Synthesis and biological evaluation of new dipyrrolo[3,4-a:3,4-c|carbazole-1,3,4,6-tetraones, substituted with various saturated and unsaturated side chains via palladium catalyzed cross-coupling reactions

Hélène Hénon, ${ }^{\text {a }}$ Fabrice Anizon, ${ }^{\text {a }}$ Roy M. Golsteyn, ${ }^{\text {b }}$ Stéphane Léonce, ${ }^{\text {b }}$ Robert Hofmann, ${ }^{\text {b }}$ Bruno Pfeiffer ${ }^{\text {b }}$ and Michelle Prudhomme ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Laboratoire SEESIB, Université Blaise Pascal, UMR 6504 du CNRS, 63177 Aubière, France
${ }^{\mathrm{b}}$ Institut de Recherches SERVIER, Division Recherche Cancérologie, 125 Chemin de ronde, 78290 Croissy sur Seine, France

Received 21 October 2005; revised 10 January 2006; accepted 17 January 2006
Available online 3 February 2006

Abstract

The syntheses of a series of dipyrrolo[3,4-a:3,4-c]carbazole-1,3,4,6-tetraones, substituted in 10-position with saturated and unsaturated side chains, via palladium catalyzed cross-coupling reactions, are described. These compounds can be considered as granulatimide bis-imide analogues. Their inhibitory activity toward Chk1 kinase and their antiproliferative activities in vitro in four tumor cell lines are reported.

© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Granulatimide and isogranulatimide, natural compounds isolated from the ascidian Didemnum granulatum, are known to inhibit the G2 cell cycle checkpoint. ${ }^{1-3}$ The G2 checkpoint is a particularly relevant target for anticancer drugs. Its role consists in blocking the cells in the G2 phase, in response to DNA damage, to allow time for DNA repair. In more than 50% of human tumors, the G1 checkpoint is lacking. Therefore, combination of DNA damaging agents with a G2 checkpoint inhibitor should drive selectively cancer cells to a lethal mitosis due to an accumulation of DNA lesions.

Several kinases are involved in the G2 checkpoint, among them, ATM, ATR, Chk1, and Chk2 play major roles. ${ }^{4,5}$ Based on structural analogy with the indolocarbazole kinase inhibitors staurosporine and UCN-01, ${ }^{6,7}$ granulatimide and isogranulatimide could be ATP competitive kinase inhibitors (Fig. 1). It has

[^0]been reported that granulatimide and isogranulatimide are Chkl inhibitors with IC_{50} values of 2 and $3 \mu \mathrm{M}$, respectively. ${ }^{8}$ In the course of structure-activity relationship studies on granulatimide analogues, we have previously synthesized several families of compounds in which the imidazole heterocycle was replaced either by a pyrrole or by a maleimide ring, and in which the indole moiety has been replaced by a 7 -azaindole. ${ }^{9-12}$ Several substituents were introduced in different positions on the indole moiety.Other families of compounds have also been synthesized in which a sugar moiety is attached to the indole or to the azaindole. ${ }^{11,13,14}$

Dipyrrolo[3,4-a:3,4-c]carbazole-1,3,4,6-tetraones can be considered as bis-imide granulatimide analogues. Indeed, we found that compound \mathbf{A} (Fig. 1) was a potent Chk1 inhibitor (IC_{50} value of 15 nM toward Chk1, Table 1), more potent than granulatimide. In the course of structure-activity relationship studies on dipyrrolo[3,4-a:3,4-c]carbazole-1,3,4,6-tetraones substituted in the 10-position, compounds \mathbf{B} and \mathbf{C} bearing a benzyloxy or a bromo substituent were previously synthesized. ${ }^{10,11}$ Compared with compound \mathbf{A}, the inhibitory potency of compound \mathbf{B} toward Chk1 was strongly decreased, whereas that of compound \mathbf{C} was in the same range (Table 1). Therefore,

staurosporine
UCN-01

granulatimide

Figure 1.

Table 1. Percentages of Chkl inhibition at a drug concentration of $10^{-5} \mathrm{M}$

Compound	$\%$ of Chk1 inhibition at $10^{-5} \mathrm{M}$	Chk1 inhibition ($\left.\mathrm{IC}_{50}, \mu \mathrm{M}\right)$	L1210	DU145	A549	HCT116	HT29
Granulatimide	85.6	>2.54	2.8	2.8	11.4	6.1	5.7
Isogranulatimide	89.7	0.438	10	13.1	18.1	13	13.7
A	94.4	0.020	32.7	53.6	65.7	nd	9.7
B	53.9	>5.0	3.37	3.7	nd	nd	3.7
C	90.2	0.033	3.61	10.1	nd	nd	20
4	75.8	5.0	5.9	nd	nd	6.6	16.4
21	77.2	1.45	16.2	nd	nd	16.4	40.5
22	38.3	nd	2.3	nd	nd	1.7	4.7
24	88.8	0.144	17.8	nd	nd	31.2	38.1
28	91.1	0.008	1.8	nd	nd	2.2	3.29

Chk1 inhibitory properties (IC_{50} in $\mu \mathrm{M}$) and in vitro antiproliferative activities of granulatimide, isogranulatimide, and compounds $\mathbf{A}-\mathbf{C}, \mathbf{4}, \mathbf{2 1}, \mathbf{2 2}$, 24, and 28 toward four tumor cell lines: murine leukemia L1210, and human DU145 prostate carcinoma, A549 non-small cell lung carcinoma and HCT116 and HT29 colon carcinoma ($\mathrm{IC}_{50} \mu \mathrm{M}$). Due to its insolubility, the biological activities of compound 23 could not be evaluated. nd, not determined.
the nature of the substituent in the 10 -position has a major effect on the Chk1 inhibitory potency. Accordingly, to get an insight into the influence of the length, the functionality, and the orientation of side chains in the 10 -position, we synthesized new dipyrrolo[3,4$a: 3,4-c$ carbazole-1,3,4,6-tetraones bearing saturated and unsaturated side chains in the 10 -position via palladium catalyzed cross-coupling reactions. The Chk1 inhibitory activities and the in vitro antiproliferative activities of these new compounds have been evaluated in the tumor cell lines, murine leukemia L1210, human DU145 prostate carcinoma, A549 non-small cell lung carcinoma, and HCT116 and HT29 colon carcinoma, and compared to those of granulatimide, isogranulatimide, and compounds $\mathbf{A}-\mathbf{C}$.

2. Chemistry

The general synthetic scheme in four steps of dipyrrol-o[3,4-a:3,4-c]carbazole-1,3,4,6-tetraones previously used for the synthesis of compounds $\mathbf{A}-\mathbf{C}$ is outlined in Scheme 1. Indoles were coupled to maleimide in the presence of acetic acid. The Michaël adduct was oxidized. The third step was a Diels-Alder cycloaddition with a second molecule of maleimide. Finally, oxidation of the Diels-Alder adduct led to the required dipyrrol-o[3,4-a:3,4-c]carbazole-1,3,4,6-tetraone.

For the synthesis of compound 4 bearing an ethyl group at the 10 position, a Sonogashira reaction between 5iodoindole and trimethylsilylacetylene in the presence

Scheme 1.
of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CuI}$, and triethylamine afforded the coupling product, which was further deprotected in $\mathrm{NaOH} / \mathrm{MeOH}$ to give compound $\mathbf{1}$ in 87% yield. Catalytic hydrogenation of $\mathbf{1}$ led to 5-ethylindole 2 in 82% yield. The synthesis of compound 2 has already been reported in the literature. ${ }^{15-21}$ However, to our knowledge, this approach has never been described (Scheme 2).

A Michaël addition was then carried out with maleimide in acetic acid leading to a mixture of the Michaël adduct 3 and to small amounts of compounds $\mathbf{4}$ and 5 . Compounds 4 and 5 were formed in situ, after oxidation of the Michaël adduct, via a Diels-Alder cycloaddition with maleimide and 5-ethylindole, respectively, followed by oxidation of the Diels-Alder adduct.

The synthesis of compounds 21-24 (Scheme 3) was carried out from 5 -substituted indoles $\mathbf{6} \mathbf{8}$, obtained from 5-iodoindole via a Heck or a Sonogashira cross-coupling reaction. The E configuration of the side-chain double bond of compounds 6 and 7 was determined from the ${ }^{1} \mathrm{H}$ NMR coupling constant $(J=16 \mathrm{~Hz})$ between the two ethylenic protons at 6.27 and 6.63 ppm for compound $\mathbf{6}$, and 6.31 and 6.73 ppm for compound 7. Catalytic hydrogenation of the unsaturated side chains of $\mathbf{6 - 8}$ led to compounds $\mathbf{9 - 1 1}$. To retain the benzyl group of compound 7, the hydrogenation was performed in the presence of pyridine. ${ }^{22,23}$ Michaël addition with maleimide in acetic acid yielded compounds 12-14. The hydroxy group of the side chain of
compound 9 was acetylated during the Michaël addition carried out in acetic acid. Oxidation to maleimides was achieved with DDQ in dioxane leading to compounds 15-17. Diels-Alder reactions between compounds $15-$ 17 and maleimide yielded the intermediates 18-20 which could possess an indoline or an indole structure. Indeed, in previous works, the isomerization of the Diels-Alder cycloadduct from indoline to indole was observed. ${ }^{10,24}$ Compounds 18-20 were further oxidized. Compound 19 was easily oxidized with DDQ in dioxane to give compound 21. The phenylethyl side chain of compound 20 was oxidized to a styryl chain in the presence of DDQ leading to compound 22 . The E configuration of the side-chain double bond of compound 22 was determined from the ${ }^{1} \mathrm{H}$ NMR coupling constant $(J=16.5 \mathrm{~Hz})$ between the two ethylenic protons at 7.29 and 7.50 ppm . When the oxidation was performed by air oxidation in refluxing TFA, only oxidation of the cyclic moiety was observed leading to compound 23. Oxidation of intermediate $\mathbf{1 8}$ using DDQ at reflux or at room temperature yielded degradation products. Removal of the benzyl group of compound 21 using refluxing TFA led to compound 24.

To get an insight into the influence of the alkyl substituent at the 10 position on the biological activity, compound 28 bearing a methyl group was prepared according to the conventional method described on Scheme 3 from commercially available 5-methylindole. The last oxidation was carried out by air oxidation in TFA/dioxane.

Scheme 2. Reagents and conditions: (i) TMS-C $\equiv \mathrm{CH}, \mathrm{CuI}, \mathrm{NEt}_{3}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CH}_{3} \mathrm{CN}$, reflux, 4 h ; (ii) $0.2 \mathrm{M} \mathrm{NaOH}, \mathrm{MeOH}, \mathrm{rt}, 2 \mathrm{~h}(87 \%$ for the two steps); (iii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, 1 \mathrm{bar}$, rt, $2 \mathrm{~h}(82 \%$); (iv) maleimide, AcOH , reflux, $25 \mathrm{~h}(\mathbf{3}, 30 \% ; \mathbf{4}, 6 \% ; \mathbf{5}, 2 \%)$.

$$
\begin{aligned}
& \mathbf{2 0} \xrightarrow{\mathrm{vii}} 23 \mathrm{R}=-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{Ph} \\
& \mathbf{2 1} \xrightarrow{\mathrm{vii}} 24 \mathrm{R}=-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OH}
\end{aligned}
$$

Scheme 3. Reagents and conditions: (i) allyl derivative, $\mathrm{DMF}, \mathrm{PPh}_{3}, \mathrm{AgOAc}, \mathrm{Pd}(\mathrm{OAc})_{2}, 70^{\circ} \mathrm{C}$ (for compounds 6 and 7) or phenylacetylene, CuI , $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{NEt}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, reflux (for compound 8); (ii) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (1 bar), MeOH , pyridine; (iii) maleimide, AcOH, reflux; (iv) DDQ, dioxane, rt; (v) maleimide, xylene, reflux; (vi) TFA, dioxane, $80^{\circ} \mathrm{C}$ (for compound 21 and 27) or DDQ, dioxane, reflux (for compound 22); (vii) TFA, reflux, 48 h .

3. Chk1 inhibition

The percentage of inhibition of Chkl with the drugs at a concentration of $10^{-5} \mathrm{M}$ was first evaluated, and, for the most active compounds, the IC_{50} values were determined (Table 1). Compared with \mathbf{A}, compound 28, bearing a methyl group, is a stronger Chk 1 inhibitor, whereas compound $\mathbf{4}$, bearing an ethyl group, is considerably less efficient. At first sight, it seems that a large hydrophobic substituent in the 10 -position is not favorable to Chk1 inhibition. Compounds 21 and 24, bearing a propyl side chain bearing a benzyloxy or a hydroxy function, exhibit higher inhibitory activities toward Chk1 than compound 4 bearing an ethyl group. Compared to the hydroxypropyl substituent, the benzyloxypropyl group induces a strong decrease of activity. The terminal hydroxy function of compound $\mathbf{2 4}$ may establish a hydrogen bond with the target enzyme that could be responsible for its better Chk1 inhibitory activity. Compound 22 bearing a styryl side chain is a weak Chk1 inhibitor. Unfortunately, due to its insolubility, the activity of compound 23 could not be evaluated, and the comparison with compound 22 was not possible.

4. In vitro cytotoxicities

The in vitro cytotoxicities of the newly synthesized compounds as well as those of granulatimide, isogranulati-
mide, and compounds \mathbf{A}, \mathbf{B}, and \mathbf{C} were evaluated in four tumor cell lines: murine leukemia L1210, and four human tumor cell lines DU145 prostate carcinoma, A549 non-small cell lung carcinoma, and HCT116 and HT29 colon carcinoma. The results are reported in Table 1 as the concentrations required to reduce cell growth by $50 \%\left(\mathrm{IC}_{50}\right)$. Isogranulatimide and the reference compound A do not exhibit strong cytotoxicities toward the cell lines tested. Compared with compound \mathbf{A}, all the bis-imide analogues reported in this work are more cytotoxic against L1210 cells. Methyl and styryl substituents at the 10 position (compounds 22 and 28) induced the strongest cytotoxicity toward all the cell lines tested. Compounds 21 and 24 possessing a flexible side chain are less cytotoxic than compound 22 bearing a more rigid side chain. Compounds 4 and 28 bearing, respectively, an ethyl and methyl substituent exhibit stronger cytotoxicities than compounds 21 and 24 in which the side chain is longer.

5. Conclusion

In summary, the synthesis of new bis-imide granulatimide analogues bearing various substituents at the 10 position has been performed. The substituents were introduced via pallado-catalyzed coupling allowing the attachment of saturated or unsaturated side chains with and without functionalities. The Chk1 inhibitory activi-
ties and the cytotoxicities of these new compounds toward various tumor cell lines were evaluated.

Concerning Chk1 inhibitory properties, the following sequence of efficiency is observed: $\mathbf{2 8}>\mathbf{A}>\mathbf{C}>\mathbf{2 4}>$ $\mathbf{2 1}>\mathbf{B}$ and $\mathbf{4}>\mathbf{2 2}$, whereas the sequence of cytoxicities toward L1210 cells is: 28, 22, C $>\mathbf{4}>\mathbf{2 1}, \mathbf{2 4}>\mathbf{A}$. It can be noticed that there is no parallelism between Chk1 inhibitory properties and cytotoxicities. Indeed, the role of a Chk1 inhibitor is to prevent the cell cycle arrest, essentially at the G2 checkpoint normally activated in response to DNA damage. Therefore, the absence of correlation between Chkl inhibition and the cytotoxicity is not surprising.

Several parameters may account for the differences in the antiproliferative activities including the ability of the compound to enter cells and the stability of the imide heterocycles which are sensitive to nucleophiles. The effects of these parameters are now under investigation.

6. Experimental

6.1. Chemistry

IR spectra were recorded on a Perkin-Elmer 881 or Per-kin-Elmer Paragon 500 spectrometers (v in cm $^{-1}$). NMR spectra were performed on a Bruker AVANCE $400\left({ }^{1} \mathrm{H}\right.$: $\left.400 \mathrm{MHz},{ }^{13} \mathrm{C}: 100 \mathrm{MHz}\right)$ and AVANCE $500\left({ }^{1} \mathrm{H}\right.$: $500 \mathrm{MHz},{ }^{13} \mathrm{C}: 125 \mathrm{MHz}$) (chemical shifts δ in ppm, the following abbreviations are used: singlet (s), doublet (d), doubled doublet (dd), triplet (t), doubled triplet (dt), quartet (q), multiplet (m), br s (broad signal), tertiary carbons (C tert), and quaternary carbons (C quat). Low resolution mass spectra (ESI+ and APCI+) and HRMS were determined on a MS Hewlett Packard engine. Chromatographic purifications were performed by flash silicagel Geduran SI 60 (Merck) 0.0400.063 mm or Kieselgel 60 (Merck) $0.063-0.200 \mathrm{~mm}$ column chromatography.
6.1.1. 5-Ethynyl-1 H-indole (1). A mixture of 5-iodoindole $(200 \mathrm{mg}, \quad 0.82 \mathrm{mmol})$, trimethylsilylacetylene $(182 \mu \mathrm{~L}, 1.28 \mathrm{mmol}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(28 \mathrm{mg}, 0.024 \mathrm{mmol})$, $\mathrm{CuI}(8 \mathrm{mg}, 0.042 \mathrm{mmol})$, and triethylamine $(230 \mu \mathrm{~L})$ in acetonitrile $(880 \mu \mathrm{~L})$ was refluxed for 4 h . After cooling, water was added. After extraction with EtOAc, the organic phase was washed with brine and then was dried over MgSO_{4}. After filtration, the solvent was removed. $0.2 \mathrm{M} \mathrm{NaOH}(6.15 \mathrm{~mL})$ and methanol (6 mL) were added. The mixture was stirred for 2 h at room temperature before filtration over Celite. The filtrate was evaporated and the residue was purified by flash chromatography (eluent: cyclohexane/EtOAc 8:2) to give $\mathbf{1}(101 \mathrm{mg}$, $0.72 \mathrm{mmol}, 87 \%$ yield) as a brown solid. $\mathrm{Mp} 64-66^{\circ} \mathrm{C}$. IR (KBr) $v_{\mathrm{C}} \equiv \mathrm{C} 2098 \mathrm{~cm}^{-1}, ~ v \equiv{ }_{=C-H} 3268 \mathrm{~cm}^{-1}, v_{\mathrm{NH}}$ $3427 \mathrm{~cm}^{-1}$. Mass (CI+) $142[\mathrm{M}+\mathrm{H}]^{+}$.

[^1]${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $77.5(\equiv \mathrm{CH}), 85.5$ ($\mathrm{C}_{\text {alkyne }}$), 101.3, 111.7, 124.1, 124.4, 126.6 (C tert arom), 111.8, 127.4, 135.7 (C quat arom).
6.1.2. 5-Ethyl- \boldsymbol{H}-indole (2). A mixture of $\mathbf{1}(93 \mathrm{mg}$, 0.66 mmol), methanol (10 mL), and $10 \% \mathrm{Pd} / \mathrm{C}(28 \mathrm{mg})$ was hydrogenated (1 bar) for 2 h . The mixture was filtrated over Celite and the filtrate was evaporated. The residue was purified by flash chromatography (eluent: cyclohexane/EtOAc $8: 2$) to give 2 ($79 \mathrm{mg}, 0.54 \mathrm{mmol}$, 82% yield) as an oil. IR $(\mathrm{NaCl}) v_{\mathrm{NH}} 3250-3500 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \quad$ NMR $\quad\left(400 \mathrm{MHz}, \quad\right.$ DMSO- $\left.d_{6}\right): \quad 1.25 \quad(3 \mathrm{H}, \quad \mathrm{t}$, $J=7.5 \mathrm{~Hz}), 2.69(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 6.37(1 \mathrm{H}, \mathrm{s}), 6.97$ $(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.29-7.35(2 \mathrm{H}, \mathrm{m}), 7.37(1 \mathrm{H}, \mathrm{s})$, $10.96(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 16.6\left(\mathrm{CH}_{3}\right), 29.1\left(\mathrm{CH}_{2}\right)$, 102.3, 110.8, 119.2, 122.7, 124.3 (C tert arom), 128.1, 134.3, 135.8 (C quat arom).
6.1.3. 3-(2,5-Dioxopyrrolidin-3-yl)-5-ethyl-1 H -indole (3), 10-ethyl-1,3,4,6-tetrahydro-2H,5H,7H-dipyrrolo[3,4-a:3,4-c carbazole-1,3,4,6-tetraone (4), and 2,10-diethyl-6,8-dihydro-5H,7H,13H-indolo[3,2-a]pyrrolo[3,4-c carba-zole-6,8-dione (5). A mixture of compound 2 (79 mg , 0.54 mmol), maleimide ($58 \mathrm{mg}, 0.60 \mathrm{mmol}$), and acetic acid (1 mL) was refluxed for 15 h . Maleimide (58 mg , 0.60 mmol) was added and the mixture was refluxed for 10 h . After evaporation, EtOAc was added to the residue, the mixture was filtered off, and the solid residue was washed with EtOAc before purification by flash chromatography (eluent: cyclohexane/THF 7:3) to give $4(11.8 \mathrm{mg}, \quad 0.035 \mathrm{mmol}, 6 \%$ yield) and 5 (3.8 mg , $0.010 \mathrm{mmol}, 2 \%$ yield) as orange solids. The filtrate was evaporated and purified by flash chromatography (eluent: cyclohexane/EtOAc from 7:3 to 5:5) to give 3 ($39.6 \mathrm{mg}, 0.163 \mathrm{mmol}, 30 \%$ yield) as a brown solid.
6.1.3.1. Compound 3. $\mathrm{Mp} 220-222^{\circ} \mathrm{C}$. IR (KBr) $v_{\mathrm{C}=\mathrm{O}}$ $1685,1775 \mathrm{~cm}^{-1}$, $v_{\mathrm{NH}} 3150-3450 \mathrm{~cm}^{-1}$. Mass (CI+) 243 $[\mathrm{M}+\mathrm{H}]^{+}$.
${ }^{1} \mathrm{H} \quad$ NMR $\quad\left(400 \mathrm{MHz}, \quad\right.$ DMSO- $\left.d_{6}\right): \quad 1.24 \quad(3 \mathrm{H}, \quad \mathrm{t}$, $J=7.5 \mathrm{~Hz}), 2.69(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 2.79(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{1}=18.0 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}\right), 3.21\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=18.0 \mathrm{~Hz}\right.$, $\left.J_{2}=9.5 \mathrm{~Hz}\right), 4.34\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=9.5 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}\right)$, $7.00\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}\right), 7.25(1 \mathrm{H}, \mathrm{s})$, 7.29-7.34 ($2 \mathrm{H}, \mathrm{m}$), $10.93(1 \mathrm{H}$, br s, NH), $11.32(1 \mathrm{H}, \mathrm{br}$ s, NH).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $16.6\left(\mathrm{CH}_{3}\right), 28.5,37.4$ $\left(\mathrm{CH}_{2}\right), 39.0(\mathrm{CH}), 111.5,116.7,121.8,123.3(\mathrm{C}$ tert arom), 110.6, 126.1, 134.0, 135.0 (C quat arom), 178.1, $180.0(\mathrm{C}=\mathrm{O})$.
6.1.3.2. Compound 4. $\mathrm{Mp}>300^{\circ} \mathrm{C}$. IR (KBr) $v_{\mathrm{C}=\mathrm{O}}$ $1720,1761 \mathrm{~cm}^{-1}$, $v_{\mathrm{NH}} 3100-3600 \mathrm{~cm}^{-1}$. Mass (ESI+) $356[\mathrm{M}+\mathrm{Na}]^{+}$.
${ }^{1} \mathrm{H} \quad$ NMR $\quad\left(400 \mathrm{MHz}, \quad\right.$ DMSO- $\left.d_{6}\right): \quad 1.33 \quad(3 \mathrm{H}$, $\mathrm{t}, J=7.5 \mathrm{~Hz}), 2.85(2 \mathrm{H}, \mathrm{q}, ~ J=7.5 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{1}=8.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}\right), 7.69(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 8.83$
$(1 \mathrm{H}, \mathrm{s}), 11.53(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 11.56(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 12.63(1 \mathrm{H}$, $\mathrm{s}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\left.d_{6}\right): 16.2\left(\mathrm{CH}_{3}\right), 28.4$ $\left(\mathrm{CH}_{2}\right), 112.6,123.9,130.4$ (C tert arom), 117.8, 119.3, $119.5,124.2,125.5,131.4,136.9,137.1,142.5$ (C quat arom), $166.4(2 \mathrm{C}), 168.7,169.3(\mathrm{C}=\mathrm{O})$.
6.1.3.3. Compound 5. $\mathrm{Mp}>290^{\circ} \mathrm{C}$. IR (KBr) $v_{\mathrm{C}=\mathrm{O}}$ $1700,1735 \mathrm{~cm}^{-1}$, $v_{\mathrm{NH}} 3150-3380 \mathrm{~cm}^{-1}$. Mass (CI+) $382[\mathrm{M}+\mathrm{H}]^{+}$.
${ }^{1} \mathrm{H} \quad$ NMR $\quad\left(400 \mathrm{MHz}, \quad\right.$ DMSO- $\left.d_{6}\right): \quad 1.36 \quad(3 \mathrm{H}, \quad \mathrm{t}$, $J=7.5 \mathrm{~Hz}), 1.42(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.87(2 \mathrm{H}, \mathrm{q}$, $J=7.5 \mathrm{~Hz}), 2.92(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 7.41-7.45(2 \mathrm{H}$, $\mathrm{m}), 7.68(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.69(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$, $8.62(1 \mathrm{H}, \mathrm{s}), 8.82(1 \mathrm{H}, \mathrm{s}), 11.02(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 12.04$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 12.17(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.
6.1.4. 5-(3-Hydroxyprop-1-enyl)-1 H -indole (6). To a mixture of 5-iodoindole ($200 \mathrm{mg}, 0.82 \mathrm{mmol}$) and allyl alcohol $(168 \mu \mathrm{~L}, 2.47 \mathrm{mmol})$ in DMF $(1 \mathrm{~mL})$ were added $\mathrm{PPh}_{3} \quad(18.6 \mathrm{mg}, \quad 0.071 \mathrm{mmol}), \quad \mathrm{Pd}(\mathrm{OAc})_{2} \quad(14 \mathrm{mg}$, 0.062 mmol), and $\mathrm{AgOAc}(137 \mathrm{mg}, 0.82 \mathrm{mmol})$. The mixture was stirred at $70^{\circ} \mathrm{C}$ for 6 h . After cooling and filtration over Celite, the solid residue was washed successively with MeOH and THF, and the filtrate was evaporated. Water was added to the residue. After extraction with EtOAc, the organic phase was dried over MgSO_{4}. After filtration, the solvent was removed and the residue was purified by flash chromatography (eluent: cyclohexane/EtOAc 7:3) to give 6 (49 mg , $0.283 \mathrm{mmol}, 34 \%$ yield) as an orange oil. IR (NaCl) $v_{\mathrm{C}=\mathrm{C}} 1620,1650 \mathrm{~cm}^{-1}, v_{\mathrm{NH}}$, он $3090-3650 \mathrm{~cm}^{-1}$. Mass $(\mathrm{CI}+) 174[\mathrm{M}+\mathrm{H}]^{+}$.
${ }^{1} \mathrm{H} \quad$ NMR $\quad\left(400 \mathrm{MHz}, \quad \mathrm{DMSO}-d_{6}\right): 4.15 \quad(2 \mathrm{H}, \quad \mathrm{dt}$, $\left.J_{1}=5.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}\right), 4.80(1 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}, \mathrm{OH})$, $6.27\left(1 \mathrm{H}, \mathrm{dt}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}\right), 6.42-6.44(1 \mathrm{H}$, $\mathrm{m}), \quad 6.63(1 \mathrm{H}, \quad \mathrm{d}, \quad J=16.0 \mathrm{~Hz}), \quad 7.27(1 \mathrm{H}, \quad \mathrm{dd}$, $\left.J_{1}=8.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}\right), 7.34(1 \mathrm{H}, \mathrm{t}, J=2.5 \mathrm{~Hz}), 7.37$ $(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{s}), 11.11(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\left.d_{6}\right)$: $61.9\left(\mathrm{CH}_{2}\right), 101.3$, $111.5,118.4,119.3,125.7,126.9,130.4(\mathrm{CH}), 127.8$, 128.0, 135.5 (C quat arom).
6.1.5. 5-(3-Benzyloxyprop-1-enyl)- $\mathbf{H} \boldsymbol{H}$-indole (7). To a mixture of 5 -iodoindole ($1.00 \mathrm{~g}, 4.11 \mathrm{mmol}$) and allylbenzylether ($1.90 \mathrm{~mL}, 12.3 \mathrm{mmol}$) in DMF (5 mL) were added $\mathrm{PPh}_{3}(93 \mathrm{mg}, 0.355 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(46 \mathrm{mg}$, 0.205 mmol), and $\mathrm{AgOAc}(686 \mathrm{mg}, 4.11 \mathrm{mmol})$. The mixture was stirred at $70^{\circ} \mathrm{C}$ for 20 h . After cooling and filtration over Celite, the solid residue was washed successively with MeOH and THF, and the filtrate was evaporated. Brine was added to the residue. After extraction with EtOAc, the organic phase was dried over MgSO_{4}. After filtration, the solvent was removed and the residue was purified by flash chromatography (eluent: cyclohexane/EtOAc 9:1) to give $7(476 \mathrm{mg}$, $1.81 \mathrm{mmol}, 44 \%$ yield) as a pale yellow oil. IR (NaCl) $v_{\mathrm{C}=\mathrm{C}} 1618,1652 \mathrm{~cm}^{-1}$, $v_{\mathrm{NH}} 3120-3520 \mathrm{~cm}^{-1}$. Mass (CI+) $264[\mathrm{M}+\mathrm{H}]^{+}$.
${ }^{1} \mathrm{H} \quad$ NMR $\quad\left(400 \mathrm{MHz}, \quad\right.$ DMSO- $\left.d_{6}\right): 4.20 \quad(2 \mathrm{H}, \quad \mathrm{dd}$, $\left.J_{1}=6.0 \mathrm{~Hz}, J_{2}=1.0 \mathrm{~Hz}\right), 4.56(2 \mathrm{H}, \mathrm{s}), 6.31(1 \mathrm{H}, \mathrm{dt}$, $\left.J_{1}=16.0 \mathrm{~Hz}, \quad J_{2}=6.0 \mathrm{~Hz}\right), \quad 6.44-6.47(1 \mathrm{H}, ~ \mathrm{~m}), ~ 6.73$ $(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 7.30-7.43(8 \mathrm{H}, \mathrm{m}), 7.62(1 \mathrm{H}, \mathrm{s})$, $11.16(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): 70.6, $71.1\left(\mathrm{CH}_{2}\right)$, 101.4, 111.6, 118.8, 119.4, 122.5, 125.8, 127.3, 127.5 (2C), 128.2 (2C), 133.6 (C tert arom), 127.5, 127.8, 135.7, 138.6 (C quat arom).
6.1.6. 5-(2-Phenylethynyl)-1 H-indole (8). A mixture of 5iodoindole $(100 \mathrm{mg}, \quad 0.41 \mathrm{mmol})$, phenylacetylene $(71 \mu \mathrm{~L}, 0.65 \mathrm{mmol}), \mathrm{CuI}(4 \mathrm{mg}, 0.021 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(14 \mathrm{mg}, 0.014 \mathrm{mmol})$, and triethylamine $(117 \mu \mathrm{~L})$ in acetonitrile $(440 \mu \mathrm{~L})$ was refluxed for 23 h . After evaporation, the residue was purified by flash chromatography (eluent: cyclohexane/EtOAc 9:1) to give 8 (79 mg , $0.36 \mathrm{mmol}, 88 \%$ yield) as a light brown solid. Mp $135^{\circ} \mathrm{C}$. IR (KBr) $v_{\mathrm{C}} \equiv \mathrm{C} 2204 \mathrm{~cm}^{-1}, v_{\mathrm{C}=\mathrm{C}} 1592 \mathrm{~cm}^{-1}$, $v_{\mathrm{NH}} 3409 \mathrm{~cm}^{-1}$. Mass (CI+) $218[\mathrm{M}+\mathrm{H}]^{+}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $6.51(1 \mathrm{H}, \mathrm{s}), 7.29(1 \mathrm{H}$, dd, $\left.J_{1}=8.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}\right), 7.40-7.49(5 \mathrm{H}, \mathrm{m}), 7.55-$ $7.60(2 \mathrm{H}, \mathrm{m}), 7.82(1 \mathrm{H}, \mathrm{s}), 11.38(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): 86.6, 91.6, 112.3, 123.2, 127.6, 135.7 ($\mathrm{C}_{\text {alkyne }}$ and C quat arom), 101.4, 111.9, 123.8, 124.3, 126.7, 128.1, 128.7, 131.1 (C tert arom).
6.1.7. 5-(3-Hydroxypropyl)-1H-indole (9). A mixture of compound $6(225 \mathrm{mg}, \quad 1.30 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}$ $(23 \mathrm{mg})$ in methanol (20 mL) was hydrogenated (1 bar) for 3 h . After filtration over Celite, the filtrate was evaporated and the residue was purified by flash chromatography (eluent: cyclohexane/EtOAc 7:3) to give 9 ($134 \mathrm{mg}, 0.765 \mathrm{mmol}, 59 \%$ yield) as a yellow-orange oil. IR $(\mathrm{NaCl}) v_{\mathrm{NH}}$, он $3100-3650 \mathrm{~cm}^{-1}$. Mass (CI+) $176[\mathrm{M}+\mathrm{H}]^{+}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): 1.73-1.82 ($2 \mathrm{H}, \mathrm{m}$), $2.69(2 \mathrm{H}, \mathrm{t}, ~ J=7.5 \mathrm{~Hz}), 3.46\left(2 \mathrm{H}, \mathrm{dt}, J_{1}=6.5 \mathrm{~Hz}\right.$, $\left.J_{2}=5.0 \mathrm{~Hz}\right), 4.46(1 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz}, \mathrm{OH}), 6.35-6.37$ $(1 \mathrm{H}, \mathrm{m}), 6.95\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}\right), 7.29-$ $7.33(2 \mathrm{H}, \mathrm{m}), 7.34-7.36(1 \mathrm{H}, \mathrm{m}), 10.95(1 \mathrm{H}, \mathrm{br}$ s, NH).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\left.d_{6}\right): 31.9,35.2,60.3\left(\mathrm{CH}_{2}\right)$, $100.6,111.1,119.0,122.0,125.2$ (C tert arom), 127.8, 132.3, 134.4 (C quat arom).
6.1.8. 5-(3-Benzyloxypropyl)-1 H -indole (10). A mixture of compound $7(388 \mathrm{mg}, 1.47 \mathrm{mmol}), 10 \% \mathrm{Pd} / \mathrm{C}(39 \mathrm{mg})$, and pyridine $(145 \mu \mathrm{~L}, 1.79 \mathrm{mmol})$ in methanol $(22 \mathrm{~mL})$ was hydrogenated (1 bar) for 4 h . After filtration over Celite, the filtrate was evaporated and the residue was purified by flash chromatography (eluent: cyclohexane/ EtOAc 9:1) to give $\mathbf{1 0}$ ($363 \mathrm{mg}, 1.37 \mathrm{mmol}, 93 \%$ yield) as a brown oil. IR $(\mathrm{NaCl}) v_{\mathrm{NH}} 3180-3500 \mathrm{~cm}^{-1}$. Mass $(\mathrm{CI}+) 266[\mathrm{M}+\mathrm{H}]^{+}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): 1.86-1.95 (2H, m), $2.73(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 3.47(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 4.49$
$(2 \mathrm{H}, \mathrm{s}), 6.35-6.38(1 \mathrm{H}, \mathrm{m}), 6.95(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$, 7.29-7.42 ($8 \mathrm{H}, \mathrm{m}$), $10.98(1 \mathrm{H}, \mathrm{br}$ s, NH).
${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): 31.8, 31.9, 69.0, 71.8 $\left(\mathrm{CH}_{2}\right), 100.6,111.1,119.1,121.9,125.2,127.3,127.5$ (2C), 128.2 (2C) (C tert arom), 127.8, 131.7, 134.4, 138.7 (C quat arom).
6.1.9. 5-(2-Phenylethyl)-1H-indole (11). A mixture of 8 $(366 \mathrm{mg}, 1.68 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(134 \mathrm{mg})$ in methanol (25 mL) was hydrogenated (1 bar) for 20 h . After filtration over Celite, the filtrate was evaporated and the residue was purified by flash chromatography (eluent: cyclohexane/EtOAc 9:1) to give $11(236 \mathrm{mg}, 1.07 \mathrm{mmol}$, 63% yield) as a white solid. Mp $75^{\circ} \mathrm{C}$. IR (KBr) $v_{\mathrm{C}=\mathrm{C}}$ $1580,1600 \mathrm{~cm}^{-1}$, $v_{\mathrm{NH}} 3410 \mathrm{~cm}^{-1}$. Mass (ESI+) 244 $[\mathrm{M}+\mathrm{Na}]^{+}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): 2.90-3.00 (4H, m), $6.35-6.38 \quad(1 \mathrm{H}, \quad \mathrm{m}), \quad 7.01 \quad\left(1 \mathrm{H}, \quad \mathrm{dd}, \quad J_{1}=8.5 \mathrm{~Hz}\right.$, $\left.J_{2}=1.5 \mathrm{~Hz}\right), 7.18-7.23(1 \mathrm{H}, \mathrm{m}), 7.25-7.34(6 \mathrm{H}, \mathrm{m})$, $7.40(1 \mathrm{H}, \mathrm{s}), 10.99(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): 37.5, $38.1\left(\mathrm{CH}_{2}\right)$, 100.6, 111.0, 119.1, 121.9, 125.2, 125.7, 128.2 (2C), 128.4 (2C) (C tert arom), 127.7, 131.7, 134.5, 141.9 (C quat arom).
6.1.10. 5-(3-Acetoxypropyl)-3-(2,5-dioxopyrrolidin-3-yl)$\mathbf{1 H}$-indole (12). A mixture of $9(134 \mathrm{mg}, 0.765 \mathrm{mmol})$, maleimide $(80 \mathrm{mg}, \quad 0.82 \mathrm{mmol})$, and acetic acid $(685 \mu \mathrm{~L})$ was refluxed for 20 h . After evaporation, the residue was purified by flash chromatography (eluent: cyclohexane/EtOAc from $7: 3$ to $4: 6$) to give $\mathbf{1 2}$ ($102 \mathrm{mg}, 0.324 \mathrm{mmol}, 42 \%$ yield) as a yellow oil. IR (film): $v_{\mathrm{C}=\mathrm{C}} 1712,1772 \mathrm{~cm}^{-1} ; v_{\mathrm{NH}} 3090-3690 \mathrm{~cm}^{-1}$. Mass (CI+) $315[\mathrm{M}+\mathrm{H}]^{+}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): 1.88-1.97 ($2 \mathrm{H}, \mathrm{m}$), $2.01(3 \mathrm{H}, \mathrm{s}), 2.72(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.80(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{1}=18.0 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}\right), 3.21\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=18.0 \mathrm{~Hz}\right.$, $\left.J_{2}=9.5 \mathrm{~Hz}\right), 4.04(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 4.35(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{1}=9.5 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}\right), 7.00\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}\right.$, $\left.J_{2}=1.5 \mathrm{~Hz}\right), 7.26(1 \mathrm{H}, \mathrm{s}), 7.30-7.35(2 \mathrm{H}, \mathrm{m}), 10.97$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 11.33(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $20.7\left(\mathrm{CH}_{3}\right), 30.5,31.7$, $37.4,63.3\left(\mathrm{CH}_{2}\right), 39.0(\mathrm{CH}), 111.6,117.5,122.2,123.4$ (C tert arom), 110.6, 126.2, 131.2, 135.1 (C quat arom), 170.4, 178.1, $179.9(\mathrm{C}=\mathrm{O})$.
6.1.11. 5-(3-Benzyloxypropyl)-3-(2,5-dioxopyrrolidin-3-yl)-1H-indole (13). A mixture of compound $\mathbf{1 0}$ (352 mg , 1.33 mmol), maleimide ($135 \mathrm{mg}, 1.39 \mathrm{mmol}$), and acetic acid (1.1 mL) was refluxed for 20 h . After evaporation, the residue was purified by flash chromatography (eluent: cyclohexane/EtOAc from $7: 3$ to $4: 6$) to give 13 ($237 \mathrm{mg}, 0.654 \mathrm{mmol}, 49 \%$ yield) as a dark brown solid. $\operatorname{Mp} 110^{\circ} \mathrm{C}$. IR (KBr) $v_{\mathrm{C}=\mathrm{O}} 1685,1780 \mathrm{~cm}^{-1}$, $v_{\mathrm{NH}} 3100-$ $3500 \mathrm{~cm}^{-1}$. Mass (ESI+) $385[\mathrm{M}+\mathrm{Na}]^{+}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): 1.84-1.93 (2H, m), $2.73(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.79\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=18.0 \mathrm{~Hz}\right.$,
$\left.J_{2}=5.5 \mathrm{~Hz}\right), 3.21\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=18.0 \mathrm{~Hz}, J_{2}=9.5 \mathrm{~Hz}\right)$, $3.48(2 \mathrm{H}, \mathrm{t}, ~ J=6.5 \mathrm{~Hz}), 4.34\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=9.5 \mathrm{~Hz}\right.$, $\left.J_{2}=5.5 \mathrm{~Hz}\right), 4.50(2 \mathrm{H}, \mathrm{s}), 6.99\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}\right.$, $\left.J_{2}=1.5 \mathrm{~Hz}\right), 7.26(1 \mathrm{H}, \mathrm{s}), 7.29-7.42(7 \mathrm{H}, \mathrm{m}), 10.95$ $(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{NH}), 11.34(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): 31.9, 32.0, 37.4, 69.0, $71.9\left(\mathrm{CH}_{2}\right), 39.0(\mathrm{CH}), 111.5,117.4,122.3,123.4,127.3$, 127.5 (2C), 128.2 (2C) (C tert arom), 110.6, 126.2, 131.8, 135.1, 138.7 (C quat arom), 178.1, $180.0(\mathrm{C}=\mathrm{O})$.
6.1.12. 3-(2,5-Dioxopyrrolidin-3-yl)-5-(2-phenylethyl)-1H-indole (14). A mixture of compound 11 (213 mg , 0.96 mmol), maleimide ($102 \mathrm{mg}, 1.05 \mathrm{mmol}$), and acetic acid $(0.8 \mathrm{~mL})$ was refluxed for 21 h . After evaporation, the residue was purified by flash chromatography (eluent: cyclohexane/EtOAc from $7: 3$ to $4: 6$) to give 14 ($125 \mathrm{mg}, 0.39 \mathrm{mmol}, 41 \%$ yield) as an off-white solid. Mp 208-218 ${ }^{\circ} \mathrm{C}$. IR (KBr) $v_{\mathrm{C}=\mathrm{O}} 1690,1775 \mathrm{~cm}^{-1}$, v_{NH} 3100-3260, $3260-3500 \mathrm{~cm}^{-1}$. Mass (ESI+) 341 $[\mathrm{M}+\mathrm{Na}]^{+}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $2.75 \quad(1 \mathrm{H}, \quad$ dd, $\left.J_{1}=18.0 \mathrm{~Hz}, \quad J_{2}=5.5 \mathrm{~Hz}\right), \quad 2.88-3.00(4 \mathrm{H}, \mathrm{m}), 3.19$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=18.0 \mathrm{~Hz}, J_{2}=9.5 \mathrm{~Hz}\right), 4.33(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{1}=9.5 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}\right), 7.04\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}\right.$, $\left.J_{2}=1.5 \mathrm{~Hz}\right), 7.18-7.23(1 \mathrm{H}, \mathrm{m}), 7.25-7.33(7 \mathrm{H}, \mathrm{m})$, $10.95(1 \mathrm{H}$, br s, NH), $11.32(1 \mathrm{H}$, br s, NH).
${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): 37.4, 37.5, $38.0\left(\mathrm{CH}_{2}\right)$, $39.0(\mathrm{CH}), 111.4,117.5,122.4,123.4,125.7,128.2$ (2C), 128.4 (2C) (C tert arom), 110.6, 126.1, 131.6, 135.1, 141.8 (C quat arom), 178.0, $179.9(\mathrm{C}=\mathrm{O})$.
6.1.13. 5-(3-Acetoxypropyl)-3-(2,5-dihydro-2,5-dioxo-pyrrol-3-yl)-1 \boldsymbol{H}-indole (15). A solution of DDQ (82 mg , $0.361 \mathrm{mmol})$ in dioxane $(2.7 \mathrm{~mL})$ was slowly added to solution of compound $12(108 \mathrm{mg}, 0.344 \mathrm{mmol})$ in dioxane $(2.7 \mathrm{~mL})$. The mixture was stirred at room temperature for 3 h . After filtration, the filtrate was evaporated and the residue was purified by flash chromatography (eluent cyclohexane/EtOAc 7:3) to give compound $\mathbf{1 5}$ ($75 \mathrm{mg}, \quad 0.240 \mathrm{mmol}, 70 \%$ yield) as a yellow solid. $\mathrm{Mp}=165^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v_{\mathrm{C}=\mathrm{C}} 1610 \mathrm{~cm}^{-1}, v_{\mathrm{C}=\mathrm{O}} 1690$, $1740,1760 \mathrm{~cm}^{-1}, v_{\mathrm{NH}}=3090-3490 \mathrm{~cm}^{-1}$. Mass (ESI+) $335[\mathrm{M}+\mathrm{Na}]^{+}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): 1.94-2.03 ($2 \mathrm{H}, \mathrm{m}$), $2.05(3 \mathrm{H}, \mathrm{s}), 2.81(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 4.05(2 \mathrm{H}, \mathrm{t}$, $J=6.5 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{1}=8.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}\right), 7.46(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.83$ $(1 \mathrm{H}, \mathrm{s}), 8.36(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}), 10.77(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $11.96(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $20.7\left(\mathrm{CH}_{3}\right), 30.5,31.6$, $63.4\left(\mathrm{CH}_{2}\right), 112.3,115.0,119.7,123.8,130.9(\mathrm{C}$ tert arom), 105.1, 125.8, 134.5, 135.2, 139.5 (C quat), $170.5,173.2,173.5(\mathrm{C}=\mathrm{O})$.
6.1.14. 5-(3-Benzyloxypropyl)-3-(2,5-dihydro-2,5-dioxo-pyrrol-3- yl)-1H-indole (16). A solution of DDQ $(152 \mathrm{mg}, 0.67 \mathrm{mmol})$ in dioxane $(5 \mathrm{~mL})$ was slowly added to a solution of compound $13(231 \mathrm{mg}, 0.64 \mathrm{mmol})$ in
dioxane $(5 \mathrm{~mL})$. The mixture was stirred at room temperature for 3 h . After filtration, the filtrate was evaporated and the residue was purified by flash chromatography (eluent: cyclohexane/EtOAc 7:3) to give compound $16(197 \mathrm{mg}, 0.55 \mathrm{mmol}, 86 \%$ yield $)$ as a yellow solid. Mp $160^{\circ} \mathrm{C}$. IR (KBr) $v_{\mathrm{C}=\mathrm{C}}=1610 \mathrm{~cm}^{-1}$, $v_{\mathrm{C}=\mathrm{O}} 1705,1760 \mathrm{~cm}^{-1}$, $v_{\mathrm{NH}} 3150-3400 \mathrm{~cm}^{-1}$. Mass $(\mathrm{ESI}+) 383[\mathrm{M}+\mathrm{Na}]^{+}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): 1.91-2.00 ($2 \mathrm{H}, \mathrm{m}$), $2.82(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 3.49(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 4.50$ $(2 \mathrm{H}, ~ \mathrm{~s}), 6.84(1 \mathrm{H}, \mathrm{d}, \quad J=1.0 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{1}=8.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}\right), 7.28-7.41(5 \mathrm{H}, \mathrm{m}), 7.45(1 \mathrm{H}$, $\mathrm{d}, J=8.5 \mathrm{~Hz}), 7.81(1 \mathrm{H}, \mathrm{s}), 8.35(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz})$, $10.77(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 11.96(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): 31.8, 32.0, 69.1, 71.9 $\left(\mathrm{CH}_{2}\right), 112.2,114.9,119.7,123.8,127.3,127.5$ (2C), 128.2 (2C), 130.9 (C tert arom), 105.1, 125.8, 135.1 (2C), 138.7, 139.5 (C quat), 173.2, $173.5(\mathrm{C}=\mathrm{O})$.
6.1.15. 3-(2,5-Dihydro-2,5-dioxo-pyrrol-3-yl)-5-(2-phen-ylethyl)-1H-indole (17). A solution of DDQ $(87 \mathrm{mg}$, $0.383 \mathrm{mmol})$ in dioxane (2.9 mL) was slowly added to a solution of compound $\mathbf{1 4}(117 \mathrm{mg}, 0.367 \mathrm{mmol})$ in dioxane $(2.9 \mathrm{~mL})$. The mixture was stirred at room temperature for 3 h . After filtration, the filtrate was evaporated and the residue was purified by flash chromatography (eluent: cyclohexane/EtOAc 7:3) to give 17 (102 mg , $0.322 \mathrm{mmol}, 88 \%$ yield) as an orange solid. $\mathrm{Mp} 212{ }^{\circ} \mathrm{C}$. IR (KBr) $v_{\mathrm{C}=\mathrm{C}} 1605 \mathrm{~cm}^{-1}, v_{\mathrm{C}=\mathrm{O}} 1690,1760 \mathrm{~cm}^{-1}, v_{\mathrm{NH}}$ $3120-3460 \mathrm{~cm}^{-1}$. Mass (ESI+) $339[\mathrm{M}+\mathrm{Na}]^{+}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): 2.94-3.01 ($2 \mathrm{H}, \mathrm{m}$), 3.02-3.08 ($2 \mathrm{H}, \mathrm{m}$), $6.84(1 \mathrm{H}, ~ \mathrm{~s}), \quad 7.17(1 \mathrm{H}, \mathrm{d}$, $J=8.5 \mathrm{~Hz}), 7.19-7.25(1 \mathrm{H}, \mathrm{m}), 7.29-7.34(4 \mathrm{H}, \mathrm{m}), 7.45$ $(1 \mathrm{H}, \mathrm{d}, \quad J=8.5 \mathrm{~Hz}), 7.86(1 \mathrm{H}, ~ \mathrm{~s}), 8.35(1 \mathrm{H}, \mathrm{d}$, $J=2.0 \mathrm{~Hz}), 10.77(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 11.96(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): 37.4, $38.1\left(\mathrm{CH}_{2}\right)$, $112.2,114.9,119.8,123.9,125.7,128.2$ (2C), 128.4 (2C), $130.9(\mathrm{CH}), 105.1,125.8,134.9,135.2,139.5$, 141.9 (C quat), 173.2, 173.5 ($\mathrm{C}=\mathrm{O}$).
6.1.16. 10-(3-Benzyloxypropyl)-1,3,4,6-tetrahydro$2 \mathrm{H}, 5 \mathrm{H}, 7 \mathrm{H}$-dipyrrolo[3,4-a:3,4-c|carbazole-1,3,4,6-tetraone (21). A mixture of compound $\mathbf{1 6}$ (191 mg , 0.53 mmol), maleimide ($56.7 \mathrm{mg}, 0.58 \mathrm{mmol}$) in p-xylene (9 mL) was refluxed for 24 h . After cooling, the mixture was filtered off, the solid residue was washed with p-xylene and then was dried to give 223 mg of intermediate 19. Compound $19(50 \mathrm{mg})$ in dioxane (3.6 mL) was stirred at $80^{\circ} \mathrm{C}$ in the presence of TFA $(265 \mu \mathrm{~L}, 3.44 \mathrm{mmol})$ for 3 days. After evaporation, water was added to the residue and the mixture was filtered off. The solid residue was washed with water and then was dried to give $21(41.5 \mathrm{mg}, 0.092 \mathrm{mmol}, 77 \%$ yield) as an orange solid. $\mathrm{Mp}>290^{\circ} \mathrm{C}$. IR (KBr) $v_{\mathrm{C}=\mathrm{O}} 1721,1759,1774 \mathrm{~cm}^{-1}$, $v_{\mathrm{NH}} 3080-3590 \mathrm{~cm}^{-1}$. HRMS (ESI+) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{NaO}_{5} 476.1222$, found 476.1202.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): 1.94-2.03 ($2 \mathrm{H}, \mathrm{m}$), $2.90(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 3.53(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 4.53$
$(2 \mathrm{H}, \mathrm{s}), 7.27-7.42(5 \mathrm{H}, \mathrm{m}), 7.56\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}\right.$, $\left.J_{2}=1.0 \mathrm{~Hz}\right), 7.70(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 8.86(1 \mathrm{H}, \mathrm{s})$, $11.56(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 11.59(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 12.68(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): 31.5, 31.9, 68.8, 71.9 $\left(\mathrm{CH}_{2}\right), 112.7,124.6,127.3,127.5(2 \mathrm{C}), 128.2$ (2C), 130.9 (C tert arom), 117.8, 119.3, 119.5, 124.2, 125.5, 131.4, 135.0, 137.0, 138.6, 142.6 (C quat arom), 166.4, $166.5,168.7,169.3(\mathrm{C}=\mathrm{O})$.
6.1.17. (E)-10-Styryl-1,3,4,6-tetrahydro-2H,5H,7H-dipyrrolo[3,4-a:3,4-c|carbazole-1,3,4,6-tetraone (22). A mixture of $17(107 \mathrm{mg}, 0.338 \mathrm{mmol})$ and maleimide ($36 \mathrm{mg}, 0.371 \mathrm{mmol}$) in p-xylene (5.8 mL) was refluxed for 24 h . After cooling, the mixture was filtered off, and the solid residue was washed with p-xylene and then was dried to give 124.6 mg of intermediate 20 . Compound $20(123 \mathrm{mg})$ in dioxane (4 mL) was refluxed for 3 days in the presence of DDQ ($138 \mathrm{mg}, 0.61 \mathrm{mmol}$). After evaporation, water was added to the residue and the mixture was filtered off. The solid residue was successively washed with water and EtOAc, and then was dried to give 22 ($37 \mathrm{mg}, 0.091 \mathrm{~mol}, 27 \%$ yield) as a red solid. $\mathrm{Mp}>290^{\circ} \mathrm{C}$. IR (KBr) $v_{\mathrm{C}=\mathrm{C}} 1600 \mathrm{~cm}^{-1}, v_{\mathrm{C}=\mathrm{O}}$ $1720,1775 \mathrm{~cm}^{-1}, v_{\mathrm{NH}} 3150-3400 \mathrm{~cm}^{-1}$. HRMS (ESI+) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}_{4}$ 430.0804, found 430.0803.
${ }^{1} \mathrm{H} \quad$ NMR $\quad\left(400 \mathrm{MHz}, \quad\right.$ DMSO- $\left.d_{6}\right): \quad 7.29 \quad(1 \mathrm{H}, \quad \mathrm{d}$, $J=16.5 \mathrm{~Hz}), 7.32(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.44(2 \mathrm{H}, \mathrm{t}$, $J=7.5 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}), 7.72(2 \mathrm{H}, \mathrm{d}$, $J=7.5 \mathrm{~Hz}), 7.79(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 8.04(1 \mathrm{H}, \mathrm{d}$, $J=8.5 \mathrm{~Hz}), 9.14(1 \mathrm{H}, \mathrm{s}), 11.59(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 11.65$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 12.84(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.

Due to its insolubility, the ${ }^{13} \mathrm{C}$ NMR spectrum could not be recorded.
6.1.18. 10-(2-Phenylethyl)-1,3,4,6-tetrahydro-2H,5H,7H-dipyrrolo[3,4-a:3,4-c|carbazole-1,3,4,6-tetraone (23). A mixture of $17(79 \mathrm{mg}, 0.234 \mathrm{mmol})$ and maleimide $(26.7 \mathrm{mg}, 0.275 \mathrm{mmol})$ in p-xylene (4.3 mL) was refluxed for 24 h . After cooling, the mixture was filtered off, and the solid residue was washed with p-xylene and then was dried to give 81 mg of intermediate $\mathbf{2 0}$. Compound $\mathbf{2 0}$ $(30 \mathrm{mg})$ in TFA ($56 \mu \mathrm{~L}, 0.73 \mathrm{mmol}$) was refluxed for 48 h . After evaporation, water was added to the residue. The mixture was filtered off and the solid residue was washed with water and then was dried to give 23 ($24.0 \mathrm{mg}, 0.059 \mathrm{mmol}, 68 \%$ yield) as an orange solid. $\mathrm{Mp}>290^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v_{\mathrm{C}=\mathrm{C}} 1607 \mathrm{~cm}^{-1}, v_{\mathrm{C}=\mathrm{O}} 1721$, $1773 \mathrm{~cm}^{-1}, \quad v_{\mathrm{NH}} \quad 3140-3460 \mathrm{~cm}^{-1}$. HRMS (ESI+) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}_{4} 432.0960$, found 432.0956.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): 3.00-3.07 ($2 \mathrm{H}, \mathrm{m}$), 3.09-3.17 ($2 \mathrm{H}, \mathrm{m}$), 7.19-7.25 (1H, m), 7.29-7.35 (4H, $\mathrm{m}), 7.58\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}\right), 7.69(1 \mathrm{H}$, $\mathrm{d}, J=8.5 \mathrm{~Hz}), 8.88(1 \mathrm{H}, \mathrm{s}), 11.55(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 11.58$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 12.68(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): 37.2, $37.5\left(\mathrm{CH}_{2}\right)$, $112.5,124.5,125.8,128.2$ (2C), 128.4 (2C), 130.9 (C tert
arom), 117.8, 119.3, 119.4, 124.2, 125.5, 131.4, 134.7, 136.9, 141.4, 142.6 (C quat arom), 166.4 (2C), 168.6, $169.2(\mathrm{C}=\mathrm{O})$.
6.1.19. 10-(3-Hydroxypropyl)-1,3,4,6-tetrahydro$2 \mathrm{H}, 5 \mathrm{H}, 7 \mathrm{H}$-dipyrrolo[3,4-a:3,4-c|carbazole-1,3,4,6-tetraone (24). A solution of compound $22(30.0 \mathrm{mg}$, 0.066 mmol) in TFA (4 mL) was refluxed for 48 h . After cooling, the mixture was co-evaporated with toluene. EtOAc was added to the residue and the mixture was filtered off to give $24(19.1 \mathrm{mg}, 0.053 \mathrm{mmol}, 80 \%$ yield) as an orange solid. $\mathrm{Mp}>290^{\circ} \mathrm{C}$. IR (KBr) $v_{\mathrm{C}=\mathrm{O}} 1721$, $1756,1773 \mathrm{~cm}^{-1}, v_{\mathrm{NH}} 3100-3640 \mathrm{~cm}^{-1}$. HRMS (ESI+) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{5}$ 364.0933, found 364.0935 .
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): 2.11-2.20 ($2 \mathrm{H}, \mathrm{m}$), $2.92(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 4.48(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 7.58$ $\left(1 \mathrm{H}, \quad \mathrm{dd}, \quad J_{1}=8.5 \mathrm{~Hz}, \quad J_{2}=1.5 \mathrm{~Hz}\right), \quad 7.71(1 \mathrm{H}, \quad \mathrm{d}$, $J=8.5 \mathrm{~Hz}), 8.84(1 \mathrm{H}, \mathrm{s}), 11.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 11.58$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 12.68(1 \mathrm{H}$, br s, NH).

Due to its insolubility, the ${ }^{13} \mathrm{C}$ NMR spectrum could not be recorded.
6.1.20. 3-(2,5-Dioxopyrrolidin-3-yl)-5-methyl-1 \boldsymbol{H}-indole (25). A mixture of 5 -methylindole ($1.00 \mathrm{~g}, 7.62 \mathrm{mmol}$), maleimide $(740 \mathrm{mg}, \quad 7.62 \mathrm{mmol})$, and acetic acid $(7.7 \mathrm{~mL})$ was refluxed for 24 h . After evaporation, the residue was purified by flash chromatography (eluent: cyclohexane/EtOAc 6:4) to give compound $\mathbf{2 5}$ (586 mg , $2.57 \mathrm{mmol}, 34 \%$ yield) as a yellow solid. Mp $220-$ $225^{\circ} \mathrm{C}$. IR (KBr) $v_{\mathrm{C}=\mathrm{O}} 1685,1775 \mathrm{~cm}^{-1}$, $v_{\mathrm{NH}} 3100-$ $3500 \mathrm{~cm}^{-1}$. Mass (ESI+) $251[\mathrm{M}+\mathrm{Na}]^{+}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.78$ $\left(1 \mathrm{H}, \quad \mathrm{dd}, J_{1}=18.0 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}\right), 3.20(1 \mathrm{H}, \quad \mathrm{dd}$, $\left.J_{1}=18.0 \mathrm{~Hz}, J_{2}=9.5 \mathrm{~Hz}\right), 4.33\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=9.5 \mathrm{~Hz}\right.$, $\left.J_{2}=5.5 \mathrm{~Hz}\right), 6.96\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}\right)$, $7.22(1 \mathrm{H}, \mathrm{s}), 7.29(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{d}$, $J=2.5 \mathrm{~Hz}), 10.93(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 11.33(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $21.3\left(\mathrm{CH}_{3}\right), 37.4$ $\left(\mathrm{CH}_{2}\right), 39.0(\mathrm{CH}), 111.4,117.9,122.9,123.4(\mathrm{C}$ tert arom), 110.3, 126.2, 127.1, 134.8 (C quat arom), 178.1, $179.9(\mathrm{C}=\mathrm{O})$.
6.1.21. 3-(2,5-Dihydro-2,5-dioxo-pyrrol-3-yl)-5-methyl$\mathbf{1 H}$-indole (26). A solution of DDQ ($602 \mathrm{mg}, 2.65 \mathrm{mmol}$) in dioxane (24 mL) was slowly added to a solution of compound 25 ($550 \mathrm{mg}, 2.41 \mathrm{mmol}$) in dioxane (24 mL). The mixture was stirred at room temperature overnight. After filtration, the filtrate was evaporated and the residue was purified by flash chromatography (cyclohexane/ EtOAc 7:3) to give compound 26 ($434 \mathrm{mg}, 1.92 \mathrm{mmol}$, 80% yield) as an orange solid. Mp 210-230 ${ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v_{\mathrm{C}=\mathrm{C}} 1610 \mathrm{~cm}^{-1}, v_{\mathrm{C}=\mathrm{O}} 1700,1750 \mathrm{~cm}^{-1}, v_{\mathrm{NH}}$ $3080-3450 \mathrm{~cm}^{-1}$. Mass (CI+) $227[\mathrm{M}+\mathrm{H}]^{+}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.82$ $(1 \mathrm{H}, \mathrm{s}), 7.11\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=1.0 \mathrm{~Hz}\right), 7.43$ $(1 \mathrm{H}, \mathrm{d}, \quad J=8.5 \mathrm{~Hz}), \quad 7.81(1 \mathrm{H}, \mathrm{s}), 8.34(1 \mathrm{H}, \mathrm{d}$, $J=3.0 \mathrm{~Hz}), 10.76(1 \mathrm{H}$, br s, NH), $11.94(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $21.2\left(\mathrm{CH}_{3}\right), 112.2$, $114.8,120.1,124.4,130.8(\mathrm{CH}), 104.9,125.8,130.4$, $134.9,139.5$ (C quat), 173.2, $173.4(\mathrm{C}=\mathrm{O})$.
6.1.22. 10-Methyl-1,3,4,6-tetrahydro-1,3,4,6-tetraoxo$\mathbf{2 H}, 5 \mathrm{H}, \mathbf{7 H}$-dipyrrolo[3,4-a:3,4-c|carbazole (28). A mixture of compound $26(361 \mathrm{mg}, \quad 1.60 \mathrm{mmol})$ and maleimide ($163 \mathrm{mg}, 1.68 \mathrm{mmol}$) in p-xylene $(27.5 \mathrm{~mL})$ was refluxed for 36 h . Maleimide was added (155 mg) and the mixture was refluxed for 48 h . After cooling, the mixture was filtered off, and the solid residue was washed with p-xylene and then was dried to give 473 mg of intermediate 27 . Compound $27(100 \mathrm{mg})$ in dioxane (19 mL) was refluxed for 18 h in the presence of TFA $(309 \mu \mathrm{~L})$. After cooling, the mixture was filtered off. The orange solid (53 mg) was refluxed for 48 h in dioxane $(9.5 \mathrm{~mL})$ in the presence of TFA $(154 \mu \mathrm{~L})$. After cooling, the mixture was evaporated, water was added to the residue, and the mixture was filtered off. The solid residue was successively washed with water and EtOAc , and then was dried to give $28(22.9 \mathrm{mg}, 0.072 \mathrm{mmol}$, 21% yield). $\mathrm{Mp}>300^{\circ} \mathrm{C}$. IR (KBr) $v_{\mathrm{C}=\mathrm{O}} 1710,1720$, $1750,1770 \mathrm{~cm}^{-1}$, $v_{\mathrm{NH}} 3100-3350 \mathrm{~cm}^{-1}$. HRMS (ESI+) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{4}$ 320.0671, found 320.0665 .
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $2.52(3 \mathrm{H}, \mathrm{s}), 7.45(1 \mathrm{H}$, $\mathrm{d}, J=8.0 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 8.66(1 \mathrm{H}, \mathrm{s})$, $11.48(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 11.50(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 12.49(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $21.2\left(\mathrm{CH}_{3}\right), 112.4$, 125.0, 131.3 (C tert arom), 117.6, 119.2, 119.4, 123.9, 125.4, 130.4, 131.2, 136.7, 142.2 (C quat arom), 166.3, 166.4, 168.6, $169.1(\mathrm{C}=\mathrm{O})$.

6.2. Chk1 inhibition

Human Chk1 full-length enzyme with an N-terminal GST sequence was either purchased from Upstate Biochemicals (No. 14-346) or purified from extracts of Sf9 cells infected with a baculovirus encoding GST-Chk1. Assays for compound testing were based upon the method described by Davies et al. ${ }^{25}$

6.3. Growth inhibition assays

Tumor cells were provided by American Type Culture Collection (Frederik, MD, USA). They were cultivated in RPMI 1640 medium (Life Science Technologies, Cer-gy-Pontoise, France) supplemented with 10% fetal calf serum, 2 mM l-glutamine, $100 \mathrm{U} / \mathrm{mL}$ penicillin, $100 \mu \mathrm{~g} /$ mL streptomycin, and 10 mM HEPES buffer ($\mathrm{pH}=7.4$). Cytotoxicity was measured by the microculture tetrazolium assay as described. ${ }^{26}$ Cells were continuously exposed to graded concentrations of the compounds for four doubling times, then $15 \mu \mathrm{~L}$ of $5 \mathrm{mg} / \mathrm{mL} \quad 3$-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide were added to each well and the plates were incubated for 4 h at $37^{\circ} \mathrm{C}$. The medium was then aspirated and the formazan solubilized by $100 \mu \mathrm{~L}$ was DMSO. Results are expressed as IC_{50}, concentration which reduced by 50% the optical density of treated cells with respect to untreated controls.

Acknowledgments

The authors are grateful to Bertrand Légeret, University Blaise Pascal, Clermont-Ferrand, for recording the mass spectra, Jean Boutin and Gilles Ferry (Molecular and Cellular Pharmacology, IdRS) for purification of Chk1, and Séverine Ugnon-Café and Céline Bossard for kinase assays.

References and notes

1. Berlinck, R. G. S.; Britton, R.; Piers, E.; Lim, L.; Roberge, M.; Moreira da Rocha, R.; Andersen, R. J. J. Org. Chem. 1998, 63, 9850-9856.
2. Roberge, M.; Berlinck, R. G. S.; Xu, L.; Anderson, H. J.; Lim, L. Y.; Curman, D.; Stringer, C. M.; Friend, S. H.; Davies, P.; Vincent, I.; Haggarty, S. J.; Kelly, M. T.; Britton, R.; Piers, E.; Andersen, R. J. Cancer Res. 1998, 58, 5701-5706.
3. Andersen, R. J.; Roberge, M.; Sanghera, J.; Leung, D.; International Patent, 1999, WO99/47522, CA 131: 243451.
4. Nyberg, K. A.; Michelson, R. J.; Putnam, C. W.; Weinert, T. A. Annu. Rev. Genet. 2002, 36, 617-656.
5. Anderson, H. J.; Andersen, R. J.; Roberge, M. In Meijer, L., Jézéquel, A., Roberge, M., Eds. Prog. Cell Cycle Res. 2003, 5, 423-430.
6. Zhao, B.; Bower, M. J.; McDevitt, P. J.; Zhao, H.; Davis, S. T.; Johanson, K. O.; Green, S. M.; Concha, N. O.; Zhou, B. B. S. J. Biol. Chem. 2002, 277, 46609-46615.
7. Fischer, P. M.; Endicott, J.; Meijer, L.. In Meijer, L., Jézéquel, A., Roberge, M., Eds. Prog. Cell Cycle Res. 2003, 5, 235-248.
8. Jiang, X.; Zhao, B.; Britton, R.; Lim, L. Y.; Leong, D.; Sanghera, J. S.; Zhou, B. B. S.; Piers, E.; Andersen, R. J.; Roberge, M. Mol. Cancer Ther. 2004, 3, 1221-1227.
9. Hugon, B.; Pfeiffer, B.; Renard, P.; Prudhomme, M. Tetrahedron Lett. 2003, 44, 3927-3930.
10. Hugon, B.; Pfeiffer, B.; Renard, P.; Prudhomme, M. Tetrahedron Lett. 2003, 44, 3935-3937.
11. Hénon, H.; Messaoudi, S.; Hugon, B.; Anizon, F.; Pfeiffer, B.; Prudhomme, M. Tetrahedron 2005, 61, 5599-5614.
12. Hénon, H.; Anizon, F.; Pfeiffer, B.; Prudhomme, M. Synthesis, in press.
13. Hugon, B.; Pfeiffer, B.; Renard, P.; Prudhomme, M. Tetrahedron Lett. 2003, 44, 4607-4611.
14. Hénon, H.; Anizon, F.; Pfeiffer, B.; Prudhomme, M. Tetrahedron 2006, 62, 1116-1123.
15. Prelog, V.; Vejdelek, Z. Helv. Chim. Acta 1948, 31, 1178-1182.
16. Muratake, H.; Natsume, M. Heterocycles 1989, 29, 771-782.
17. Glennon, R. A.; Hong, S.-S.; Bondarev, M.; Law, H.; Dukat, M.; Rakhit, S.; Power, P.; Fan, E.; Kinneau, D.; Kamboj, R.; Teitler, M.; Herrick-Davis, K.; Smith, C. J. Med. Chem. 1996, 39, 314-322.
18. Starostenko, N. E.; Dat, F. T.; Serova, I. A.; Kamenetskii, A. V.; Suvorov, N. N. Chem. Heterocycl. Compd. (Engl. Transl.) 1991, 27, 508-511.
19. Suvorov, N. N.; Starostenko, N. E.; Zeiberlikh, F. N. J. Org. Chem. USSR (Engl. Transl.) 1980, 16, 2236-2241.
20. Campanati, M.; Franceschini, S.; Piccolo, O.; Vaccari, A. J. Catal. 2005, 232, 1-9.
21. Campanati, M.; Vaccari, A.; Piccolo, O. Catal. Today 2000, 60, 289-295.
22. Sajiki, H.; Kuno, H.; Hirota, K. Tetrahedron Lett. 1998, 39, 7127-7130.
23. Sajiki, H.; Hirota, K. Tetrahedron 1998, 54, 13981-13996.
24. Bergman, J.; Janosik, T.; Koch, E.; Pelcman, B. J. Chem. Soc., Perkin Trans. 1 2000, 2615-2621.
25. Davies, S. P.; Reddy, H.; Caivano, M.; Cohen, P. Biochem. J. 2000, 351, 95-105.
26. Léonce, S.; Pérez, V.; Casabianca-Pignède, M. R.; Anstett, M.; Bisagni, E.; Atassi, G. Invest. New Drugs 1996, 14, 169-180.

[^0]: Keywords: Isogranulatimide; Antitumor agents; Dipyrrolo[3,4-a:3,4-c]carbazole-1,3,4,6-tetraone; Chk1 inhibitors.

 * Corresponding author. Tel.: +334734071 24; fax: +334734077 17; e-mail: Michelle.PRUDHOMME@univ-bpclermont.fr

[^1]: ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $3.93(1 \mathrm{H}, \mathrm{s}, \equiv \mathrm{CH})$, $6.47-6.50 \quad(1 \mathrm{H}, \quad \mathrm{m}), \quad 7.21 \quad\left(1 \mathrm{H}, \quad \mathrm{dd}, \quad J_{1}=8.5 \mathrm{~Hz}\right.$, $\left.J_{2}=1.5 \mathrm{~Hz}\right), 7.41-7.46(2 \mathrm{H}, \mathrm{m}), 7.75(1 \mathrm{H}, \mathrm{s}), 11.34$ (1 H , br s, NH).

