathrm{H}, \mathrm{s},-\mathrm{OTBS}) ;$ FABMS m/z $1075\left([\mathrm{M}+\mathrm{H}]^{+} ; \quad\right.$ HRFABMS $\mathrm{m} / \mathrm{z} \quad 1075.3781\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{58} \mathrm{H}_{68} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{BrSi} 1075.3770$).

Tert-butyl ((S)-1-((4R,5aR,9aS)-10-(allyloxy)-4-((benzyloxy)methyl)-8,8,11-

trimethyl-4,5a,6,9a-tetrahydro-5H-[1,3]dioxino[5,4-c][1,3]dioxolo[4,5-h]isoquinolin-5-

 yl)-3-(2-bromo-5-((tert-butyldimethylsilyl)oxy)-4-methoxy-3-methylphenyl)-1-oxopropan-2-yl)carbamate (15). Fmoc-Peptide 14 (1.04 g, $966 \mu \mathrm{~mol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and diethylamine $(3.5 \mathrm{~mL})$ was added and stirred for 5 h . TLC (hexanes-EtOAc $=3: 1$) shows complete consumption of starting material and a clean new spot positive by ninhydrin test. The solution was concentrated and dried under high vacuum. The crude amine was dissolved in $\mathrm{EtOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(10: 3.5 \mathrm{~mL}) . \mathrm{Boc}_{2} \mathrm{O}(1.1 \mathrm{~mL}, 4.83$ mmol) was added in one portion and the mixture was stirred for 11 h , then concentrated and purified by SiO_{2} flash chromatography (hexanes $-\mathrm{EtOAc}=6: 1$). The Boc protected peptide 15 was obtained as a colorless amorphous powder ($823 \mathrm{mg}, 89 \%$).
$\mathrm{Rf}=0.56($ Hexanes $-\mathrm{EtOAc}=3: 1) ;[\alpha]_{\mathrm{D}}^{23}-37.0\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}) 3308,2932,2859$, 1717, 1653, 1497, 1472, 1366, 1252, 1167, 1117, $839 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are extremely complex due to carbamate rotamers; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}, 400 \mathrm{MHz}, 413 \mathrm{~K}\right) \delta$: 7.30-7.19 (5H, m, -OBn), $6.79(1 \mathrm{H}, \mathrm{s}$, Ar-H), $6.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.08(1 \mathrm{H}, \mathrm{m},-\mathrm{OAllyl}), 5.93$ $\left(1 \mathrm{H}, \mathrm{br} \mathrm{s},-\mathrm{OCH}_{2} \mathrm{O}-\right), 5.88\left(1 \mathrm{H}, \mathrm{br} \mathrm{s},-\mathrm{OCH}_{2} \mathrm{O}-\right), 5.56(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=5.7 \mathrm{~Hz}), 5.36(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J=9.4 \mathrm{~Hz}), 5.33-5.27(1 \mathrm{H}, \mathrm{m},-\mathrm{OAllyl}), 5.19-5.15(1 \mathrm{H}, \mathrm{m},-\mathrm{OAllyl}), 4.88(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=$ $15.1,8.2 \mathrm{~Hz}), 4.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 4.28-4.17(2 \mathrm{H}, \mathrm{m},-\mathrm{OAllyl}), 3.67(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.64(1 \mathrm{H}$, br s), 3.62-3.58 (1H, m), $3.53(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.2 \mathrm{~Hz}), 3.05(1 \mathrm{H}, \mathrm{dd}, J=13.2,6.4 \mathrm{~Hz}), 2.95$ $(1 \mathrm{H}, \mathrm{dd}, J=13.2,7.8 \mathrm{~Hz}), 2.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 1.40(3 \mathrm{H}, \mathrm{s}$, $\left.-\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}-\right), 1.34\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}-\right), 1.32(9 \mathrm{H}, \mathrm{s},-\mathrm{Boc}), 1.02(9 \mathrm{H}, \mathrm{s},-\mathrm{OTBS}), 0.22$ ($6 \mathrm{H}, \mathrm{s},-\mathrm{OTBS}$); FABMS $m / z 953[\mathrm{M}+\mathrm{H}]^{+}$; HRFABMS $m / z 953.3612\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{48} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{BrSi} 953.3614$).

Tert-butyl ((2S)-1-((7R,9R)-5-(allyloxy)-9-((benzyloxy)methyl)-7-(hydroxymethyl)-6-methoxy-4-methyl-6,9-dihydro-[1,3]dioxolo[4,5-h]isoquinolin-8(7H)-yl)-3-(2-bromo-5-((tert-butyldimethylsilyl)oxy)-4-methoxy-3-methylphenyl)-1-oxopropan-2-
yl)carbamate (16). The Boc protected peptide $\mathbf{1 5}(189 \mathrm{mg}, 198 \mu \mathrm{~mol})$ was dissolved in dry $\mathrm{MeOH}(3.4 \mathrm{~mL})$ to which was added Dowex $50 \mathrm{~W}-\mathrm{X} 8$ resin $(190 \mathrm{mg})$. The reaction was stirred for 5 days and then passed through a Celite pad (eluting with MeOH and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and the filtrate was concentrated and purified by SiO_{2} flash chromatography (n-hexane $\mathrm{EtOAc}=3: 1)$ to provide methyl ether $\mathbf{1 6}(140 \mathrm{mg}, 97 \%)$ as colorless amorphpus powder. $\mathrm{Rf}=0.38($ Hexanes $-\mathrm{EtOAc}=2: 1) ;[\alpha]_{\mathrm{D}}^{23}+44.0\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}) 3435,2932,2889$, 1717, 1647, 1472, 1422, 1098, $841 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are extremely complex due to carbamate rotamers; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}, 400 \mathrm{MHz}, 413 \mathrm{~K}\right) \delta: 7.30-7.19(5 \mathrm{H}, \mathrm{m}$, $-\mathrm{OBn}), 6.86(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 6.18-6.08(2 \mathrm{H}, \mathrm{m}), 5.91\left(2 \mathrm{H}, \mathrm{br} \mathrm{s},-\mathrm{OCH}_{2} \mathrm{O}-\right), 5.60(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $5.41(1 \mathrm{H}$, br d, $J=16.9 \mathrm{~Hz},-\mathrm{OAllyl}), 5.25(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10.3 \mathrm{~Hz},-\mathrm{OAllyl}), 5.08-4.95(1 \mathrm{H}$, br s), $4.70(1 \mathrm{H}, \mathrm{br}$ s), 4.60-4.52 $(1 \mathrm{H}, \mathrm{m}), 4.51-4.44(1 \mathrm{H}, \mathrm{m}), 4.43-4.35(2 \mathrm{H}, \mathrm{m}), 4.34-4.29$ $(1 \mathrm{H}, \mathrm{m}), 4.16-4.06(1 \mathrm{H}, \mathrm{m}), 4.02-3.91(1 \mathrm{H}, \mathrm{m}), 3.85(1 \mathrm{H}, \mathrm{m}), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right)$, 3.61-3.35 ($2 \mathrm{H}, \mathrm{m}$), $3.25\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 3.08-2.89(1 \mathrm{H}, \mathrm{m}), 2.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.14(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{ArCH}_{3}\right), 1.30(9 \mathrm{H}$, br $\mathrm{s},-\mathrm{Boc}), 1.01(9 \mathrm{H}, \mathrm{s},-\mathrm{OTBS}), 0.21(6 \mathrm{H}, \mathrm{s},-\mathrm{OTBS}) ;$ FABMS m / z $927[\mathrm{M}+\mathrm{H}]^{+}$; HRFABMS $m / z 927.3455\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd for $\left.\mathrm{C}_{46} \mathrm{H}_{64} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{BrSi} 927.3457\right)$.
(7R,13S,16R)-5-(Allyloxy)-16-((benzyloxy)methyl)-11-bromo-8-hydroxy-9-methoxy-4,10-dimethyl-7,12,13,16-tetrahydro-14H-7,13-epiminobenzo[4,5]azocino[1,2-b] [1,3]dioxolo[4,5-h]isoquinolin-14-one (18). The Boc protected peptide $\mathbf{1 6}$ ($385 \mathrm{mg}, 415$ $\mu \mathrm{mol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ to which was added Dess-Martin ($352 \mathrm{mg}, 830$
$\mu \mathrm{mol})$. The reaction was stirred for 20 min , and then quenched with aqueous saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution $(9 \mathrm{~mL})$ and then diluted with aqueous saturated NaHCO_{3} solution $(9 \mathrm{~mL})$. The mixture was extracted to $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined extracts were dried over MgSO_{4}, filtered and concentrated (401 mg , colorless amorphous powder). The obtained material was dissolved in THF (9 mL), to which was added TBAF (1.0 M in THF, $415 \mu \mathrm{~L}$, $415 \mu \mathrm{~mol})$ with stirring. The reaction was stirred for $25 \mathrm{~min} .$, and then the reaction mixture was filtered through a short pad of SiO_{2} and eluted with EtOAc. The filtrate was concentrated (354 mg , pale yellow amorphous). The obtained material was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, to which was added TFA $(5 \mathrm{~mL})$ and anisole $(451 \mu \mathrm{~L}, 4.15 \mathrm{mmol})$ with stirring. The reaction was stirred for 12 h , and then the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and quenched with saturated NaHCO_{3} solution $(50 \mathrm{~mL})$ and extracted to $\mathrm{CHCl}_{3}(3 \times 50 \mathrm{~mL})$. The combined extracts were dried over MgSO_{4}, filtered and concentrated. The residue was purified by SiO_{2} flash chromatography $\left({ }^{i} \mathrm{PrOH}-n\right.$-Hexane $=$ 1:6) to provide pentacyclic compound $\mathbf{1 8}(210 \mathrm{mg}, 77 \%)$ as a yellow amorphous powder. $\mathrm{Rf}=0.39\left(20 \%{ }^{i} \mathrm{PrOH}\right.$ in Hexanes $) ;[\alpha]_{\mathrm{D}}^{23}+95.02\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}) 3306,2936$, 2862, 1672, 1634, 1456, 1408, 1364, 1287, 1236, 1111, 1088, $984 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta: 7.26-7.16(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 6.95-6.93(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 6.23(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 6.14(\mathrm{ddt}, J=$ $\left.16.0,10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 6.03(\mathrm{dd}, J=6.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H}), 5.87(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.84(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.47(\mathrm{dq}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.31\left(\mathrm{dq}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.96(\mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{H}), 4.32(\mathrm{tt}$, $\left.J=5.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.14(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{H}), 4.00(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OBn}), 3.86(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OBn}), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{OCH}_{3}\right), 3.21(\mathrm{dd}, J=10.5,4.9 \mathrm{~Hz}$,
$1 \mathrm{H}, 18-\mathrm{H}), 3.20(\mathrm{dd}, J=17.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 3.13(\mathrm{dd}, J=10.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H})$, $3.13(\mathrm{dd}, J=17.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{CH}_{3}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 168.3$ ($\mathrm{s}, \mathrm{C}-14$), 147.5 ($\mathrm{s}, \mathrm{C}-5$), 145.6 (s, C-3), 144.9 (s, C-8), 143.9 ($\mathrm{s}, \mathrm{C}-9$), 139.5 ($\mathrm{s}, \mathrm{C}-1$), 138.3 (s, Ph), $133.7\left(\mathrm{~d}, \mathrm{OCH}_{2} \underline{\mathrm{CH}}=\mathrm{CH}_{2}\right.$), 133.7 (s, C-6a), 130.3 (s, C-11), 129.1 ($\mathrm{s}, \mathrm{C}-11 \mathrm{a}$), 128.1 (s, Ph), 127.0 (s, Ph), 126.8 (s, Ph), 121.2 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 118.0 (s, $\mathrm{C}-10), 117.6\left(\mathrm{~d}, \mathrm{OCH}_{2} \mathrm{CH}=\underline{\mathrm{CH}}_{2}\right), 117.2(\mathrm{~s}, \mathrm{C}-5 \mathrm{a}), 112.8(\mathrm{~s}, \mathrm{C}-4), 108.6(\mathrm{~s}, \mathrm{C}-16 \mathrm{a}), 101.3(\mathrm{t}$, $\mathrm{C}-2), 100.5(\mathrm{~d}, \mathrm{C}-6), 75.1\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 72.7(\mathrm{~d}, \mathrm{Bn}), 70.0(\mathrm{t}, \mathrm{C}-18), 61.1\left(\mathrm{q}, 9-\mathrm{OCH}_{3}\right)$, 54.4 (d, C-13), 49.8 (d, C-7), 46.9 (d, C-16), 35.6 (t, C-12), 16.6 ($\mathrm{q}, 10-\mathrm{CH}_{3}$), 9.3 (q, 4-CH3 $)$; EIMS $m / z(\%): 660\left(\mathrm{M}^{+}, 27\right), 541$ (72), 539 (67), 513 (100), 511 (97), 433 (46), 270 (49), 268 (50), 257 (74), 203 (45); HREIMS $m / z 660.1467$ (${ }^{+}$, calcd for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Br}: 660.1471$).
(7R,13S,16R)-5-(Allyloxy)-16-((benzyloxy)methyl)-11-bromo-8-hydroxy-9-methoxy-4,10,17-trimethyl-7,12,13,16-tetrahydro-14H-7,13-epiminobenzo[4,5]azocino[1,2-b] [1,3]dioxolo[4,5-h]isoquinolin-14-one (19). To a stirred solution of amine $\mathbf{1 8}$ (119 mg, $180 \mu \mathrm{~mol})$ in $\mathrm{MeCN}(6.0 \mathrm{~mL})$ was added 37% aqueous solution of $\mathrm{HCHO}(265 \mu \mathrm{~L}, 3.6$ $\mathrm{mmol})$. The reaction mixture was stirred for 15 min , after which $\mathrm{NaCNBH}_{3}(113 \mathrm{mg}, 1.80$ mmol) was added. The reaction mixture was stirred for 15 min , after which AcOH ($103 \mu \mathrm{~L}$, 1.80 mmol) was added dropwise over 3 min . The reaction mixture was stirred for 5 min , after which $2 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ was added one portion. The reaction was heated to $60^{\circ} \mathrm{C}$ and was stirred for 14 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and quenched with saturated NaHCO_{3} solution $(50 \mathrm{~mL})$ and extracted to $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined extracts were dried over MgSO_{4}, filtered and concentrated (120 mg , pale yellow
amorphous). The residue was purified by SiO_{2} flash chromatography (n-hexane- $\mathrm{EtOAc}=$ 3:1) to provide N-methyl compound 19 (114 $\mathrm{mg}, 95 \%$) as a pale yellow amorphous powder.
$\mathrm{Rf}=0.44$ (n-hexane-EtOAc $=1: 1$); $[\alpha]_{\mathrm{D}}^{23}+78.4\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}) 2940,2860,1776$, 1676, 1634, 1458, 1408, 1368, 1287, 1236, 1192, 1128, 1088, $997 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta: 7.24-7.16(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Bn}-\mathrm{H}), 6.95(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Bn}-\mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H})$, 6.15 (ddt, $\left.J=17.2,10.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 6.07(\mathrm{dd}, J=7.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H})$, $5.88(\mathrm{~d},, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.85(\mathrm{~d},, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 8-\mathrm{OH}), 5.45$ (dq, $\left.J=17.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.31\left(\mathrm{dq}, J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $4.62(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 4.33\left(\mathrm{dt}, J=5.7,1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.00(\mathrm{~d}, J=$ $12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 3.82(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 3.73(\mathrm{td}, J=4.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{H}), 3.64$ (s, 3H, 9-OMe), 3.20 (dd, $J=10.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H}), 3.17(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}, 12-\mathrm{H}), 3.11$ (dd, $J=10.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{Me}), 2.27(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{Me}), 2.13(\mathrm{~s}, 3 \mathrm{H}$, 4-Me); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 167.7(\mathrm{~s}, \mathrm{C}-14), 147.4$ ($\left.\mathrm{s}, \mathrm{C}-5\right), 145.7(\mathrm{~s}, \mathrm{C}-3)$, 144.9 ($\mathrm{s}, \mathrm{C}-8$), 143.9 ($\mathrm{s}, \mathrm{C}-9), 139.5(\mathrm{~s}, \mathrm{C}-1), 138.3(\mathrm{~s}, \mathrm{Bn}), 133.7\left(\mathrm{~d}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, 130.4 (s, C-6a), 130.2 (s, C-10), 128.9 (s, C-11a), 128.1 (d, Bn), 127.1 (d, Bn), 126.9 (d, $\mathrm{Bn}), 121.2$ (s, C-7a), 117.8 ($\mathrm{s}, \mathrm{C}-11$ and $\mathrm{t}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$, overlapped), 117.0 (s, C-5a), 112.9 ($\mathrm{s}, \mathrm{C}-4$), 108.7 ($\mathrm{s}, \mathrm{C}-16 \mathrm{a}$), 103.4 (d, C-6), 101.4 (t, C-2), 75.2 ($\mathrm{t}, \mathrm{O} \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 72.7 (t, Bn), 70.2 (t, C-18), 61.2 (q, 9-OMe), 61.0 (d, C-13), 56.4 (d, C-7), 46.8 (d, C-16), 41.3 ($\mathrm{q}, N-\mathrm{Me}$), 35.3 (t, C-12), 16.7 ($\mathrm{q}, 10-\mathrm{Me}), 9.3$ (q, 4-Me); EIMS $m / z(\%): 674\left(\mathrm{M}^{+}\right.$, $22 \%), 676\left(\mathrm{M}^{+}+2,24\right), 555(29), 553$ (28), 527 (100), 525 (95), 486 (14), 484 (13), 284 (81), 282 (79), 269 (20), 267 (20); HREIMS $m / z 674.1624$ (M^{+}, calcd for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Br}$:
674.1628).
(7R,13S,16R)-5-(Allyloxy)-16-((benzyloxy)methyl)-11-bromo-9-methoxy-4,10,17-trimethyl-14-oxo-7,13,14,16-tetrahydro-12H-7,13-epiminobenzo[4,5]azocino[1,2-b]
[1,3]dioxolo[4,5-h]isoquinolin-8-yl Acetate (20). To a stirred solution of amine 19 (191 $\mathrm{mg}, 283 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was added DMAP $(6.9 \mathrm{mg}, 56.7 \mu \mathrm{~mol})$ and $\mathrm{Ac}_{2} \mathrm{O}(134$ $\mu \mathrm{L}, 1.42 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred for 1 h , after which the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and quenched with saturated NaHCO_{3} solution $(50 \mathrm{~mL})$ and was extracted with $\mathrm{CHCl}_{3}(3 \times 50 \mathrm{~mL})$. The combined extracts were dried over MgSO_{4}, filtered and concentrated (209 mg, pale yellow amorphous). The residue was purified by SiO_{2} flash chromatography $\left(\mathrm{MeOH}-\mathrm{CHCl}_{3} 1: 49\right)$ to provide the acetate $\mathbf{2 0}(203 \mathrm{mg}, 100 \%)$ as a pale yellow amorphous powder. $\mathrm{Rf}=0.29\left(\mathrm{MeOH}-\mathrm{CHCl}_{3} 1: 49\right) ;[\alpha]_{\mathrm{D}}^{23}+91.5\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}) 2940,2860,1776$, $1676,1458,1408,1368,1287,1236,1192,1128,1088,997 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz) $\delta: 7.26-7.14(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Bn}-\mathrm{H}), 7.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Bn}-\mathrm{H}), 6.10(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 6.09(\mathrm{dd}, J=10.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 5.87(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.85(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.47\left(\mathrm{dt}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $5.32\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.41(\mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{H}), 4.34(\mathrm{dd}, J=12.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \underline{\mathrm{CH}}=\mathrm{CH}_{2}\right), 4.26\left(\mathrm{dd}, J=12.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \underline{\mathrm{CH}}=\mathrm{CH}_{2}\right), 3.97(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Bn}), 3.74(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{H}), 3.72(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 3.67(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{OMe})$, $3.19(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}, 12-\mathrm{H}), 3.18(\mathrm{dd}, J=10.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H}), 3.08(\mathrm{t}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}, 18-\mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}, N-\mathrm{Me}), 2.38(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{CH}_{3}\right), 2.12(\mathrm{~s}, 3 \mathrm{H}$, $\left.4-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 167.8(\mathrm{~s}, \mathrm{OAc}), 167.6(\mathrm{~s}, \mathrm{C}-14), 148.9(\mathrm{~s}, \mathrm{C}-9)$,
147.4 ($\mathrm{s}, \mathrm{C}-5$), 146.0 ($\mathrm{s}, \mathrm{C}-3$), 140.7 ($\mathrm{s}, \mathrm{C}-8$), 139.6 ($\mathrm{s}, \mathrm{C}-1$), 138.4 ($\mathrm{s}, \mathrm{Bn}), 133.6$ (d, $\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 132.4 (s, C-10), 130.3 (s, C-6a), 129.3 (d, C-11a), 128.1 (d, Bn), 127.2 (s, C-7a), 127.0 (d, Bn), 126.9 (d, Bn), 125.4 ($\mathrm{s}, \mathrm{C}-11$), 117.3 ($\mathrm{t}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 116.3 (s , C-5a), 112.9 (s, C-4), 108.7 (s, C-16a), 103.0 (d, C-6), 101.5 (t, C-2), 74.8 (t, $\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $72.4(\mathrm{t}, \mathrm{Bn}), 69.6(\mathrm{t}, \mathrm{C}-18), 61.0(\mathrm{q}, 9-\mathrm{OMe}), 60.9(\mathrm{~d}, \mathrm{C}-13), 57.1(\mathrm{~d}, \mathrm{C}-7)$, 46.5 (d, C-16), $41.2(\mathrm{q}, N-\mathrm{Me}), 35.5(\mathrm{t}, \mathrm{C}-12), 20.9(\mathrm{~s}, \mathrm{OAc}), 16.7\left(\mathrm{q}, 10-\mathrm{CH}_{3}\right), 9.2(\mathrm{q}$, 4- CH_{3}); EIMS $m / z(\%): 716\left(\mathrm{M}^{+}, 19 \%\right), 718\left(\mathrm{M}^{+}+2,21\right), 597(31), 595(29), 569(100), 567$ (96), 528 (23), 526 (21), 326 (22), 324 (23), 284 (46), 282 (48).; HREIMS $m / z 716.1736$ $\left(\mathrm{M}^{+}\right.$, calcd for $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Br}$: 716.1733).
(7R,13S,16R)-16-((Benzyloxy)methyl)-11-bromo-5-hydroxy-9-methoxy-4,10,17-trimethyl-14-oxo-7,13,14,16-tetrahydro-12H-7,13-epiminobenzo[4,5]azocino[1,2-b]
[1,3]dioxolo[4,5-h]isoquinolin-8-yl Acetate (21). To a mixture of 20 ($201 \mathrm{mg}, 280 \mu \mathrm{~mol}$), AcOH $(48 \mu \mathrm{~L}, 841 \mu \mathrm{~mol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(16.2 \mathrm{mg}, 14 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{Bu}_{3} \mathrm{SnH}(151 \mu \mathrm{~L}, 561 \mu \mathrm{~mol})$ and stirred at room temperature for 30 min . The reaction mixture was concentrated and the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$. The mixture was filtered through a short pad of celite, and the obtained filtrate was concentrated again. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and washed with saturated NaHCO_{3} solution (30 mL) and extracted to $\mathrm{CHCl}_{3}(3 \times 50 \mathrm{~mL})$. The combined extracts were dried over MgSO_{4}, filtered and concentrated (430 mg , pale yellow amorphous). The residue was purified by SiO_{2} flash chromatography ($\mathrm{MeOH}-\mathrm{CHCl}_{3} 1: 99$) to provide phenol $21(189 \mathrm{mg}, 99 \%)$ as a pale orange amorphous powder.
$\mathrm{Rf}=0.33\left(\mathrm{MeOH}-\mathrm{CHCl}_{3}=1: 19\right) ;[\alpha]_{\mathrm{D}}^{22}-189.5\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}(\mathrm{KBr}) 3391,2941,2872$,
$1776,1636,1616,1460,1435,1420,1369,1292,1234,1192,1125,1094,758 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are extremely complex due to nebulous reasons. This structure was confirmed after the protection with MOM ether shown below. EIMS m/z (\%): $676\left(\mathrm{M}^{+}\right.$, $23 \%), 678\left(\mathrm{M}^{+}+2,24\right), 557$ (16), 555 (16), 529 (100), 527 (97), 484 (39), 482 (40); HREIMS $m / z 676.1419\left(\mathrm{M}^{+}\right.$, calcd for $\left.\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Br} 676.1420\right)$.
(7R,13S,16R)-16-((Benzyloxy)methyl)-11-bromo-9-methoxy-5-(methoxymethoxy)-

4,10,17-trimethyl-14-oxo-7,13,14,16-tetrahydro-12H-7,13-

epiminobenzo $[4,5]$ azocino $[1,2-b][1,3]$ dioxolo $[4,5-h]$ isoquinolin-8-yl acetate (21a). To a solution of $21(74.4 \mathrm{mg}, 109.9 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.5 \mathrm{~mL})$ was added ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(48 \mu \mathrm{~L}, 274.7$ $\mu \mathrm{mol}, 2.5$ eq.) and $\operatorname{MOMBr}(22.5 \mu \mathrm{~L}, 274.7 \mu \mathrm{~mol}, 2.5 \mathrm{eq}$.$) and stirred at 25^{\circ} \mathrm{C}$ for 1.5 h . The reaction material was diluted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with saturated NaHCO_{3} solution $(20 \mathrm{~mL})$ and extracted to $\mathrm{CHCl}_{3}(3 \times 20 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated (72.2 mg , pale yellow amorphous). The residue was purified by SiO_{2} flash chromatography (n-Hexane- $\mathrm{AcOEt}=1: 1$) to provide compound 21a ($66.8 \mathrm{mg}, 84 \%$) as a pale yellow amorphous powder.
$[\alpha]_{\mathrm{D}}^{25}+97.4\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}(\mathrm{KBr}) 2940,2903,1776,1674,1636,1458,1435,1368$, $1287,1238,1192,1128,1053,968 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.26-7.14(\mathrm{~m}, 3 \mathrm{H}$, Bn-H), $7.01(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Bn}-\mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 6.09(\mathrm{dd}, J=8.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}$, $16-\mathrm{H}), 5.87(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.85(\mathrm{~d},, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.96(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.93\left(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.42(\mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{H}), 3.97(\mathrm{~d}, J=12.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Bn}), 3.73(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 3.72(\mathrm{~m}, 1 \mathrm{H}, 13-\mathrm{H}), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{OCH}_{3}\right), 3.61$ (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.19(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, 12-\mathrm{H}), 3.18(\mathrm{dd}, J=10.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H})$,
3.09 (dd, $J=10.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}, N-\mathrm{Me}), 2.41(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.28(\mathrm{~s}, 3 \mathrm{H}$, $\left.10-\mathrm{CH}_{3}\right), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 167.8(\mathrm{~s}, \mathrm{OAc}), 167.5(\mathrm{~s}$, C-14), 148.8 ($\mathrm{s}, \mathrm{C}-9$), 146.1 ($\mathrm{s}, \mathrm{C}-5$), 146.0 ($\mathrm{s}, \mathrm{C}-3$), 140.7 ($\mathrm{s}, \mathrm{C}-8$), 139.8 ($\mathrm{s}, \mathrm{C}-1$), 138.4 (s , Bn), 132.4 (s, C-10), 130.3 (s, C-6a), 129.3 (s, C-11a), 128.1 (d, Bn), 127.2 (s, C-7a), 126.9 (d, Bn x 2, overlapped), 125.4 (s, C-11), 116.6 (s, C-5a), 113.0 (s, C-4), 108.8 (s, C-16a), 103.3 (d, C-6), $101.5(\mathrm{t}, \mathrm{C}-2), 100.1\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 72.4(\mathrm{t}, \mathrm{Bn}), 69.5(\mathrm{t}, \mathrm{C}-18), 60.9(\mathrm{q}$, 9- OCH_{3} and d, C-13, overlapped), $57.9\left(\mathrm{q}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 57.1(\mathrm{~d}, \mathrm{C}-7), 46.5(\mathrm{~d}, \mathrm{C}-16), 41.2$ ($\mathrm{q}, N-\mathrm{Me}$), 35.6 (t, C-12), 20.7 (q, OAc), $16.7\left(\mathrm{q}, 10-\mathrm{CH}_{3}\right), 9.6\left(\mathrm{q}, 4-\mathrm{CH}_{3}\right) ; \operatorname{EIMS} m / z(\%)$: $720\left(\mathrm{M}^{+}, 19 \%\right), 722\left(\mathrm{M}^{+}+2,21\right), 601(21), 599(20), 573$ (100), 571 (97), 326 (12), 324 (12), 284 (31), 282 (32); HREIMS $m / z 720.1678$ (M^{+}, calcd for $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Br} 720.1682$).
($6 a S, 7 R, 13 S, 16 R$)-5-Hydroxy-16-(hydroxymethyl)-9-methoxy-4,10,17-trimethyl-14-oxo-6,6a,7,13,14,16-hexahydro-12H-7,13-epiminobenzo[4,5]azocino[1,2-b][1,3] dioxolo[4,5-h]isoquinolin-8-yl Acetate (22). To a solution of $21(62.8 \mathrm{mg}, 92.7 \mu \mathrm{~mol})$ in EtOH (4 mL) was added a slurry of Raney Ni 2800 (530 mg of commercially available water slurry, washed with absolute $\mathrm{EtOH} 3 \times 1 \mathrm{~mL}$) and suspended with EtOH (7 mL). The reaction mixture was stirred under $\mathrm{H}_{2}(1 \mathrm{MPa})$ at $60^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was diluted with EtOAc (25 mL) and 1.2 M Rochell's salt aq. (25 mL), and the mixture was stirred for 2 h . The reaction mixture was filtered through a short pad of Celite, rinsed with CHCl_{3}. The filtrate was extracted with $\mathrm{CHCl}_{3}(3 \times 25 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. By checking the TLC analysis, a starting material 21 was still remained in the residue, the obtained residue was dissolved in EtOH (4 mL) and was added a slurry of Raney Ni 2800 (530 mg of commercially available water
slurry, washed with absolute EtOH (3 x 1 mL) and suspended with EtOH (7 mL). The reaction mixture was stirred under $\mathrm{H}_{2}(1 \mathrm{MPa})$ at $60^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was diluted with EtOAc (25 mL) and 1.2 m Rochell's salt aq. $(25 \mathrm{~mL})$, and the mixture was stirred for 2 h . The reaction mixture was filtered through a short pad of Celite, washed with CHCl_{3}. The combined filtrates were extracted with $\mathrm{CHCl}_{3}(3 \times 25 \mathrm{~mL})$. The combined extarcts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by SiO_{2} flash chromatography ($i-\mathrm{PrOH}-n$-Hexane $=1: 2$) to provide compound $22(37.8 \mathrm{mg}$, 80%) as a pale yellow gummy solid.
$[\alpha]_{\mathrm{D}}^{23}-122.2\left(\mathrm{c} 0.7, \mathrm{CHCl}_{3}\right)$; $\operatorname{IR}(\mathrm{KBr}) 3374,2934,1773,1636,1437,1238,1196,1103$, $1061,754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 6.90(\mathrm{~s}, 1 \mathrm{H}, 11-\mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 5.88$ (s, 1H, 2-H), $5.46(\mathrm{dd}, J=6.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H}), 3.86(\mathrm{br} \mathrm{d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 3.85$ (br s, 1H, 7-H), 3.75 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{OMe}), 3.47(\mathrm{dd}, J=11.2,3.9$ $\mathrm{Hz}, 1 \mathrm{H}, 18-\mathrm{H}), 3.31$ (dd, $J=11.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H}), 3.27$ (br d, $J=16.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$), 3.24 (dd, $J=18.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 2.89(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc})$, $2.39(\mathrm{~s}, 3 \mathrm{H}, N-\mathrm{Me}), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{CH}_{3}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 2.10(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 172.7$ (s, C-14), 168.6 (s, OAc), 148.5 (s, C-9), 144.9 (s, C-3), 144.6 ($\mathrm{s}, \mathrm{C}-5$), 142.5 ($\mathrm{s}, \mathrm{C}-8$), 137.6 ($\mathrm{s}, \mathrm{C}-1$), 132.1 ($\mathrm{s}, \mathrm{C}-10$), 129.1 ($\mathrm{s}, \mathrm{C}-11$), 128.9 (d, C-11a), 121.6 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 114.7 ($\mathrm{s}, \mathrm{C}-5 \mathrm{a}$), 112.7 ($\mathrm{s}, \mathrm{C}-16 \mathrm{a}$), 106.7 ($\mathrm{s}, \mathrm{C}-4$), 101.2 (t, C-2), 68.2 (t, C-18), 60.6 (q, 9-OMe), 59.7 (d, C-6a), 59.6 (d, C-13), 56.4 (d, C-7), 52.8 (d, C-16), 39.5 ($\mathrm{q}, N-\mathrm{Me}$), $27.3(\mathrm{t}, \mathrm{C}-12), 25.8(\mathrm{t}, \mathrm{C}-6), 20.9(\mathrm{~s}, \mathrm{OAc}), 16.0\left(\mathrm{q}, 10-\mathrm{CH}_{3}\right), 8.9(\mathrm{q}$, 4- CH_{3}); EIMS m/z (\%): $510\left(\mathrm{M}^{+}, 20 \%\right), 479(26), 247(21), 246$ (100), 204 (54), 189 (16); HREIMS $m / z 510.1999\left(\mathrm{M}^{+}\right.$, calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{8}$ 510.2002).
($6 a S, 7 R, 13 S, 16 R$)-5-(Benzyloxy)-16-(hydroxymethyl)-9-methoxy-4,10,17-trimethyl-14-0xo-6,6a,7,13,14,16-hexahydro-12H-7,13-epiminobenzo[4,5]azocino[1,2-b]
[1,3]dioxolo[4,5-h]isoquinolin-8-yl Acetate (23). To a solution of 22 ($51.3 \mathrm{mg}, 101 \mu \mathrm{~mol}$) in acetone $(15 \mathrm{~mL})$ was added $\mathrm{BnBr}(17.9 \mu \mathrm{~L}, 151 \mu \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(41.7 \mathrm{mg}, 301 \mu \mathrm{~mol})$, and the reaction mixture was stirred for 12 h at $60^{\circ} \mathrm{C}$. The reaction mixture was filtered to remove inorganic materials and the filtrate was concentrated in vacuo. The residue was purified by SiO_{2} flash chromatography $\left(\mathrm{MeOH}-\mathrm{CHCl}_{3}=1: 49\right)$ to provide benzyl ether $\mathbf{2 3}$ ($55.5 \mathrm{mg}, 92 \%$) as a pale yellow gummy solid.
$[\alpha]_{\mathrm{D}}^{25}-89.9\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}(\mathrm{KBr}) 3011,2940,1771,1636,1439,1369,1236,1196$, $1105,758 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 7.48-7.34(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Bn}-\mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}$, $11-\mathrm{H}), 5.99(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.93(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.56(\mathrm{dd}, J=6.4,4.0$ $\mathrm{Hz}, 1 \mathrm{H}, 16-\mathrm{H}), 4.78(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.75(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 3.86(\mathrm{dt}, J=12.5$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 3.73(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 3.72(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{H}), 3.71(\mathrm{~s}$, $3 \mathrm{H}, 9-\mathrm{OCH}_{3}$), 3.51 (ddd, $\left.J=11.0,5.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H}\right), 3.34(\mathrm{ddd}, J=11.0,6.4,5.5 \mathrm{~Hz}$, $1 \mathrm{H}, 18-\mathrm{H}), 3.26(\mathrm{dd}, J=15.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 3.22(\mathrm{dd}, J=17.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 3.14$ (t, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{OH}), 2.87(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}, N-\mathrm{Me}), 2.28(\mathrm{~s}, 3 \mathrm{H}$, $\left.10-\mathrm{CH}_{3}\right), 2.18\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 2.11(\mathrm{dd}, J=15.0,12.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 172.9$ (s, C-14), 168.6 (s, OAc), 148.5 (s, C-9), 148.1 (s, C-5), 145.3 ($\mathrm{s}, \mathrm{C}-3$), 142.4 ($\mathrm{s}, \mathrm{C}-8$), 139.9 ($\mathrm{s}, \mathrm{C}-1$), 137.2 (s, Bn), 131.9 (s, C-10), 129.0 (s , C-11a), 129.0 (d, C-11), 128.6 (d, Bn), 128.2 (d, Bn), 127.4 (d, Bn), 122.0 (s, C-7a), 121.1 ($\mathrm{s}, \mathrm{C}-5 \mathrm{a}$), 112.9 ($\mathrm{s}, \mathrm{C}-16 \mathrm{a}$), 112.6 ($\mathrm{s}, \mathrm{C}-4$), 101.2 (t, C-2), 75.4 (t, Bn), 68.3 (t, C-18), 60.5 (q, 9-OMe), 59.7 (d, C-13), 59.6 (d, C-6a), 56.3 (d, C-7), 52.8 (d, C-16), 39.6 (q, N-Me),
27.4 (t, C-12), $26.2(\mathrm{t}, \mathrm{C}-6), 20.4(\mathrm{q}, \mathrm{Ac}), 15.9\left(\mathrm{q}, 10-\mathrm{CH}_{3}\right), 9.4\left(\mathrm{q}, 4-\mathrm{CH}_{3}\right) ;$ EIMS m/z (\%): $600\left(\mathrm{M}^{+}, 15 \%\right), 569(41), 509(21), 247$ (38), 246 (100), 204 (60), 189 (16); HREIMS m / z $600.2471\left(\mathrm{M}^{+}\right.$, calcd for $\left.\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{8} 600.2472\right)$.
(6aS,7R,13S,14R,16R)-5-(Benzyloxy)-14-cyano-16-(hydroxymethyl)-9-methoxy-
4,10,17-trimethyl-6,6a,7,13,14,16-hexahydro-12H-7,13-epiminobenzo[4,5]azocino[1,2-
$\boldsymbol{b}][\mathbf{1 , 3}]$ dioxolo[4,5-h]isoquinolin-8-yl Acetate (24a). To a solution of $23(5.5 \mathrm{mg}, 9.2$ $\mu \mathrm{mol})$ in THF $(0.4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was slowly added $\mathrm{LiAlH}_{2}(\mathrm{OEt})_{2}\left(0.2 \mathrm{~mol} / \mathrm{L}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 230$ $\mu \mathrm{L}, 45.8 \mu \mathrm{~mol})$ over 10 min . The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched with $\mathrm{AcOH}(12.0 \mu \mathrm{~L}, 200 \mu \mathrm{~mol})$, followed by the addition of KCN ($4.8 \mathrm{~mol} / \mathrm{L}$ in $\mathrm{H}_{2} \mathrm{O}, 11.5 \mu \mathrm{~L}, 55 \mu \mathrm{~mol}$), $\mathrm{Na}_{2} \mathrm{SO}_{4}(67 \mathrm{mg})$ and celite, and stirring was continued for 4.5 h at $25^{\circ} \mathrm{C}$. The reaction mixture was filtered through a Celite pad, and concentrated in vacuo to give a residue (7.2 mg), which was purified by SiO_{2} flash chromatography (n-hexane $-\mathrm{EtOAc}=1: 1$) to give acetate $24 \mathrm{a}(2.2 \mathrm{mg}, 39 \%)$ as a pale yellow gummy solid, and with n-hexane-EtOAc $=1: 5$ to provide $23(2.1 \mathrm{mg}, 38 \%$ recovery) as a pale yellow gummy solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.50-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{Bn}-\mathrm{H}), 6.86(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 5.96(1 \mathrm{H}, \mathrm{d}, J$ $=1.4 \mathrm{~Hz}, 2-\mathrm{H}), 5.91(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}, 2-\mathrm{H}), 4.75\left(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.65$ $\left(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.07(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}, 14-\mathrm{H}), 4.01(1 \mathrm{H}, \mathrm{t}, J=3.1 \mathrm{~Hz}$, $16-\mathrm{H}), 3.70-3.64(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}, 17-\mathrm{H}), 3.68\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 3.46(1 \mathrm{H}, \mathrm{td}, J=10.1,3.1 \mathrm{~Hz}$, $17-\mathrm{H}), 3.39(1 \mathrm{H}, \mathrm{dt}, J=7.7,1.9 \mathrm{~Hz}, 13-\mathrm{H}), 3.29(1 \mathrm{H}, \mathrm{dt}, J=11.9,2.6 \mathrm{~Hz}, 6 \mathrm{a}-\mathrm{H}), 3.13(1 \mathrm{H}$, dd, $J=18.1,7.7 \mathrm{~Hz}, 12-\mathrm{H}), 3.09(1 \mathrm{H}, \mathrm{dd}, J=14.4,2.6 \mathrm{~Hz}, 6-\mathrm{H}), 2.55(1 \mathrm{H}, \mathrm{d}, J=18.1 \mathrm{~Hz}$, 12-H), $2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}), 2.26\left(3 \mathrm{H}, \mathrm{s}, 10-\mathrm{CH}_{3}\right), 2.16\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{3}\right), 2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$,
$1.94(1 \mathrm{H}, \mathrm{dd}, J=14.4,11.9 \mathrm{~Hz}, 6-\mathrm{H}), 1.77(1 \mathrm{H}, \mathrm{dd}, J=10.1,3.1 \mathrm{~Hz}, 17-\mathrm{OH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 168.8\left(-\mathrm{OCOCH}_{3}\right), 148.1(\mathrm{C}-5), 148.1(\mathrm{C}-9), 144.7(\mathrm{C}-3), 142.5$ (C-8), 139.2 (C-1), 137.4 (C-2'), 131.4 (C-10), 129.8 (C-11a), 128.6 (C-4'), 128.0 (C-5'), 127.6 (C-11), 127.3 (C-3'), 123.4 (C-7a), 120.5 (C-5a or C-16a), 117.5 (CN), 113.2 (C-5a or C-16a), 112.4 (C-4), 101.3 (C-2), $74.8\left(\mathrm{C}-1\right.$ '), $63.7(\mathrm{C}-17), 60.5\left(-\mathrm{OCH}_{3}\right), 60.1(\mathrm{C}-14)$, 58.2 (C-16), 57.7 (C-7), 56.5 (C-6a), 55.2 (C-13), 41.6 (N-Me), 26.2 (C-6), 25.6 (C-12), $20.3\left(-\mathrm{OCOCH}_{3}\right), 15.9\left(10-\mathrm{CH}_{3}\right), 9.3\left(4-\mathrm{CH}_{3}\right)$. FABMS $m / z 612[\mathrm{M}+\mathrm{H}]^{+} ;$HRFABMS m / z $612.2716\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{7}$ 612.2711).
(6aS,7R,13S,14R,16R)-5-(Benzyloxy)-8-hydroxy-16-(hydroxymethyl)-9-methoxy-4,10,17-trimethyl-6,6a,7,13,14,16-hexahydro-12H-7,13-epiminobenzo[4,5]azocino[1,2$\boldsymbol{b}][\mathbf{1 , 3}]$ dioxolo[4,5-h]isoquinoline-14-carbonitrile (24b). To a solution of $\mathbf{2 3}$ (11 mg, 18.3 $\mu \mathrm{mol})$ in THF $(0.6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was slowly added $\mathrm{LiAlH}_{2}(\mathrm{OEt})_{2}\left(0.2 \mathrm{~mol} / \mathrm{L}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 1.4 \mathrm{~mL}$, $274.9 \mu \mathrm{~mol}$) over 10 min . The reaction mixture was stirred for 1.5 h at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was quenched with $\mathrm{AcOH}(22.0 \mu \mathrm{~L}, 385 \mu \mathrm{~mol})$, followed by the addition of KCN ($4.8 \mathrm{~mol} / \mathrm{L}$ in $\mathrm{H}_{2} \mathrm{O}, 23 \mu \mathrm{~L}, 110 \mu \mathrm{~mol}$), $\mathrm{Na}_{2} \mathrm{SO}_{4}(135 \mathrm{mg})$ and Celite, and stirring was continued for 18 h at $25^{\circ} \mathrm{C}$. The reaction mixture was diluted with saturated NaHCO_{3} solution (20 mL) and extracted to $\mathrm{CHCl}_{3}(3 \times 20 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated (11.4 mg). The residue was purified by SiO_{2} flash chromatography (n-hexane $-\mathrm{EtOAc}=1: 1$) to provide alcohol $\mathbf{2 4 b}(7.8 \mathrm{mg}, 75 \%)$ as a pale yellow gummy solid.
$[\alpha]_{\mathrm{D}}^{24}+37.0\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}) 3510,2928,2872,1456,1433,1233,1105,1065,756$
$\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 7.49-7.39(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Bn}-\mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}, 11-\mathrm{H}), 5.94(\mathrm{~d}$,
$J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.89(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{OH}), 4.71(\mathrm{~d}, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.67(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.13(\mathrm{dd}, J=2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 4.04(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{H}), 3.99(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H}), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{OCH}_{3}\right), 3.66(\mathrm{dt}, J=9.0$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H}), 3.44$ (ddd, $J=10.2,9.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H}), 3.36$ (ddd, $J=7.6,2.5,1.0$ $\mathrm{Hz}, 1 \mathrm{H}, 13-\mathrm{H}), 3.30(\mathrm{dt}, J=10.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 3.24(\mathrm{dd}, J=15.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H})$, $3.10(\mathrm{dd}, J=18.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 2.49(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}, N-\mathrm{Me})$, $2.24\left(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{CH}_{3}\right), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 1.87(\mathrm{dd}, J=15.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 1.84(\mathrm{dd}, J$ $=10.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 148.4(\mathrm{~s}, \mathrm{C}-5), 146.7(\mathrm{~s}, \mathrm{C}-8)$, 144.5 ($\mathrm{s}, \mathrm{C}-3$), 143.0 ($\mathrm{s}, \mathrm{C}-9$), 139.0 ($\mathrm{s}, \mathrm{C}-1$), 137.5 (s, Bn), 130.1 ($\mathrm{s}, \mathrm{C}-11 \mathrm{a}$), 129.1 (s , C-10), 128.5 (d, Bn), $128.0(\mathrm{~d}, \mathrm{Bn}), 127.9(\mathrm{~d}, \mathrm{Bn}), 121.2(\mathrm{~s}, \mathrm{C}-5 \mathrm{a}$ or C-16a), 120.9 (d, C-11), 117.7 (s, CN), 116.7 (s, C-7a), 113.4 (s, C-5a or C-16a), 112.4 (s, C-4), 101.2 (t, C-2), 75.2 (t, Bn), 63.5 (d, C-18), $60.6\left(\mathrm{q}, 9-\mathrm{OCH}_{3}\right), 60.0(\mathrm{~d}, \mathrm{C}-14), 58.1$ (t, C-16), 56.8 (d, C-6a), 56.6 (d, C-7), 55.3 (d, C-13), 41.7 (q, $N-M e$), 26.2 (t, C-6), 25.7 (t, C-12), 15.7 (q, 10-CH3), 9.4 (q, 4- CH_{3}); FABMS $m / z 570[\mathrm{M}+\mathrm{H}]^{+}$; HRFABMS $m / z 570.2604\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd for $\left.\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{6} 570.2604\right)$.
(6aS,7R,13S,14R,16R)-5-(Henzyloxy)-16-(hydroxymethyl)-9-methoxy-4,10,17-trimethyl-8,11-dioxo-6,6a,7,8,12,13,14,16-octahydro-11H-7,13-epiminobenzo[4,5] azocino[1,2-b][1,3]dioxolo[4,5-h]isoquinoline-14-carbonitrile (25). To a solution of 24b $(19.5 \mathrm{mg}, 34.3 \mu \mathrm{~mol})$ in THF $(2.0 \mathrm{~mL})$ was added salcomine $(11.0 \mathrm{mg}, 34.3 \mu \mathrm{~mol})$ at $25^{\circ} \mathrm{C}$, and the mixture was stirred for 2.5 h under O_{2} atmosphere. The reaction mixture was filtered through a cellulose pad and washed with EtOAc. The filtrate was concentrated in vacuo, and the residue (20.5 mg) was purified by SiO_{2} flash chromatography
(AcOEt-Benzene 1:5) to provide quinone $\mathbf{2 5}(12.5 \mathrm{mg}, 61 \%)$ as a yellow gummy solid. $[\alpha]_{\mathrm{D}}^{23}+49.6\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right)$; IR (KBr) 3021, 2930, 2879, 1653, 1612, 1456, 1431, 1305, $1107,773 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 7.50-7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Bn}-\mathrm{H}), 5.98(\mathrm{~d}, J=1.1$ $\mathrm{Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.90(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.66(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.60(\mathrm{~d}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.15(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{H}), 4.04(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H}), 4.01(\mathrm{br} \mathrm{d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 3.94\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{OCH}_{3}\right), 3.71(\mathrm{br} \mathrm{d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H}), 3.54-3.48(\mathrm{~m}$, $1 \mathrm{H}, 18-\mathrm{H}), 3.39(\mathrm{dd}, J=7.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{H}), 3.18(\mathrm{dt}, J=12.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 3.04$ (dd, $J=15.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 2.82(\mathrm{dd}, J=21.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}, N-\mathrm{Me})$, $2.29(\mathrm{~d}, J=21.0 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 2.16\left(\mathrm{~s}, 3 \mathrm{H}, 14-\mathrm{CH}_{3}\right), 1.95(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{H}), 1.66(\mathrm{dd}, J=$ 15.1, $12.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta: 186.5(\mathrm{~s}, \mathrm{C}-11), 182.5(\mathrm{~s}, \mathrm{C}-8)$, 155.3 (s, C-9), 148.1 (s, C-5), 144.9 (s, C-3), 141.3 (s, C-11a), 139.2 (s, C-1), 136.7 (s, Bn), 136.2 (s, C-7a), 128.6 (d, Bn), 128.6 ($\mathrm{s}, \mathrm{C}-10$), 128.5 (d, Bn), 128.3 (d, Bn), 120.6 ($\mathrm{s}, \mathrm{C}-5 \mathrm{a}$), 117.4 (s, CN), 112.6 (s, C-4 and C-16a overlapped), 101.3 (t, 2-C), 75.4 (t, Bn), $65.2(\mathrm{t}$, C-18), 60.9 (q, $9-\mathrm{OCH}_{3}$), 59.8 (d, C-14), 58.5 (d, C-16), 55.9 (d, C-6a), 54.8 (d, C-7 or C-13), 54.7 (d, C-7 or C-13), 41.5 ($\mathrm{q}, \mathrm{N}-\mathrm{Me}$), 27.7 (t, C-6), 21.5 (t, C-12), 9.4 (q, 4-CH), $8.7\left(\mathrm{q}, 10-\mathrm{CH}_{3}\right)$; FABMS $m / z 584[\mathrm{M}+\mathrm{H}]^{+}$; HRFABMS $m / z 584.2399\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{7}$ 584.2397).
(6aS,7R,13S,14R,16R)-5-Hydroxy-16-(hydroxymethyl)-9-methoxy-4,10,17-trimethyl-8,11-dioxo-6,6a,7,8,12,13,14,16-octahydro-11H-7,13-epiminobenzo[4,5]azocino[1,2-b] [1,3]dioxolo[4,5-h]isoquinoline-14-carbonitrile (26). To a solution of $\mathbf{2 5}(4.4 \mathrm{mg}, 7.54$ $\mu \mathrm{mol})$ and pemtamethyl benzene $(11.2 \mathrm{mg}, 75.4 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added BCl_{3} $\left(1.0 \mathrm{~mol} / \mathrm{L}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 38 \mu \mathrm{~L}, 37.7 \mu \mathrm{~mol}\right)$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 2 h . The
mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and quenched with saturated NaHCO_{3} solution (1 $\mathrm{mL})$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give a residue (8.4 mg), which was purified by SiO_{2} flash chromatography $\left(\mathrm{MeOH}-\mathrm{CHCl}_{3} 1: 49\right)$ to provide phenol $26(3.5 \mathrm{mg}, 95 \%)$ as a pale yellow amorphous powder. $[\alpha]_{\mathrm{D}}^{26}+59.1$ (c $\left.0.14, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR (KBr) 3431, 3368, 3277, 2928, 2886, 2851, 1653, 1616, $1462,1435,1308,1233,1146,1103 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (pyridine-d5, 500 MHz$) \delta: 5.80(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.72(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.10(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{H}), 4.57(\mathrm{dd}, J$ $=8.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H}), 4.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 7-\mathrm{H}), 4.19(\mathrm{dd}, J=10.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H}), 3.83$ $\left(\mathrm{s}, 3 \mathrm{H}, 9-\mathrm{OCH}_{3}\right), 3.72-3.69(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}$ and $18-\mathrm{H}$, overlapped), $3.66(\mathrm{dt}, J=10.7,2.9 \mathrm{~Hz}$, $1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 3.49(\mathrm{dt}, J=7.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{H}), 2.96(\mathrm{dd}, J=20.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 2.85$ (d, $J=20.7 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 2.26(\mathrm{dd}, J=15.0,10.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 2.21$ (s, $3 \mathrm{H}, N-\mathrm{Me}$), $1.86\left(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (pyridine- $\left.\mathrm{d}_{5}, 125 \mathrm{MHz}\right) \delta: 186.8(\mathrm{~s}, \mathrm{C}-11)$, 183.1 ($\mathrm{s}, \mathrm{C}-8$), 155.7 ($\mathrm{s}, \mathrm{C}-9$), 147.4 (s, C-5), 145.0 ($\mathrm{s}, \mathrm{C}-3$), 142.8 ($\mathrm{s}, \mathrm{C}-11 \mathrm{a}), 137.1$ ($\mathrm{s}, \mathrm{C}-1$), 136.6 (s, C-7a), 128.7 (s, C-10), 119.2 (d, CN), 116.4 (s, C-5a or C-16a), 113.7 (s, C-5a or C-16a), 108.3 (s, C-4), 101.0 (t, C-2), 68.5 (t, C-18), 61.9 (d, C-14), 60.7 (q, 9- OCH_{3}), 59.9 (d, C-16), 57.7 (d, C-6a) 55.9 (d, C-7), 55.4 (d, C-13), 41.3 (q, $N-M e), 28.1(t, C-6), 22.0(t$, C-12), $10.1\left(\mathrm{q}, 4-\mathrm{CH}_{3}\right), 8.7\left(\mathrm{q}, 10-\mathrm{CH}_{3}\right) ;$ FABMS $m / z 494[\mathrm{M}+\mathrm{H}]^{+} ; \operatorname{HRFABMS} m / z$ $494.1937\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{7}$ 494.1927).

Renieramycin T(1t). To a solution of angelic acid ($31.3 \mathrm{mg}, 313 \mu \mathrm{~mol}$) in $\mathrm{Et}_{2} \mathrm{O}(1.6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added oxalyl chloride ($26.4 \mu \mathrm{~L}, 308 \mu \mathrm{~mol}$), and DMF ($1.2 \mu \mathrm{~L}, 15.4 \mu \mathrm{~mol}$). The resulting solution was stirred at $25^{\circ} \mathrm{C}$ for 2 h and then a solution of compound $26(3.8 \mathrm{mg}$,
$7.70 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mu \mathrm{~L})$ was added. The mixture was concentrated with a stream of air and $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(800 \mu \mathrm{~L})$ was then added. The reaction was stirred at $80^{\circ} \mathrm{C}$ for 3 h . The mixture was quenched with saturated NaHCO_{3} solution $(20 \mathrm{~mL})$ and was extracted with $5 \% \mathrm{MeOH}$ in $\mathrm{CHCl}_{3}(3 \times 20 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give a residue (8.4 mg), which was purified by SiO_{2} flash chromatography (EtOAc-n-Hexane 1:2) to provide Renieramycin $\mathrm{T}(2.7 \mathrm{mg}, 61 \%)$ as a pale yellow gummy solid.
$[\alpha]_{\mathrm{D}}^{23}-16.5\left(\mathrm{c} 0.23, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}(\mathrm{KBr}) 3429,3292,2926,2853,1713,1653,1616,1460$, $1435,1375,1308,1233,1152,1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 6.00(\mathrm{qq}, J=7,2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 5.92\left(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{O}-\right), 5.85\left(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{O}-\right), 4.55(\mathrm{br}$ s, 1H, $5-\mathrm{OH}$), $4.41(\mathrm{dd}, J=11,4 \mathrm{~Hz}, 1 \mathrm{H}, 22-\mathrm{H}), 4.16(\mathrm{dd}, J=5,4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 4.11(\mathrm{~d}, J$ $=2 \mathrm{~Hz}, 1 \mathrm{H}, 21-\mathrm{H}), 4.00(\mathrm{dd}, J=3,1 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}), 3.99(\mathrm{dd}, J=11,5 \mathrm{~Hz}, 1 \mathrm{H}, 22-\mathrm{H}), 3.98$ (s, $3 \mathrm{H}, 17-\mathrm{OCH}_{3}$), 3.37 (ddd, $\left.J=7,2,1 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{H}\right), 3.24(\mathrm{ddd}, J=12,3,2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H})$, $2.87(\mathrm{dd}, J=15,2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 2.75(\mathrm{dd}, J=21,7 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{H}), 2.30(\mathrm{~d}, J=21 \mathrm{~Hz}, 1 \mathrm{H}$, 14-H), 2.29 (s, $3 \mathrm{H}, N-\mathrm{Me}$), 2.11 (s, $3 \mathrm{H}, 6-\mathrm{CH}_{3}$), $1.94\left(\mathrm{~s}, 3 \mathrm{H}, 16-\mathrm{CH}_{3}\right), 1.85(\mathrm{dq}, J=7,2 \mathrm{~Hz}$, $1 \mathrm{H}, 4-\mathrm{H}), 1.69\left(\mathrm{dq}, J=2,2 \mathrm{~Hz}, 3 \mathrm{H}, 2^{\prime}-\mathrm{CH}_{3}\right), 1.67\left(\mathrm{dq}, J=15,12 \mathrm{~Hz}, 3 \mathrm{H}, 4^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 186.1$ ($\mathrm{s}, \mathrm{C}-15$), 182.8 ($\mathrm{s}, \mathrm{C}-18$), 167.1 ($\mathrm{s}, \mathrm{C}-1$ '), 155.4 (s, C-17), 144.9 ($\mathrm{s}, \mathrm{C}-7$), 144.7 ($\mathrm{s}, \mathrm{C}-5$), 141.8 ($\mathrm{s}, \mathrm{C}-20$), 139.7 (d, C-3'), 136.8 ($\mathrm{s}, \mathrm{C}-8$), 135.7 (s , C-19), 129.0 ($\mathrm{s}, \mathrm{C}-16$), 126.8 ($\mathrm{s}, \mathrm{C}-2$ '), 117.4 (s, CN), 113.1 ($\mathrm{s}, \mathrm{C}-10$), 112.1 (s, C-9), 106.2 ($\mathrm{s}, \mathrm{C}-6), 101.7\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{O}\right), 64.6(\mathrm{t}, \mathrm{C}-22), 60.9\left(\mathrm{q}, 17-\mathrm{OCH}_{3}\right), 59.8(\mathrm{~d}, \mathrm{C}-21), 56.4(\mathrm{~d}, \mathrm{C}-1)$, 56.2 (d, C-3), 54.9 (d, C-11), 54.8 (d, C-13), 41.4 (q, $N-M e$), 26.8 (t, C-4), 21.2 (t, C-14), $20.5\left(\mathrm{q}, 2^{\prime}-\mathrm{CH}_{3}\right), 15.7\left(\mathrm{q}, \mathrm{C}-4^{\prime}\right), 8.8\left(\mathrm{q}, 6-\mathrm{CH}_{3}\right), 8.7\left(\mathrm{q}, 16-\mathrm{CH}_{3}\right) ; \operatorname{EIMS} m / z(\%): 575\left(\mathrm{M}^{+}\right.$,
32), 462 (18), 260 (24), 243 (13), 221 (43), 220 (100), 219 (16), 218 (21); HREIMS m / z $575.2265\left(\mathrm{M}^{+}\right.$, calcd for $\left.\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{8}, 575.2268\right)$.

Acknowledgments

The Authors wish to dedicate this paper to the $60^{\text {th }}$ birthday of Professor Stuart L. Schreiber of the Board Institute of Harvard and MIT. This work supported by the Japan Society for the Promotion of Science (JSPS) Grant-in Aid for Scientific Research (C) (No. 15K07873 to N.S.) and the National Institutes of Health (grant 1RO1 CA085419 to R.M.W.).

Supporting Information: The Supporting Information is available free of charge on the ACS Publications website at DOI:

NMR spectra for all new compounds including natural and synthetic Renieramycin T (PDF).

References

(1) (a) Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669-1730. (b) Siengalewicz, P.; Rinner, U.; Mulzer, J. Chem. Soc. Rev. 2008, 37, 2676. (c) Cuevas, C.; Francesch, A. Nat. Prod. Rep. 2009, 26, 322. (d) Avendaño, C.; de la Cuesta, E. Chem. - A Eur. J. 2010, 16, 9722-9734. (e) Le, V. H.; Inai, M.; Williams, R. M.; Kan, T. Nat. Prod. Rep. 2015, 32, 328-347.
(2) (a) Lebedinsky, C.; Gómez, J.; Park, Y. C.; Nieto, A.; Soto-Matos, A.; Parekh, T.; Alfaro, V.; Roy, E.; Lardelli, P.; Kahatt, C. Cancer Chemother. Pharmacol. 2011, 68,

1223-1231. (b) Baruchel, S.; Pappo, A.; Krailo, M.; Baker, K. S.; Wu, B.; Villaluna, D.; Lee-Scott, M.; Adamson, P. C.; Blaney, S. M. Eur. J. Cancer 2012, 48, 579-585. (c) Cioffi, A.; Italiano, A. Expert Opin. Drug Metab. Toxicol. 2012, 8, 113-122. (d) Le Cesne, A.; Yovine, A.; Blay, J.-Y.; Delaloge, S.; Maki, R. G.; Misset, J.-L.; Frontelo, P.; Nieto, A.; Jiao, J. J.; Demetri, G. D. Invest. New Drugs 2012, 30, 1193-1202.
(3) Daikuhara, N.; Tada, Y.; Yamaki, S.; Charupant, K.; Amnuoypol, S.; Suwanborirux, K.; Saito, N. Tetrahedron Lett. 2009, 50, 4276-4278.
(4) Tatsukawa, M.; Punzalan, L. L. C.; Magpantay, H. D. S.; Villaseñor, I. M.; Concepcion, G. P.; Suwanborirux, K.; Yokoya, M.; Saito, N. Tetrahedron 2012, 68, 7422-7428.
(5) synthesis of Renieramycin A: (a) Fukuyama, T.; Linton, S. D.; Tun, M. M. Tetrahedron Lett. 1990, 31, 5989-5992. synthesis of Renieramycin G: (b) Liao, X. W.; Liu, W.; Dong, W. F.; Guan, B. H.; Chen, S. Z.; Liu, Z. Z. Tetrahedron 2009, 65, 5709-5715. (c) Wu, Y. C.; Zhu, J. Org. Lett. 2009, 11, 5558-5561. (d) Magnus, P.; Matthews, K. S. Tetrahedron 2012, 68, 6343-6360. (e) Du, E.; Dong, W.; Guan, B.; Pan, X.; Yan, Z.; Li, L.; Wang, N.; Liu, Z. Tetrahedron 2015, 71, 4296-4303. synthesis of Renieramycin H (cribrostatin 4): (f) Chan, C.; Heid, R.; Zheng, S.; Guo, J.; Zhou, B.; Furuuchi, T.; Danishefsky, S. J. J. Am. Chem. Soc. 2005, 127, 4596-4598. (g) Chen, X.; Zhu, J. Angew. Chemie Int. Ed. 2007, 46, 3962-3965.
(6) (a) Lane, J. W.; Chen, Y.; Williams, R. M. J. Am. Chem. Soc. 2005, 127, 12684-12690.
(b) Vincent, G.; Williams, R. M. Angew. Chemie Int. Ed. 2007, 46, 1517-1520. (c) Yokoya,
M.; Shinada-Fujino, K.; Saito, N. Tetrahedron Lett. 2011, 52, 2446-2449. (d)

Yokoya, M.; Ito, H.; Saito, N. Tetrahedron 2011, 67, 9185-9192. (e) Yokoya, M.;

Shinada-Fujino, K.; Yoshida, S.; Mimura, M.; Takada, H.; Saito, N. Tetrahedron 2012, 68, 4166-4181. (f) Yokoya, M.; Kobayashi, K.; Sato, M.; Saito, N. Mar. Drugs 2015, 13, 4915-4933.
(7) (a) Fishlock, D.; Williams, R. M. Org. Lett. 2006, 8, 3299-3301. (b) Fishlock, D.; Williams, R. M. J. Org. Chem. 2008, 73, 9594-9600.
(8) Zheng, S.; Chan, C.; Furuuchi, T.; Wright, B. J. D.; Zhou, B.; Guo, J.; Danishefsky, S. J. Angew. Chemie - Int. Ed. 2006, 45, 1754-1759.
(9) Endo, A.; Yanagisawa, A.; Abe, M.; Tohma, S.; Kan, T.; Fukuyama, T. J. Am. Chem. Soc. 2002, 124, 6552-6554.
(10) (a) Fukuyama, T.; Yang, L.; Ajeck, K. L.; Sachleben, R. A. J. Am. Chem. Soc. 1990, 112, 3712-3713. (b) Scott, J. D.; Williams, R. M. Angew. Chemie Int. Ed. 2001, 40, 14631465.
(11) Nakai, K.; Kubo, K.; Yokoya, M.; Saito, N. Tetrahedron 2014, 70, 6529-6545.
(12) Brown, H. C.; Tsukamoto, A. J. Am. Chem. Soc. 1959, 81, 502-503.
(13) Okano, K.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2006, 128, 7136-7137.
(14) Suwanborirux, K.; Charupant, K.; Amnuoypol, S.; Pummangura, S.; Kubo, A.; Saito, N. J. Nat. Prod. 2002, 65, 935-937.
(15) A single-cell suspension of each cell line (2×103 cells/well) was added to the serially diluted test compounds in a microplate. Then, the cells were cultured for 4 d . Cell growth was measured with a cell counting kit (DOJINDO, Osaka, Japan). IC_{50} was expressed as the concentration at which cell growth was inhibited by 50% compared with the untreated control.

TOC graphic

[^0]: ${ }^{\text {a }}$ HCT116 $=$ human colon carcinoma; DU145 $=$ human prostate carcinoma

