Synthetic studies on statins. Part 1: a short and cyanide-free synthesis of atorvastatin calcium via an enantioselective aldol strategy

Lemeng Hu, Fangjun Xiong, Xiaofei Chen, Wenxue Chen, Qiuqin He*, Fener Chen*
Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China

A R T I C L E I N F O

Article history:

Received 27 November 2012
Accepted 27 December 2012

Abstract

A short and cyanide-free enantioselective synthesis of atorvastatin calcium has been achieved starting from a commercially available highly substituted 1,4 -diketone in an overall yield of 40%. The key step in this approach is the asymmetric aldol reaction of an aldehyde with diketene in the presence of $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}-$ Schiff base complex to create the $(5 R)$-stereochemistry of atorvastatin calcium.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Since its introduction in 1997 by Pfizer, atorvastatin calcium 1 (Lipitor), a 3-hydroxy-3-methyl-glutaryl coenzymeA (HMG-CoA) reductase inhibitor, has been one of the best-selling drugs for the treatment of hypercholesterolemia due to its efficiency, safety, and long-term benefits. ${ }^{1}$ To date, considerable efforts have been spent on searching for an efficient and economic asymmetric approach toward $\mathbf{1}$, leading to the development of a number of synthetic strategies including chiral pool synthesis, ${ }^{2}$ chiral auxiliary method, ${ }^{3}$ asymmetric catalysis, ${ }^{4}$ and chemoenzymatic processes ${ }^{5}$ and so on. The well-known Paal-Knorr pyrrole synthesis strategy, which proceeds via two important building blocks of substituted diketone $\mathbf{2}$ and C_{7} amino type side chain $\mathbf{3}$ with a syn-1,3-diol unit, derived from (S)-epichlorohydrin as a chiral material, is a reliable process for the asymmetric synthesis of $\mathbf{1}$ on an industrial scale (Fig. 1). However, several drawbacks in this technique are associated with the statin side chain $\mathbf{3}$, such as long multistep preparation sequences as well as the use of a large excess of highly toxic cyanide. The asymmetric aldol reaction is reported to be a simple and atomeconomic method to construct optically active 5 -hydroxy-3-oxoester, ${ }^{6}$ an important building block for the enantioselective synthesis of statins. ${ }^{7}$ This prompted us to disclose a short and cyanide-free enantioselective synthesis of $\mathbf{1}$ via a novel intermediate $\mathbf{9}$ by employing a $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$-chiral Schiff base promoted asymmetric aldol reaction of aldehyde $\mathbf{8}$ with diketene. ${ }^{8}$ Herein we report the results of our investigation on this subject.

2. Results and discussion

The retrosynthetic analysis of $\mathbf{1}$ is depicted in Scheme 1. The syn-selective reduction of key intermediate $\mathbf{9}$ was envisaged. The

[^0]

Figure 1. Structures of $\mathbf{1}$ and its advanced building blocks 2 and 3.
optically active 5-hydroxy-3-oxoester 9 could be obtained from 8 via a catalytic asymmetric aldol reaction. The substituted pyrrole aldehyde 8 could be assembled through the known Paal-Knorr pyrrole synthesis from diketone $\mathbf{2}$ and C_{3} amino diethyl acetal 6 .

Our asymmetric synthesis of $\mathbf{1}$ is shown in Scheme 2. The C_{3}-side chain $\mathbf{6}$ was prepared in 62% overall yield from commercially available acrolein according to a slightly improved literature procedure. ${ }^{9}$ The Michael addition of acrolein and sodium nitrite in $\mathrm{HOAc} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ proceeded smoothly to afford nitroaldehyde 4 in 89% yield, which was protected as a diethyl acetal upon treatment of triethyl orthoformate in the presence of p-TsOH in EtOH at room temperature in 71% yield. The hydrogenation of 5 under 10

Scheme 1. Retrosynthetic analysis of atorvastatin calcium.

Scheme 2. Reagents and conditions: (a) $\mathrm{NaNO}_{2}, \mathrm{HOAc}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 2), 0^{\circ} \mathrm{C}, 4 \mathrm{~h}, 89 \%$; (b) triethyl orthoformate, $p-\mathrm{T}_{\mathrm{s}} \mathrm{OH}$ (cat.), $\mathrm{EtOH}, \mathrm{rt}, 6 \mathrm{~h}, 71 \%$; (c) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}, \mathrm{rt}, 12 \mathrm{~h}$, 98%; (d) 6, pivalic acid, toluene/heptane ($9: 1$), reflux, $14 \mathrm{~h}, 83 \%$; (e) 2 M HCl , acetone/water ($2: 1$), reflux, $1 \mathrm{~h}, 95 \%$; (f) diketene, $\mathrm{Ti}(\mathrm{O}-\mathrm{i}-\mathrm{Pr}) 4, \mathrm{Schiff}$ base $\mathbf{1 1 a}, \mathrm{CH}_{2} \mathrm{Cl} 2,-40^{\circ} \mathrm{C}, 48 \mathrm{~h}$, 62%; (g) $\mathrm{Et}_{2} \mathrm{~B}(\mathrm{OMe}), \mathrm{NaBH}_{4}, \mathrm{THF} / \mathrm{MeOH}(4: 1),-7 \mathrm{o}^{\circ} \mathrm{C}, 2 \mathrm{~h}, 85 \%$; (h) (1) $1 \mathrm{M} \mathrm{NaOH}, \mathrm{MeOH}, 5{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (2) $\mathrm{CaCl}_{2}, \mathrm{rt}, 1 \mathrm{~h}, 94 \%$.
atmospheres of H_{2} over $10 \% \mathrm{Pd} / \mathrm{C}$ at room temperature for 12 h furnished amino diethyl acetal $\mathbf{6}$ in almost quantitative yield.

The Paal-Knorr condensation of diketone 2^{10} and 6 was carried out in refluxing toluene/heptane ($9: 1, \mathrm{v} / \mathrm{v}$) with azeotropic removal of water in the presence of pivalic acid to give pyrrole 7 in 83% yield. The deprotection of 7 by dilute HCl in acetone/water ($1: 1$, v / v) gave the desired aldehyde $\mathbf{8}^{11}$ in 95% yield.

With aldehyde $\mathbf{8}$ in hand, we were in a position to construct the (5R)-stereochemistry of $\mathbf{1}$ by asymmetric addition of diketene to $\mathbf{8}$ with the $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$-Schiff base complex. To evaluate the ligands, initial examinations were performed using 1.0 equiv of promoter prepared in situ from several chiral Schiff base ligands 11a-g ${ }^{12}$ (Fig. 2) and $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-40^{\circ} \mathrm{C}$ for 48 h (Table 1, entries $1-7)$. As can be seen from Table 1, 11a was identified as the most

Figure 2. Structures of chiral Schiff base ligands 11a-g.
suitable ligand for the enantioselective aldol reaction (Table 1, entry $1,62 \%$ yield, 82% ee).

Table 1
Effect of the $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$-Schiff base $\mathbf{1 1 a - g}$ complex on the enantioselectivity with the addition of diketene to aldehyde $\mathbf{8}^{\text {a }}$

Entry	Schiff base	Yield $^{\mathrm{b}}(\%)$	$\mathrm{ee}^{\mathrm{c}}(\%)$
1	11a	62	82
2	11b	55	71
3	11c	57	31
4	11d	60	71
5	11e	61	20
6	11f	55	79
7	11g	58	61

[^1]With this successful result for the catalytic efficiency in the initial screening in hand, we conducted the reaction with different amounts of 11a at a wide range of temperatures. As illustrated in Table 2, a decrease in the temperature resulted in an increase in enantioselectivity along with a decrease in chemical yield even after a prolonged reaction time. We found $-40^{\circ} \mathrm{C}$ to be the optimum temperature for this reaction, which provided the aldol product 9 in 82% ee and 62% yield. A decrease in the amount of Schiff base caused a decrease in both the enantioselectivity and chemical yield. Therefore, an equimolar amount of the Schiff base was necessary in order to obtain satisfactory results.

The syn-selective reduction of 9 using Narasaka's method ${ }^{13}$ $\left[\mathrm{Et}_{2} \mathrm{~B}(\mathrm{OMe}) / \mathrm{NaBH}_{4}, \mathrm{THF} / \mathrm{MeOH}(4: 1),-78^{\circ} \mathrm{C}\right]$ gave diol 10 in 85% yield in favor of the syn-isomer (99:1, syn/anti). The enantiomeric excess was improved to over 99% by recrystallization. The synconfiguration was confirmed via NOESY NMR spectroscopy of ketal $\mathbf{1 2}$ obtained from $\mathbf{1 0}$ by treatment of 2,2-dimethoxypropane in the presence of a catalytic amount of PPTS. This clearly shows a strong NOE interaction between $\mathrm{C} 3-\mathrm{H}(\delta=1.39 \mathrm{ppm})$ and C1-H ($\delta=3.70-$ $3.74 \mathrm{ppm})$ as well as $\mathrm{C} 2-\mathrm{H}(\delta=4.19-4.25 \mathrm{ppm})$, and no NOE inter-

Table 2
Effect of the reaction conditions on the enantioselectivity with the addition of diketene to aldehyde $\mathbf{8}^{\text {a }}$

Entry	Ligand $(\mathrm{mol} \%)$	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Yield $^{\mathrm{b}}(\%)$	$\mathrm{ee}^{\mathrm{c}}(\%)$
1	100	0	30	70	63
2	100	-20	40	67	68
3	100	-40	48	62	82
4	100	-60	55	51	86
5	50	-40	48	51	77
6	10	-40	48	46	57

[^2]

Figure 3. The NOE correlation for 12.
action between $\mathrm{C} 4-\mathrm{H}(\delta=1.32 \mathrm{ppm})$ and $\mathrm{C} 1-\mathrm{H}(\delta=3.70-3.74 \mathrm{ppm})$ or $\mathrm{C} 2-\mathrm{H}(\delta=4.19-4.25 \mathrm{ppm}$), thus implying a syn-configuration for $\mathrm{C} 1-\mathrm{H}$ and $\mathrm{C} 2-\mathrm{H}$ (Fig. 3).

The saponification of isopropyl ester $\mathbf{1 0}$ with 1 M aq NaOH and subsequent calcium salt formation upon treatment with $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ provided atorvastatin calcium 1. The enantiomeric purity of $\mathbf{1}$ was determined to be $>99 \%$ ee by chiral HPLC according to the European Pharmacopoeia 7.1.

3. Conclusion

In conclusion, a novel and 5-step asymmetric synthesis of atorvastatin calcium 1 was accomplished in 40% overall yield starting from diketone 2 by employing a $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}-\mathrm{Schiff}$ base complex promoted asymmetric aldol reaction as the key step. This approach toward $\mathbf{1}$ is the shortest in comparison to other reported methods.

4. Experimental

4.1. General

Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from CaH_{2} prior to use. Other reagents were obtained from commercial sources and used as received. All melting points were measured on a WRS-1B digital melting point apparatus. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100 \mathrm{MHz}) \mathrm{NMR}$ spectra were recorded on a Bruker Avance 400 spectrometer in CDCl_{3}, DMSO using TMS and $\mathrm{CDCl}_{3}\left({ }^{13} \mathrm{C}, \delta=77.0 \mathrm{ppm}\right)$ as internal standards. Mass spectra were recorded on a Waters Quattro Micromass instrument using ESI techniques. IR spectra were recorded on a Jasco FT/IR-4200 spectrophotometer. Optical rotations were obtained on a Jasco P1020 digital polarimeter. The Schiff base ligands 11a-g were prepared from chiral β-amino alcohols and substituted salicylaldehyde or hydroxyl arylketone according to Oguni's procedure. ${ }^{12}$ The enantiomeric excess of 9 was determined by HPLC using CHIRALPAK AD-H column ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm} \times 5 \mu \mathrm{~m}$), run time 30 min , flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, injection volume $10 \mu \mathrm{~L}$, mobile phase hexane/isopropyl alcohol 90:10 (v/v) containing 0.01% of trichloroacetic acid. The enantiomeric excess of $\mathbf{1}$ was determined by HPLC using CHIRALPAK AD-H column ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm} \times 5 \mu \mathrm{~m}$), run time 30 min , flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, injection volume $10 \mu \mathrm{~L}$, mobile phase hexane/anhydrous ethanol 94:6 (v/v) containing 0.1% of trichloroacetic acid.

4.2. 3-Nitropropanal 4

To a well-stirred solution of $\mathrm{NaNO}_{2}(41.5 \mathrm{~g}, 0.6 \mathrm{~mol})$ and acrolein ($28 \mathrm{~g}, 0.5 \mathrm{~mol}$) in a mixture of $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and THF $(200 \mathrm{~mL})$ was added glacial acetic acid ($33 \mathrm{~g}, 0.55 \mathrm{~mol}$) dropwise at $0^{\circ} \mathrm{C}$ under N_{2}. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 4 h , quenched with satd aq $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine $(3 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated
under reduced pressure to give 4 ($45.8 \mathrm{~g}, 89 \%$) as a clear oil. The crude was used for the next step without further purification.

4.3. 3-Nitropropanal diethyl acetal 5

To a stirred solution of 4 ($30.9 \mathrm{~g}, 0.3 \mathrm{~mol}$) and triethyl orthoformate ($59.3 \mathrm{~g}, 0.40 \mathrm{~mol}$) in EtOH (100 mL) was added $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ $(1.2 \mathrm{~g}, 6.3 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring at rt for 6 h , the mixture was concentrated under reduced pressure. The residue was neutralized with satd aq $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and diluted with EtOAc $(30 \mathrm{~mL})$. The aqueous layer was separated and extracted with $\mathrm{EtOAc}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine ($2 \times 10 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to afford $5(37.7 \mathrm{~g}, 71 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.18(\mathrm{t}, 6 \mathrm{H}, \quad J=6.8 \mathrm{~Hz}), 2.28(\mathrm{q}, 2 \mathrm{H}$, $J=6.0 \mathrm{~Hz}), 3.49(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.67(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.46(\mathrm{t}$, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}$), 4.58 (t, $1 \mathrm{H}, J=5.2 \mathrm{~Hz}$); IR (neat): 2941, 2836, 1553, $1449 \mathrm{~cm}^{-1}$; MS (EI): m/z: $177\left[\mathrm{M}^{+}\right]$.

4.4. 1-Amino-3,3-diethoxypropane 6

To a solution of $5(17.7 \mathrm{~g}, 0.1 \mathrm{~mol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(10 \%, 15 \mathrm{mg})$ and stirred at rt for 12 h under 10 atmospheres of H_{2}. The filtrate through Celite was concentrated under reduced pressure to give 6 ($14.4 \mathrm{~g}, 98 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.14$ (t, 6H, $J=6.8 \mathrm{~Hz}$), 1.29 (br s, 2H), 1.71 $(\mathrm{q}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.73(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.45(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$, $3.60(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.53$ (t, $1 \mathrm{H}, J=5.2 \mathrm{~Hz}$). IR (neat): 3385 , 2953, 2831, 1621, $1389 \mathrm{~cm}^{-1}$; MS (EI): m/z: 147 [$\left.\mathrm{M}^{+}\right]$.

4.4.1. 1-(3,3-Diethoxypropyl)-5-(4-fluoropheny)-2-(1-methyl ethy)- $\mathrm{N}, 4$-diphenyl-1 H -pyrrole-3-carboxamide 7

Diketone 2 ($12.51 \mathrm{~g}, 30 \mathrm{mmol}$), compound $\mathbf{6}$ ($5.88 \mathrm{~g}, 40 \mathrm{mmol}$), and pivalic acid $(2.14 \mathrm{~g}, 21 \mathrm{mmol})$ were dissolved in heptane $(54 \mathrm{~mL})$ and toluene (6 mL). The mixture was heated at reflux with azeotropic removal of water for 14 h and then cooled to rt , filtered, washed with heptane $(3 \times 30 \mathrm{~mL})$, and dried to give $7(13.15 \mathrm{~g}$, 83%) as a white powder. Mp 125.0-126.3 ${ }^{\circ} \mathrm{C}$ (Lit. ${ }^{11}$ 125.1$127.7^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.11(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.8), 1.54$ $(\mathrm{d}, 6 \mathrm{H}, \mathrm{J}=7.2), 1.80-1.84(\mathrm{~m}, 2 \mathrm{H}), 3.26-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.47$ (m, 2H), 3.58-3.63 (m, 1H), 3.95-3.99 (m, 2H), 4.33 (t, J = 4.8 Hz, 1H), 6.86 (s, 1H), 6.98-7.20 (m, 14H); IR (KBr): 3412, 2975, 1665, 1596, $1433 \mathrm{~cm}^{-1}$. MS (ESI) m/z: $529\left[\mathrm{M}+\mathrm{H}^{+}\right]$.

4.4.2. 5-(4-Fluorophenyl)-2-(1-methylethyl)-1-(3-oxopropyl)$\mathrm{N}, 4$-diphenyl-1 H -pyrrole-3-carboxamide 8

A solution of $7(10.56 \mathrm{~g}, 20 \mathrm{mmol})$ in acetone $(100 \mathrm{~mL})$ and 2 N aq $\mathrm{HCl}(50 \mathrm{~mL})$ was heated at reflux for 1 h and then cooled to rt, filtered, washed with hexane ($3 \times 30 \mathrm{~mL}$) and dried to give $\mathbf{8}$ $(8.63 \mathrm{~g}, 95 \%)$ as a white powder. Mp $163.7-164.9^{\circ} \mathrm{C}$ (Lit. $^{3 \mathrm{aa}} 164-$ $165{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.51$ (d, $6 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 2.67 (t, 2H, $J=7.2 \mathrm{~Hz}), 3.58-3.66(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz})$, $6.85(\mathrm{~s}, 1 \mathrm{H}), 6.99-7.19(\mathrm{~m}, 14 \mathrm{H}), 9.59(\mathrm{~s}, 1 \mathrm{H})$; IR (KBr): 3397, 2955, 1711, 1683, 1591, $1517 \mathrm{~cm}^{-1}$. MS (ESI) m/z: $455\left[\mathrm{M}+\mathrm{H}^{+}\right]$.

4.4.3. (R)-Isopropyl 7-[2-(4-fluorophenyl)-5-(1-methylethyl)-3-pheny1-4-[(phenylamino)carbonyl]-1H-pyrrol-1-yl]-5-hydroxy-3-oxoheptanoate 9

To a solution of Schiff base 11a ($144.9 \mathrm{mg}, 0.55 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$ was added $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(142.1 \mathrm{mg}, 0.5 \mathrm{mmol})$ at rt under N_{2}. After stirring for 1 h , the mixture was cooled to $-40^{\circ} \mathrm{C}$. Compound $\mathbf{8}$ ($227.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added followed by diketene (210.2 mg , $2.5 \mathrm{mmol})$. The resulting mixture was stirred at $-40^{\circ} \mathrm{C}$ for 48 h , then poured into a mixture of 1 M aq $\mathrm{HCl}(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ and stirred vigorously at rt for 1 h . The mixture was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$), washed with satd aq NaHCO_{3}
$(3 \times 30 \mathrm{~mL})$ and brine $(3 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by chromatography (silica gel, EtOAc/PE, 1:3) to give 9 ($185.7 \mathrm{mg}, 62 \%$) as a white powder. $\mathrm{Ee}=82 \% ;[\alpha]_{\mathrm{D}}^{20}=+9.1\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{Mp} \mathrm{75.3-76.8}{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.24(\mathrm{~d}, 6 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.54(\mathrm{dd}, 6 \mathrm{H}$, $J=6.8 \mathrm{~Hz}), 1.62-1.68(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H}), 3.53-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.98(\mathrm{~m}, 2 \mathrm{H})$, 4.11-4.17 (m, 1H), 5.01-5.07 (m, 1H), $6.86(\mathrm{~s}, 1 \mathrm{H}), 6.98-7.20(\mathrm{~m}$, 14 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.66,21.69,21.84,26.17$, 37.73, 41.31, 49.21, 49.97, 65.02, 69.42, 115.39, 115.60, 119. 62, $121.95,123.55,126.62,128.26,128.30,128.37,128.69,128.79$, 130.45, 130.50, 133.15, 133.24, 134.60, 138.39, 141.49, 166.29; IR (KBr): 3405, 3027, 2933, 1771, 1559, $1508 \mathrm{~cm}^{-1}$. MS (ESI) m / z : $599\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]$.

4.4.4. (3R,5R)-Isopropyl 7-[2-(4-fluorophenyl)-5-(1-methyl ethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoate 10

To a solution of 9 ($300.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) in THF (8 mL) and $\mathrm{MeOH}(2 \mathrm{~mL})$ was added diethylmethoxyborane ($0.6 \mathrm{~mL}, 0.6 \mathrm{mmol}$, 1 M solution in THF) at $-78^{\circ} \mathrm{C}$ under N_{2}. The mixture was stirred for 1 h and then NaBH_{4} ($37.9 \mathrm{mg}, 1 \mathrm{mmol}$) was added in portions. After stirring for an additional 2 h at $-78{ }^{\circ} \mathrm{C}$, the reaction was quenched with glacial acetic acid (2 mL), diluted with EtOAc $(10 \mathrm{~mL})$ and then allowed to warm to rt Next, satd aq NaHCO_{3} (20 mL) was added and the aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layer was washed with brine ($3 \times 10 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. The residue was coevaporated with MeOH three times to hydrolyze the excess borane, and then purified by chromatography (silica gel, EtOAc/PE, 1:2) to give the syn-product 10 (255.1 mg , 85%) with syn/anti diastereoselectivity of $99: 1$ as a white powder. The ee was improved to over 99% by recrystallization from acetonitrile/water. $[\alpha]_{\mathrm{D}}^{20}=+14.3$ (c 1.0, CHCl_{3}); Mp 134.1-135.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.25(\mathrm{~d}, 6 \mathrm{H}, J=6.4 \mathrm{~Hz}$), $1.54(\mathrm{~d}, 6 \mathrm{H}$, $J=7.2 \mathrm{~Hz}), 1.63-1.68(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.56-3.60$ $(\mathrm{m}, 2 \mathrm{H}), 3.70-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.94-3.96(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.16(\mathrm{~m}$, $2 \mathrm{H}), 5.03-5.06(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.97-7.20(\mathrm{~m}, 14 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.69,21.80,26.16,39.11,41.34,41.57$, $41.85,68.65,69.07,69.68,115.29,115.34,115.51,115.58,119.62$, 121.87, 123.53, 126.57, 128.36, 128.69, 128.76, 128.80, 130.51, 133.18, 133.26, 134.69, 138.42, 172.25; IR (KBr): 3407, 3028, 2932, 2874, 1725, 1558. MS (ESI) m/z: $600\left[\mathrm{M}+\mathrm{H}^{+}\right]$.
4.4.5. Isopropyl 2-((4R,6R)-6-(2-(2-(4-fluorophenyl)-5-isopropyl -3-phenyl-4-(phenylcarbamoyl)-1H-pyrrol-1-yl)ethyl)-2,2-dime thyl-1,3-dioxan-4-yl)acetate 12

Compound $\mathbf{1 0}(120.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ was added to 2,2-dimethoxypropane (10 mL) followed by a catalytic amount of PPTS ($5.02 \mathrm{mg}, 0.02 \mathrm{mmol}$). The resulting mixture was stirred at rt overnight, and then satd aq $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ was added. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, washed with brine $(3 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give $12(117.9 \mathrm{mg}, 92 \%)$ as a white powder. $[\alpha]_{\mathrm{D}}^{20}=+5.8$ (c 1.0, CHCl_{3}); Mp 210.1-212.3 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.24(\mathrm{~d}, 6 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~d}, 6 \mathrm{H}$, $J=7.2 \mathrm{~Hz}), \quad 1.68-1.70(\mathrm{~m}, 2 \mathrm{H}), 2.31\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=15.2 \mathrm{~Hz}\right.$, $\left.J_{2}=6.0 \mathrm{~Hz}\right), 2.65$, (dd, $\left.1 \mathrm{H}, J_{1}=15.2 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}\right), 3.56-3.63(\mathrm{~m}$, $1 \mathrm{H}), 3.70-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.88(\mathrm{~m}, 1 \mathrm{H}), 4.06-4.14(\mathrm{~m}, 1 \mathrm{H})$, 4.19-4.25 (m, 1H), 5.00-5.07 (m, 1H), 6.88 (s, 1H), 6.99-7.20 (m, 14H). IR (KBr): 3386, 2992, 2921, 1725, 1609, $1434 \mathrm{~cm}^{-1}$; MS (ESI) $m / z: 641\left[\mathrm{M}+\mathrm{H}^{+}\right]$.

4.4.6. Atorvastatin calcium 1

To a stirring solution of $\mathbf{1 0}(120.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in MeOH $(20 \mathrm{~mL})$ was added 1 M aq $\mathrm{NaOH}(0.3 \mathrm{~mL})$. The mixture was stirred
at $50^{\circ} \mathrm{C}$ for 1 h and then cooled to rt . Next, $\mathrm{CaCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (29.4 mg, 0.2 mmol) was added to the solution and the resulting slurry was maintained at rt for 1 h , filtered, washed and dried in vacuo to give $1(113.6 \mathrm{mg}, 94 \%)$ as a white powder. $[\alpha]_{\mathrm{D}}^{20}=-7.5$ (c 1.0, DMSO) $\left\{\right.$ Lit. ${ }^{2 \mathrm{i}}[\alpha]_{\mathrm{D}}=-7.4$ (c 1.0, DMSO) \}; Mp 173.7-175.9 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3400, 3016, 2922, 2881, 1725.

References

1. (a) Graul, A.; Castaner, J. Drugs Future 1997, 22, 956; (b) Istvan, E. S.; Deisenhofer, J. Science 2001, 292, 1160; (c) Časar, Z. Curr. Org. Chem. 2010, 14, 816.
2. (a) Brower, P. L.; Butler, D. E.; Deering, C. F.; Le, T. V.; Millar, A.; Nanninga, T. N.; Roth, B. D. Tetrahedron Lett. 1992, 33, 2279; (b) Wess, G.; Kesseler, K.; Baader, E.; Bartmann, W.; Beck, G.; Bergmann, A.; Jendralla, H.; Bock, K.; Holzstein, O.; Kleine, H.; Schnierer, M. Tetrahedron Lett. 1990, 31, 2545; (c) Konoike, T.; Araki, Y. J. Org. Chem. 1994, 59, 7849; (d) Cho, Y.-H.; Roh, K. R.; Shin, J. H.; Chun, J. P.; Yu, H. S.; Cho, C.-W. WO 2002096915, 2002.; (e) Konoike, T.; Okada, T.; Araki, Y. J. Org. Chem. 1998, 63, 3037; (f) Sletzinger, M.; Verhoeven, T. R.; Volante, R. P.; McNamara, J. M.; Corley, E. G.; Liu, T. M. H. Tetrahedron Lett. 1985, 26, 2951; (g) Millar, A.; Butler, D. E. US 5103024, 1992.; (h) Rádl, S. Synth. Commun. 2003, 33, 2275; (i) Baumann, K. L.; Butler, D. E.; Deering, C. F.; Mennen, K. E.; Millar, A.; Nanninga, T. N.; Palmer, C. W.; Roth, B. D. Tetrahedron Lett. 1992, 33, 2283; (j) Thottathil, J. K.; Pendri, Y.; Li, W.-S.; Kronenthal D. R. US 5278313, 1994.; (k) Butler, D. E.; Le, T. V.; Millar, A.; Nanninga, T. N. US 5155251, 1992.; (1) Jendralla, H.; Granzer, E.; Kerekjarto, B. V.; Krause, R.; Schacht, U.; Baader, E.; Bartmann, W.; Beck, G.; Bergmann, A.; Kesseler, K.; Wess, G.; Chen, L. J.; Granata, S.; Herchen, J.; Kleine, H.; Schussler, H.; Wagner, K. J. Med. Chem. 1991, 34, 2962; (m) Shin, H.; Choi, B. S.; Lee, K. K.; Choi, H.; Chang, J. H.; Lee, K. W.; Nam, D. H.; Kim, N. S. Synthesis 2004, 16, 2629; (n) Bowles, D. M.; Bolton, G. L.; Boyles, D. C.; Curran, T. T.; Hutchings, R. H.; Larsen, S. D.; Miller, J. M.; Park, W. K. C.; Ritsema, K. G.; Schineman, D. C. Org. Process Res. Dev. 2008, 12, 1183; (o) Lim, Y. M.; Han, Y. T.; Lee, B. G.; Song, Y. S. WO 2009054693, 2009.; (p) Khamar, B. M.; Prabhakar, M. T.; Bapat, U. R.; Siddiqui, I. H.; Modi, I. A. WO 2011101816, 2011.; (q) Lange, D. B.; Elsenberg, H. L. M. WO 2012032035, 2012.
3. (a) Roth, B. D.; Blankley, C. J.; Chucholowski, A. W.; Ferguson, E.; Hoefle, M. L.; Ortwine, D. F.; Newton, R. S.; Sekerke, C. S.; Sliskovic, D. R.; Stratton, C. D.; Wilson, M. W. J. Med. Chem. 1991, 34, 357; (b) Braun, M.; Devant, R. Tetrahedron Lett. 1984, 25, 5031; (c) Roth, B. D. US 5273995, 1993.; (d) Mills, N.; Muhammad, N.A.; Weiss, J.; Nesbitt, R. WO 9416693, 1994.; (e) Nelson, J. D.; Pamment, M. G. WO 2004089894, 2004.; (f) Jendralla, H.; Baader, E.; Bartmann, W.; Beck, G.; Bergmann, A.; Granzer, E.; Kerekjarto, Bv; Kesseler, K.; Krause, R.; Schubert, W.; Wess, G. J. Med. Chem. 1990, 33, 61; (g) Lynch, J. E.; Volante, R. P.; Wattley, R. V.; Shinkai, I. Tetrahedron Lett. 1987, $28,1385$.
4. (a) Evans, D. A.; Trenkle, W. C.; Zhang, J.; Burch, J. D. Org. Lett. 2005, 7, 3335; (b) Evans, D. A.; Kozlowski, M. C.; Murry, J. A.; Burgey, C. S.; Campos, K. R.; Connell,
B. T.; Staples, R. J. J. Am. Chem. Soc. 1999, 121, 669; (c) Butler, D. E.; Dejong, R. L.; Nelson, J. D.; Pamment, M. G.; Stuk, T. L. WO 2002055519, 2002.; (d) Krüger, J.; Carreira, E. M. J. Am. Chem. Soc. 1998, 120, 837; (e) Kawato, Y.; Iwata, M.; Yazaki, R.; Kumagai, N.; Shibasaki, M. Tetrahedron 2011, 67, 6539; (f) Andrushko, N.; Andrushko, V.; Tararov, V.; Korostylev, A.; König, G.; Börner, A. Chirality 2010, 22, 534; (g) Sawant, P.; Maier, M. E. Tetrahedron 2010, 66, 9738; (h) Fan, W.; Li, W.; Ma, X.; Tao, X.; Li, X.; Yao, Y.; Xie, X.; Zhang, Z. J. Org. Chem. 2011, 76, 9444; (i) Shibasaki, M.; Kumagai, N. WO 2012114926, 2012.
5. (a) Müller, M. Angew. Chem., Int. Ed. 2005, 44, 362; (b) Liu, J.; Hsu, C.-C.; Wong, C.-H. Tetrahedron Lett. 2004, 45, 2439; (c) Gijsen, H. J. M.; Wong, C.-H. J. Am. Chem. Soc. 1994, 116, 8422; (d) Gijsen, H. J. M.; Wong, C.-H. J. Am. Chem. Soc. 1995, 117, 7585; (e) Moen, A. R.; Hoff, B. H.; Hansen, L. K.; Anthonsen, T.; Jacobsen, E. E. Tetrahedron: Asymmetry 2004, 15, 1551; (f) Bergeron, S.; Chaplin, D. A.; Edwards, J. H.; Ellis, B. S. W.; Hill, C. L.; Holt-Tiffin, K.; Knight, J. R.; Mahoney, T.; Osborne, A. P.; Ruecroft, G. Org. Process Res. Dev. 2006, 10, 661; (g) Wolberg, M.; Kaluzna, I. A.; Müller, M.; Stewart, J. D. Tetrahedron: Asymmetry 2004, 15, 2825; (h) Giver, L. J.; Newman, L. M.; Mundorff, E. WO 2008042876, 2008.; (i) Ma, S. K.; Gruber, J.; Davis, C.; Newman, L.; Gray, D.; Wang, A.; Grate, J.; Huisman, G. W.; Sheldon, R. A. Green Chem. 2010, 12, 81 ; (j) Wu, X.; Wang, L.; Wang, S.; Chen, Y. Amino Acids 2010, 39, 305.
6. (a) Trost, B. M.; Brindle, C. S. Chem. Soc. Rev. 2010, 39, 1600; (b) Geary, L. M.; Hultin, P. G. Tetrahedron: Asymmetry 2009, 20, 131; (c) Miao, Z.; Chen, F. Synthesis 2012, 2506; (d) Alcaide, B.; Almendros, P. Eur. J. Org. Chem. 2002, 1595; (e) Machajewski, T. D.; Wong, C.-H. Angew. Chem., Int. Ed. 2000, 39, 1352.
7. (a) Hayashi, M.; Yoshimoto, K.; Hirata, N.; Tanaka, K.; Oguni, N.; Harada, K.; Matsushita, A.; Kawachi, Y.; Sasaki, H. Isr J. Chem. 2001, 41, 241; (b) Zacharia, J. T.; Tanaka, T.; Hayashi, M. J. Org. Chem. 2010, 75, 7514.
8. (a) Hayashi, M.; Inoue, T.; Oguni, N. J. Chem. Soc., Chem. Commun. 1994, 341; (b) Chu, C.; Morishita, K.; Tanaka, T.; Hayashi, M. Tetrahedron: Asymmetry 2006, 17, 2672; (c) Clarke, P. A.; Santos, S.; Mistry, N.; Burroughs, L.; Humphries, A. C. Org. Lett. 2011, 13, 624; (d) Oguni, N.; Tanaka, K.; Ishida, H. Synlett 1998, 601; (e) Kawase, T.; Takizawa, S.; Jayaprakash, D.; Sasai, H. Synth. Commun. 2004, 34, 4487; (f) Hayashi, M.; Tanaka, K.; Oguni, N. Tetrahedron: Asymmetry 1833, 1995, 6; (g) Hayashi, M.; Kaneda, H.; Oguni, N. Tetrahedron: Asymmetry 1995, 6, 2511; (h) Moreno, R. M.; Moyano, A. Tetrahedron: Asymmetry 2006, 17, 1104; (i) Corey, E. J.; Barnes-Seeman, D.; Lee, T. W. Tetrahedron Lett. 1997, 38, 4351.
9. Griesser, H.; Öhrlein, R.; Schwab, W.; Ehrler, R.; Jäger, V. Org. Synth. 2000, 77, 236.
10. (a) Schoening, K.-U.; Hartwig, J. WO 03004457, 2003.; (b) Pai, G. G.; Nanda, K.; Chaudhari, N. P.; Anjaneyulu, A.; Ghogare, B. N. WO $2009144736,2009$.
11. Butler, D. E.; Deering, C. F.; Millar. A.; Nanninga, T. N.; Roth, B. D. WO 8907598 , 1989.
12. (a) Hayashi, M.; Miyamoto, Y.; Inoue, T.; Oguni, N. J. Chem. Soc., Chem. Commun. 1991, 1752; (b) Hayashi, M.; Miyamoto, Y.; Inoue, T.; Oguni, N. J. Org. Chem. 1993, 58, 1515.
13. (a) Narasaka, K.; Pai, F. C. Tetrahedron 1984, 40, 2233; (b) Chen, K. M.; Hardmann, G. E.; Prasada, K.; Repič, O.; Shapiro, M. J. Tetrahedron Lett. 1987, 28 , 155.

[^0]: * Corresponding authors. Tel./fax: +86 2165643811.

 E-mail addresses: qqhe@fudan.edu.cn (Q. He), rfchen@fudan.edu.cn (F. Chen).

[^1]: ${ }^{\text {a }}$ All reactions were conducted with aldehyde $\mathbf{8}(0.5 \mathrm{mmol}$, 1 equiv), diketene ($2.5 \mathrm{mmol}, 5$ equiv), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(0.5 \mathrm{mmol}, 1$ equiv), and Schiff base $11 \mathbf{a - g}$ (0.5 mmol , 1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$ for 48 h .
 ${ }^{\mathrm{b}}$ Isolated yield after silica gel column chromatography.
 ${ }^{\text {c }}$ Determined by HPLC analysis (CHIRALPAK AD-H).

[^2]: ${ }^{\text {a }}$ All reactions were conducted with aldehyde $8(0.5 \mathrm{mmol}, 1$ equiv), diketene (2.5 mmol , 5 equiv), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ ($0.5 \mathrm{mmol}, 1$ equiv), and Schiff base 11a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL).
 ${ }^{\text {b }}$ Isolated yield after silica gel column chromatography.
 ${ }^{\text {c }}$ Determined by HPLC analysis (CHIRALPAK AD-H).

