Cite this: DOI: $10.1039 / \mathrm{c} 8 \mathrm{bb} 03196 \mathrm{~g}$

Received 25th December 2018,
Accepted 30th January 2019
DOI: 10.1039/c8ob03196g
rsc.li/obc

Synthesis of resolvin E3 via palladium-catalyzed addition of AcOH to vinyl epoxy alcohols \dagger

Shuhei Tanabe and Yuichi Kobayashi (D) *

Abstract

(18R)- and (18S)-stereoisomers of resolvin E3 (RvE3), potent anti-inflammatory mediators, were synthesized stereo- and enantioselectively through the Wittig reaction of the carbonate of $6 R, 7 R$ - and $6 R, 7 S$ -dihydroxynona-2E,4E-dienal, a C12-C20 part, with the phosphonium salt corresponding to the C1-C11 part. The stereoisomeric carbonate was prepared by the Swern oxidation of 3-(AcO)-6R,7R- or 3-(AcO)$6 R, 7 S$-(dihydroxy-carbonate)-4-nonen-1-ol followed by the spontaneous elimination of the AcO group in one pot. The ($6 R, 7 R$)-(dihydroxy-carbonate)-alcohol for (18R)-RvE3 was, in turn, provided by stereoselective epoxidation of 9 -(TBS-oxy)nona-4Z,6E-dien-3R-ol with m-CPBA and the subsequent Pd-catalyzed addition of AcOH to the resulting syn vinyl epoxy alcohol followed by carbonate formation of the vic-syn-diol and TBS desilylation. The Mitsunobu inversion of the syn vinyl epoxy alcohol gave the anti isomer, which was converted to 3-(AcO)-6R,7S-(dihydroxy-carbonate)-4-nonen-1-ol, the intermediate to (18S)-RvE3, by the same set of reactions.

Introduction

Resolvin E3 (RvE3), a metabolite of eicosapentaenoic acid (EPA) by lipoxygenase and CYPs, brings inflammatory cells to a rest level at a late stage of inflammation. ${ }^{1}$ Unlike other vicdiol metabolites ${ }^{2-4}$ such as those delineated in Fig. 1, RvE3 is a mixture of $(17 R, 18 R)$ - and $(17 R, 18 S)$-diols. The isomers, abbreviated as $(18 R)$ - and $(18 S)$-RvE3, were synthesized by enzymatic oxidation of $(18 R)$ - and (18S)-HEPE using soybean lipoxygenase. ${ }^{1,5}$ However, the reported procedure implies that the method is limited to produce a minute quantity of these compounds, whereas RvE3 has been commercially not supplied. To date, only one organic synthesis has been reported. ${ }^{6}$ The strategy involves extended H.W.E. olefination of bis-TBS ether of α, β-dihydroxy aldehyde, the Cu-assisted coupling of the resulting dienyl acetylene with the remaining propargyl tosylate and the Lindlar semi-hydrogenation. Although the synthesis is efficient, we considered that development of another method would be supplementary to the above synthesis and supportive of biological studies of RvE3, especially the struc-ture-activity relationship.

We have chosen a strategy that consisted of the Wittig reaction of dihydroxy dienal derivative 3 with a ylide derived from 4 and a base to give 5 , possessing the full structure of $(18 R)$ RvE3 (Scheme 1A), and envisioned that enal 1, a precursor of

[^0]the key intermediate 3, would be prepared by the Pd-catalyzed addition of AcOH to vinyl epoxide $6\left(\mathrm{R}^{3}=\mathrm{H}\right)^{7,8}$ followed by hydrolysis of acetate $7\left(\mathrm{R}^{3}=\mathrm{H}\right)$ and subsequent oxidation (Scheme 1B). The Mitsunobu inversion at an appropriate step was expected to produce the stereochemistry of $(18 S)$-RvE3. As mentioned later, aldehyde 2 rationally emerged as the second precursor of 3, and a similar Pd-catalyzed reaction of $6\left(\mathrm{R}^{3}=\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OTBS}\right)$ followed by oxidation of the $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OTBS}$ group in 7 and the elimination of the AcO group was surely expected to afford acetoxy aldehyde 2 . We conjectured high regioselectivity in the Pd-catalyzed reaction based on the previous fact that the repulsion between the acetate anion $\left(\mathrm{AcO}^{-}\right)$and the oxy anion

(18R)-RvE3 ($\alpha-\mathrm{OH}$) (syn diol)
(18S)-RvE3 ($\beta-\mathrm{OH}$) (anti diol)

RvD4 (anti diol)

(14R,15S)-DiHETE (anti diol)

MaR2 (anti diol)

Fig. 1 Metabolites possessing diol and conjugated triene moieties.
A. Construction of the (18R)-RvE3 structure

B. Transformation to aldehydes $\mathbf{1}$ and 2

Scheme 1 A strategy for the construction of the core structure for (18R)-RvE3.
in the π-allyl Pd intermediate provoked the regioselectivity. ${ }^{7,8}$ Herein, we report a full account of this study.

Results and discussion

Preparation of epoxide $6\left(\mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{C}_{5} \mathrm{H}_{11}\right)$, the Pd-catalyzed transformation and the Mitsunobu inversion were first studied using racemic epoxide $\mathbf{1 0}$ possessing the $\mathrm{C}_{5} \mathrm{H}_{11}$ group as R^{1} as summarized in Scheme 2. The previous synthesis of Z-dienyl alcohols by the Ni-catalyzed coupling of Z-Br-allylic alcohols with lithium borates ${ }^{9}$ required a volatile vinyl boronate ester, and thus, the Sonogashira coupling ${ }^{10}$ of propargylic alcohol 8 with vinyl bromide followed by the Boland hydrogenation ${ }^{11}$ using Zn (activated by $\mathrm{Cu}(\mathrm{OAc})_{2}$ and AgNO_{3}) was examined. The coupling reaction and the hydrogenation proceeded cleanly to give 9, although the Z purity was $85-97 \%$. Epoxidation of 9 of $94 \% Z$ purity with m-CPBA at $0{ }^{\circ} \mathrm{C}$ to rt afforded vinyl epoxide 10. The stereochemistry of $\mathbf{1 0}$ was assigned as depicted based on the literature results. ${ }^{12}$ The Pdcatalyzed reaction of $\mathbf{1 0}$ with AcOH at $0^{\circ} \mathrm{C}$ for 80 min afforded syn diol acetate 11 in 68% yield after chromatography, which separated the stereoisomer of $\mathbf{1 1}$ (structure not shown) derived from the minor isomer of $\mathbf{9}$. The Mitsunobu inversion of $\mathbf{1 0}$

Scheme 2 Inspection of steps for the synthesis of enal 1.
with 4 - $\left(\mathrm{NO}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$ afforded ester 12 stereoselectively in a moderate yield (61%); however, hydrolysis of the ester gave a mixture of 13 and unidentified byproduct(s), which were inseparable by chromatography. In conclusion of the preliminary study, the transformation of $\mathbf{8}$ to $\mathbf{1 1}$ was easily operated and the diastereomer caused by the E isomer of 9 and/or diastereomer of $\mathbf{1 0}$ could be separated. However, the hydrolysis after the Mitsunobu inversion did not proceed cleanly. We attributed the result to the high reactivity of the terminal vinyl epoxide, and hence postulated that a substituent on the vinyl group, i.e., R^{3} of 6 in Scheme 1, would block the side reaction during the hydrolysis. With these tactics in mind, we next examined the synthesis of RvE3.

A $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OTBS}$ group in epoxide 20 was chosen as R^{3} in $\mathbf{6}$ for the synthesis of $(18 R)$-RvE3, and the synthesis of 20 was succeeded through a sequence of reactions summarized in Scheme 3. Propargylic alcohol 15 was prepared according to the literature procedure. ${ }^{13}$ Thus, the addition of lithium TMSacetylide to propionaldehyde followed by the PCC oxidation gave ketone 14 in 67% yield over two steps, and the asymmetric transfer hydrogenation ${ }^{14}$ of 14 afforded 15 in 91% yield with 96.4% ee as determined by chiral HPLC analysis. Attempted desilylation of 15 with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH appeared to produce 16 from TLC analysis (R_{f} of 15 and 16: 0.44 and 0.26 (hexane/ EtOAc 6:1), respectively). However, 16 could not be isolated because of its volatile property (bp ca. $124{ }^{\circ} \mathrm{C}$ for the racemate). ${ }^{15}$ So, the desilylation and the subsequent coupling with iodide 17^{16} were carried out in a one-pot manner to produce 18 in 95% yield from 15 . The semi-hydrogenation of 18 with a standard excess of $\mathrm{Zn}(\mathrm{Cu} / \mathrm{Ag})$ (20 equiv.) at $45^{\circ} \mathrm{C}$ produced 19 exclusively in 95% yield. The epoxidation with m-CPBA ${ }^{12}$ at $0^{\circ} \mathrm{C}$ gave 20 in a good yield with 97.5% syn purity.

The Mitsunobu inversion of 20 produced 21 in a yield similar to that of the preliminary epoxide $\mathbf{1 2}$. The hydrolysis proceeded cleanly to afford epoxy alcohol 22 in a high yield. The alcohol was the intermediate for the synthesis of (18S)RvE3.

(R, R)-Ru:

Scheme 3 Synthesis of two epoxy intermediates.

The Pd-catalyzed reaction of 20 with AcOH at $0^{\circ} \mathrm{C}$ for 8 h afforded 23 in a good yield with high regio- and stereoselectivity as confirmed by clean ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy (Scheme 4).

The stereochemistry was assigned as indicated by analogy to the similar case published previously, ${ }^{7}$ and the assignment was consistent with the well-established overall retention. The
diol part in 23 was protected as the carbonate, and the TBS deprotection was performed using $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mol} \%)$ at $-15{ }^{\circ} \mathrm{C} .{ }^{17}$ The Swern oxidation of the resulting alcohol 25 gave acetoxy aldehyde 26 , which was confirmed by TLC, and this aldehyde, without isolation, was collapsed moderately fast to the key aldehyde 27 in 81% yield (R_{f} values of 25,26 and $27=$ $0.09,0.20$ and 0.25 (hexane/EtOAc $=1: 1$)). Phosphonium salt

Scheme 4 Synthesis of (18R)-RvE3.

Scheme 5 Synthesis of (18R)-RvE3.

Scheme 6 Synthesis of the intermediate for the $\omega-6$ metabolites.

28 was prepared by the method summarized in the latter scheme (Scheme 7) and converted to the ylide using NaHMDS at $-78^{\circ} \mathrm{C}$. The Wittig olefination of 27 with the ylide (2 equiv.) at $-78{ }^{\circ} \mathrm{C}$ and then at temperatures gradually warming to $-20^{\circ} \mathrm{C}$ over 4 h afforded a mixture of carbonate 29 and diol 30 in a ratio of $3: 1$. The formation of diol 30 was reproduced several times. Without separation, the mixture was subjected to hydrolysis with LiOH in aqueous $\mathrm{THF} / \mathrm{MeOH}$ to afford $(18 R)$-RvE3 in 78% yield from 27. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those reported in ref. 6. The structure was also confirmed by the ${ }^{13} \mathrm{C}$-APT NMR spectrum.

Next, the anti epoxy alcohol 22 underwent the Pd-catalyzed reaction with AcOH to afford 31 in 92% yield exclusively, and the subsequent three-step transformation produced the key aldehyde 32 in 59% yield. The Wittig olefination of 32 with 28/ NaHMDS gave a mixture of carbonate 33 and diol 34 in $3: 2$

Scheme 7 Preparation of phosphonium salt.
ratio as observed in the Wittig reaction of the syn aldehyde 27. The mixture was then hydrolyzed with aqueous LiOH to furnish (18S)-RvE3 in 64\%.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were consistent with those reported in ref. 6, and the ${ }^{13} \mathrm{C}$-APT NMR spectrum supported the structure.

In addition, alcohol 35 was prepared from 8^{18} and iodide 17 in two steps, and converted to 37 via the epoxidation and the Pd-catalyzed reaction (Scheme 6). These steps proceeded regio- and stereoselectively as well. The TBS desilylation of 37 with p - $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ at low temperatures afforded 38, whereas desilylation at higher temperatures or by other methods competed with the migration of the AcO group to $39 .{ }^{17}$ Finally, the Swern oxidation of 38 produced aldehyde 40 , which has been and would be an intermediate ${ }^{19}$ for the synthesis of lipoxin B_{4} and $(14 R, 15 S)$-diHETE, respectively.

Phosphonium salt 28 used for the Wittig reactions with aldehydes 27 and 32 (Schemes 4 and 5) was prepared by a method summarized in Scheme 7 with modification of the literature methods. The experimental procedure is presented in the ESI. \dagger

Conclusions

We have developed a method for the synthesis of (18R)- and (18S)-RvE3 through the stereoselective epoxidation of dienyl alcohol 19, the subsequent Pd-catalyzed additions of AcOH to vinyl epoxy alcohols 20 and 22, and the Wittig reactions of 27 and 32 with 28 . The total yields of $(18 R)$ - and $(18 S)$-RvE3 from propionaldehyde through ketone 14 were 17% and 10% over 13 and 15 steps, respectively, which are better than the previous yields of 3.8% and 6.2% over 12 and 17 steps. Furthermore, the Pd-catalyzed addition of AcOH to 20 and 22 proceeded regio- and stereoselectively to produce the triol mono-acetates 23 and 31, respectively (Schemes 4 and 5). We hope that the present method will be utilized for the synthesis of metabolites possessing a similar structure.

Experimental

General methods

The ${ }^{1} \mathrm{H}$ (300 and 400 MHz) and ${ }^{13} \mathrm{C}$ NMR (75 and 100 MHz) spectroscopic data were recorded in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{OD}$ with $\mathrm{Me}_{4} \mathrm{Si}(\delta=0 \mathrm{ppm})$, the centerline of the CDCl_{3} triplet ($\delta=$ $77.1 \mathrm{ppm})$ or residual protonated solvent as an internal standard. Signal patterns are indicated as br s (broad singlet), s (singlet), d (doublet), t (triplet), q (quartet), quint. (quintet) and m (multiplet). Coupling constants (J) are given in Hertz (Hz). Chemical shifts of carbons are accompanied by minus (for C and CH_{2}) and plus (for CH and CH_{3}) signs of the attached proton test (APT) experiment. High-resolution mass spectroscopy (HRMS) was performed with a double-focusing mass spectrometer. The solvents that were distilled prior to use are THF (from Na /benzophenone) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from CaH_{2}). After extraction of the products, the extracts were concentrated by
using an evaporator and then residues were purified by chromatography on silica gel (Kanto, spherical silica gel 60N).

(R)-1-(Trimethylsilyl)pent-1-yn-3-ol (14)

The synthesis was carried out according to the published procedure. ${ }^{13}$ To a solution of trimethylsilylacetylene (35.5 mL , 251 mmol) in THF (200 mL) was added n-BuLi (1.55 M in hexane, $144 \mathrm{~mL}, 223 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ dropwise. After 30 min of stirring at $-78{ }^{\circ} \mathrm{C}$, propionaldehyde ($14.4 \mathrm{~mL}, 201 \mathrm{mmol}$) was added. The solution was stirred at rt for 4 h and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and hexane. The resulting mixture was extracted with EtOAc three times. The combined extracts were washed with saturated NaHCO_{3}, dried over MgSO_{4} and concentrated to leave a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to give racemic alcohol rac15 (27.9 g, 89\%).

A mixture of alcohol rac-15 ($5.02 \mathrm{~g}, 32.1 \mathrm{mmol}$), PCC $(8.28 \mathrm{~g}, 38.4 \mathrm{mmol})$ and Celite $(16.5 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ was stirred at rt for 8 h and diluted with hexane. The resulting mixture was filtered through a pad of Celite. The filtrate was concentrated to leave a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to give ketone $\mathbf{1 4}$ ($3.74 \mathrm{~g}, 76 \%$): liquid; $R_{\mathrm{f}}=0.70$ (hexane/EtOAc $9: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.24(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.58$ $(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.7(+$), $7.9(+), 38.6(-), 97.6(-), 101.8(-), 188.4(-)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those reported in ref. 13.

A mixture of $\operatorname{RuCl}[(R, R)-T s D P E N](p$-cymene) (201 mg , 0.316 mmol) and KOH (ca. $120 \mathrm{mg}, 2.14 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$ was stirred at rt for 45 min . The mixture was washed with $\mathrm{H}_{2} \mathrm{O}$ several times and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was transferred to another flask with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was dried over CaH_{2} and the supernatant was concentrated to afford a purple solid. The solid was diluted with $i-\mathrm{PrOH}(24 \mathrm{~mL})$ and ketone $14(3.67 \mathrm{~g}, 23.8 \mathrm{mmol})$ in $i-\mathrm{PrOH}(24 \mathrm{~mL})$ was added. After being stirred at rt for 12 h , the mixture was concentrated to afford a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to give alcohol 15 (3.39 g, 91\%): 96.4% ee by HPLC analysis (Chiralpak AD-H, hexane $/ i-\mathrm{PrOH}=$ $99: 1,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, 35^{\circ} \mathrm{C}, t_{\mathrm{R}} / \mathrm{min}=9.0$ (S-isomer, minor), 9.4 (R-isomer, major)); liquid; $R_{\mathrm{f}}=0.44$ (hexane/EtOAc 6:1); $[\alpha]_{\mathrm{D}}^{21}+6.4\left(c 2.1, \mathrm{CHCl}_{3}\right) ;$ lit. ${ }^{13}[\alpha]_{\mathrm{D}}^{24}+6.12\left(c 2.02, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.17(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.67-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.82(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$-APT NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.1(+), 9.5(+), 30.8(-)$, $64.1(+), 89.4(-), 106.7(-)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those reported in ref. 13.

(E)-tert-Butyl[(4-iodobut-3-en-1-yl)oxy]dimethylsilane (17)

A solution of 3-butyn-1-ol ($1.86 \mathrm{~g}, 26.5 \mathrm{mmol}$), TBSCl $(8.04 \mathrm{~g}$, 29.3 mmol) and imidazole ($2.18 \mathrm{~g}, 32.0 \mathrm{mmol}$) in DMF $(27 \mathrm{~mL})$ was stirred at rt for 13 h and diluted with saturated NaHCO_{3}. The resulting mixture was extracted with hexane three times. The combined extracts were dried over MgSO_{4} and concentrated to leave a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to give silyl ether $\mathbf{4 1}$
($4.55 \mathrm{~g}, 93 \%$): liquid; $R_{\mathrm{f}}=0.52$ (hexane); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.96(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.40(\mathrm{dt}, J=2.8,7.2 \mathrm{HZ}, 2 \mathrm{H}), 3.74(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.2(+), 18.4(-), 22.9(-), 26.0(+)$, $61.8(-), 69.4(-), 81.6(-)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those reported in ref. 20.

To a solution of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}(1.90 \mathrm{~g}, 6.51 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ was added DIBAL (1.03 M in hexane, 5.80 mL , $5.97 \mathrm{mmol})$ at rt dropwise. After 1 h of stirring at rt, silyl ether $41(1.00 \mathrm{~g}, 5.43 \mathrm{mmol})$ in THF (12 mL) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at rt for 2 h and then cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of $\mathrm{I}_{2}(2.05 \mathrm{~g}, 8.08 \mathrm{mmol})$ in THF $(12 \mathrm{~mL})$ was added to the mixture. After 2 h of stirring at $0^{\circ} \mathrm{C}$, the resulting mixture was poured onto a mixture of $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL}, 83.3 \mathrm{mmol}), \mathrm{NaF}$ $(3.42 \mathrm{~g}, 81.4 \mathrm{mmol})$ and Celite $(6.84 \mathrm{~g})$. The resulting mixture was stirred at rt for 1 h and filtered through a pad of Celite with hexane. The filtrate was washed successively with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and saturated NaHCO_{3}, dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to give iodide 17 (1.36 g , 80%): liquid; $R_{\mathrm{f}}=0.60$ (hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 2.26(\mathrm{dq}, J=1.3,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.64$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.07(\mathrm{dt}, J=14.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{dt}, J=$ $14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$-APT NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.2(+)$, $18.4(-), 26.0(+), 39.4(-), 61.7(-), 76.5(+), 143.4(+)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those reported. ${ }^{20}$

(R, E) -9-[(tert-Butyldimethylsilyl)oxy]non-6-en-4-yn-3-ol (18)

A mixture of alcohol $15(1.17 \mathrm{~g}, 7.47 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.25 \mathrm{~g}$, 9.01 mmol) in $\mathrm{MeOH}(8 \mathrm{~mL})$ was stirred at rt for 2 h and complete conversion to $\mathbf{1 6}$ was confirmed by TLC (R_{f} of $\mathbf{1 6}$ and $\mathbf{1 5}=$ 0.26 and 0.44 , respectively (hexane/EtOAc $6: 1$)). Without isolation of $\mathbf{1 6}$, the mixture was cooled to $0^{\circ} \mathrm{C}$, and iodide $\mathbf{1 7}$ $(2.58 \mathrm{~g}, 8.25 \mathrm{mmol})$ in benzene (15 mL), $t-\mathrm{BuNH}_{2}(4 \mathrm{~mL}$, $37.7 \mathrm{mmol}), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(86.8 \mathrm{mg}, 0.0751 \mathrm{mmol})$ and CuI ($28.5 \mathrm{mg}, 0.150 \mathrm{mmol}$) were sequentially added. The mixture was stirred at rt for 3 h and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with EtOAc three times. The combined extracts were washed with saturated NaHCO_{3}, dried over MgSO_{4} and concentrated to leave a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to give enyne 18 (1.90 g , 95\%): liquid; $R_{\mathrm{f}}=0.42$ (hexane/EtOAc $6: 1$); $[\alpha]_{\mathrm{D}}^{21}+1.4$ (c 1.2, CHCl_{3}); IR (neat) 3351, 1255, 1098, 836, $776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}$, $9 \mathrm{H}), 1.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.68-1.79(\mathrm{~m}, 3 \mathrm{H}), 2.32(\mathrm{dq}, J=$ $1.2,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{dq}, J=1.6$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dq}, J=16.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dt}, J=16.0$, 7.2 Hz, 1 H); ${ }^{13} \mathrm{C}$-APT NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.2(+)$, $9.5(+), 18.4(-), 26.0(+), 31.0(-), 36.7(-), 62.3(-), 64.2(-)$, $83.5(-), 88.8(-), 110.9(+), 141.5(+)$; HRMS (FAB $\left.{ }^{+}\right)$calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SiNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$291.1756, found 291.1757.

(R)-1-[(2S,3R)-3-[(E)-4-[(tert-Butyldimethylsilyl)oxy]but-1-en-1-

 yl] oxiran-2-yl]propan-1-ol (20)A suspension of Zn powder ($5.31 \mathrm{~g}, 80.8 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}$ $(50 \mathrm{~mL})$ was gently bubbled with nitrogen gas for 20 min and
$\mathrm{Cu}(\mathrm{OAc})_{2}(733 \mathrm{mg}, 4.04 \mathrm{mmol})$ was added. After being stirred for $20 \mathrm{~min}, \mathrm{AgNO}_{3}(687 \mathrm{mg}, 4.05 \mathrm{mmol})$ was added. The suspension was stirred for further 30 min . The resulting suspension was filtered by suction and the remaining solid was washed with $\mathrm{H}_{2} \mathrm{O}$, MeOH , acetone and $\mathrm{Et}_{2} \mathrm{O}$, twice respectively. The solid was suspended with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and a solution of enyne $18(1.07 \mathrm{~g}, 3.98 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added. After being stirred at $45^{\circ} \mathrm{C}$ for 13 h , the mixture was filtered through a pad of Celite. The filtrate was concentrated to leave a residue, which was diluted with EtOAc. The solution was washed with saturated NaHCO_{3}. After drying with MgSO_{4} and concentration, the residue was purified by chromatography on silica gel (hexane/EtOAc) to give diene 19 (1.02 g, 95\%): liquid; $R_{\mathrm{f}}=0.43$ (hexane/EtOAc $4: 1$); $[\alpha]_{\mathrm{D}}^{22}-34\left(c 1.2, \mathrm{CHCl}_{3}\right)$; IR (neat) $3358,1255,1102,836,776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.05(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.42-1.56$ (m, 2 H), 1.58-1.70 (m, 1 H), $2.32(\mathrm{dq}, J=1.2,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.66$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{ddt}, J=5.6,2.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{t}$, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dt}, J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{t}, J=$ 11.2 Hz, 1 H), 6.38 (dd, $J=15.2,11.2,1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.2(+), 9.7(+), 18.4(-), 26.0(+), 30.4(-)$, $36.5(-), 62.7(-), 69.3(+), 127.0(+), 130.5(+), 131.9(+)$, 133.3 (+).

To an ice-cold mixture of diene $19(1.11 \mathrm{~g}, 4.10 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(762 \mathrm{mg}, 9.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(21 \mathrm{~mL})$ was added m-CPBA (70% purity, $1.21 \mathrm{~g}, 4.92 \mathrm{mmol}$). After 1 h of stirring at $0^{\circ} \mathrm{C}, \mathrm{Me}_{2} \mathrm{~S}(0.15 \mathrm{~mL}, 2.05 \mathrm{mmol})$ was added to the mixture. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , diluted with saturated NaHCO_{3} and extracted with EtOAc three times. The combined extracts were washed with brine, dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc with $\mathrm{Et}_{3} \mathrm{~N}$ (trace)) to give epoxide 20 ($1.04 \mathrm{~g}, 88 \%, 97.5 \%$ syn over anti by ${ }^{1} \mathrm{H}$ NMR spectroscopy): liquid; $R_{\mathrm{f}}=0.32$ (hexane/EtOAc $4: 1$); $[\alpha]_{\mathrm{D}}^{24}-19\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (neat) $3440,1255,1100,837,776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.48-1.67(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 1 \mathrm{H}), 2.30(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.02$ $(\mathrm{dd}, J=7.6,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{dt}, J=5.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51$ (dd, $J=8.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{t}, J=6.4 \mathrm{~Hz} .2 \mathrm{H}$), 5.38 (ddt, $J=$ $15.6,8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.96(\mathrm{dt}, J=15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.3(+), 9.5(+), 18.4(-), 25.9(+)$, $26.7(-), 36.1(-), 58.0(+), 62.2(+), 62.5(-), 71.1(+), 125.7(+)$, $135.2(+) ;$ HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$ 287.2042, found 287.2047.

(S)-1-[(2S,3R)-3-[(E)-4-[(tert-Butyldimethylsilyl)oxy]but-1-en-1-yl]oxiran-2-yl]propan-1-ol (22)

To an ice-cold solution of epoxide $20(969 \mathrm{mg}, 3.38 \mathrm{mmol}$, syn/ anti $=97.5: 2.5$), 4-nitrobenzoic acid ($845 \mathrm{mg}, 5.06 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(1.34 \mathrm{~g}, 5.11 \mathrm{mmol})$ in THF (11 mL) was added DIAD $(1.0 \mathrm{~mL}, 5.14 \mathrm{mmol})$. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 80 min and diluted with saturated NaHCO_{3}. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated to leave a residue, which was purified by chromatography on silica gel (hexane/EtOAc with $\mathrm{Et}_{3} \mathrm{~N}$ (trace)) to give ester 21 (947 mg ,

64\%): liquid; $R_{\mathrm{f}}=0.69$ (hexane/EtOAc $4: 1$); $[\alpha]_{\mathrm{D}}^{23}+71$ (c 1.0, CHCl_{3}); IR (neat) 1729, 1530, 1271, 1101, 837, $719 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.018(\mathrm{~s}, 3 \mathrm{H}), 0.022(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}$, $9 \mathrm{H}), 1.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.86-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{tq}, J=$ $1.6,6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.24 (dd, $J=8.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.48 (dd, $J=$ $7.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dt}, J=1.6,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{dt}, J=5.2$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.50$ (ddt, $J=15.6,7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dt}, J=$ $15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$-APT NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.3(+$), $9.2(+), 18.3(-), 25.91(-), 25.94(+), 36.1(-), 57.1(+), 58.5(+)$, $62.6(-), 73.6(+), 123.6(+), 125.0(+), 130.8(+), 135.2(+)$, 135.5 (-), $150.6(-), 163.6(-)$.

To an ice-cold solution of ester 21 ($641 \mathrm{mg}, 1.47 \mathrm{mmol}$) in THF (1.5 mL) and $\mathrm{MeOH}(1.5 \mathrm{~mL})$ was added 2 N LiOH $(2.0 \mathrm{~mL}, 4.00 \mathrm{mmol})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with EtOAc three times. The combined extracts were washed with saturated NaHCO_{3}, dried over MgSO_{4} and concentrated to leave a residue, which was purified by chromatography on silica gel (hexane/EtOAc with $\mathrm{Et}_{3} \mathrm{~N}$ (trace)) to give epoxide 22 ($394 \mathrm{mg}, 94 \%, 96.8 \%$ anti over syn by ${ }^{1} \mathrm{H}$ NMR spectroscopy): liquid; $R_{\mathrm{f}}=0.43$ (hexane/EtOAc $4: 1$); $[\alpha]_{\mathrm{D}}^{25}-6.8$ (c 1.2, CHCl_{3}); IR (neat) $3440,1255,1101,968,837,777 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.58-1.81(\mathrm{~m}, 3 \mathrm{H}), 2.32(\mathrm{dq}, J=1.0,6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.01(\mathrm{dd}, J=4.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=4.08 .0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.50-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{ddt}, J=$ $15.6,8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.99 (dt, $J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{APT}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.2(+), 9.5(+), 18.4(-), 26.0(+), 27.9$ $(-), 36.2(-), 56.9(+), 60.6(+), 62.5(-), 70.4(+), 125.6(+)$, $135.3(+)$; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$ 287.2042, found 287.2042.

(3R,6R,7R,E)-1-[(tert-Butyldimethylsilyl)oxy]-6,7-dihydroxynon-4-en-3-yl acetate (23)

To an ice-cold solution of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(102 \mathrm{mg}, 0.088 \mathrm{mmol})$ and AcOH ($0.25 \mathrm{~mL}, 4.37 \mathrm{mmol}$) in THF (8 mL) was added a solution of epoxide $20(847 \mathrm{mg}, 2.96 \mathrm{mmol})$ in THF (8 mL). After 8 h of stirring at $0{ }^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}_{2}(35 \mathrm{wt} / \mathrm{v} \%, 1.0 \mathrm{~mL}$, 10.3 mmol) was added to the mixture. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h , diluted with saturated NaHCO_{3} and extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated to afford a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to give diol 23 ($845 \mathrm{mg}, 83 \%$): liquid; $R_{\mathrm{f}}=0.14$ (hexane/EtOAc $2: 1$); $[\alpha]_{\mathrm{D}}^{25}+28$ (c 1.1, CHCl_{3}); IR (neat) 3422, 1740, 1254, $1099,838,777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.03(\mathrm{~s}, 6 \mathrm{H})$, 0.88 (s, 9 H$), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-1.49(\mathrm{~m}, 1 \mathrm{H})$, 1.50-1.66 (m, 1 H), 1.75-1.92 (m, 2 H), 2.05 (s, 3 H), 2.17-2.27 (m, 2 H), 3.35-3.42 (m, 1 H), 3.65 (t, $J=6.0 \mathrm{~Hz} .2 \mathrm{H}), 3.92-3.99$ $(\mathrm{m}, 1 \mathrm{H}), 5.39(\mathrm{dt}, J=7.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dd}, J=15.6$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{dd}, J=15.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.4(+), 10.0(+), 18.3(-), 21.3(+)$, $25.8(-), 25.9(+), 37.3(-), 59.0(-)$, $71.3(+), 74.9(+), 75.8(+)$, $131.1(+), 132.0(+), 170.5(-)$; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{Si}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 347.2254$, found 347.2259.
(2E,4E)-5-[(4R,5R)-5-Ethyl-2-oxo-1,3-dioxolan-4-yl]penta-2,4dienal (27)

A mixture of diol $23(1.88 \mathrm{~g}, 5.41 \mathrm{mmol}$), triphosgene (803 mg , 2.70 mmol) and pyridine ($2.60 \mathrm{~mL}, 32.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(27 \mathrm{~mL})$ was stirred at rt for 2 h and diluted with saturated NaHCO_{3}. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were dried over MgSO_{4} and concentrated to leave a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to give carbonate 24 ($1.88 \mathrm{~g}, 93 \%$): liquid; $R_{\mathrm{f}}=0.61$ (hexane/EtOAc $2: 1$); $[\alpha]_{\mathrm{D}}^{23}+49$ (c 1.1, CHCl_{3}); IR (neat) 1810, 1742, 1235, 1098, 838, $776 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.03(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.70-1.91(\mathrm{~m}, 4 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.69(\mathrm{~m}$, $2 \mathrm{H}), 4.25(\mathrm{dt}, J=5.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.42$ (dt, $J=6.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{ddd}, J=15.6,5.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.89 (ddd, $J=15.6,6.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-5.4(+), 8.9(+), 18.2(-), 21.1(+), 25.9(+), 26.1(-)$, $37.0(-), 58.6(-), 70.4(+), 81.4(+), 83.1(+), 126.1(+), 135.6(+)$, $154.2(-), 170.0(-)$.

A solution of carbonate $24(189 \mathrm{mg}, 0.507 \mathrm{mmol})$ and p - $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(4.9 \mathrm{mg}, 0.0255 \mathrm{mmol})$ in THF $(1.3 \mathrm{~mL})$ and $\mathrm{MeOH}(1.3 \mathrm{~mL})$ was stirred at $-15^{\circ} \mathrm{C}$ for 9 h and then at temperatures raised to $0{ }^{\circ} \mathrm{C}$ over 2 h . The solution was diluted with saturated NaHCO_{3}. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated to leave a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to give alcohol 25 (96 mg, 73\%): liquid; $R_{\mathrm{f}}=0.09$ (hexane/EtOAc $1: 1$); $[\alpha]_{\mathrm{D}}^{25}$ +74 (c 1.1, CHCl_{3}); IR (neat) 3490, 1801, 1736, 1241, 1046, $757 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, 1.73-1.94 (m, 4 H), 1.99 (br s, 1 H), 2.10 (s, 3 H), 3.58-3.74 (m, $2 \mathrm{H}), 4.26(\mathrm{dt}, J=6.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.51$ (dt, $J=8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{ddd}, J=15.2,7.2,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, 5.92 (ddd, $J=15.2,6.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$-APT NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.8(+), 21.1(+), 26.0(-), 36.9(-), 58.0(-), 70.2(+)$, $81.4(+), 83.1(+), 126.0(+), 135.3(+), 154.3(-), 170.7(-)$.

To a solution of $(\mathrm{COCl})_{2}(0.075 \mathrm{~mL}, 0.874 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.7 \mathrm{~mL})$ was added DMSO $(0.090 \mathrm{~mL}, 1.27 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. After 20 min of stirring at $-78^{\circ} \mathrm{C}$, a solution of alcohol 25 ($109 \mathrm{mg}, 0.422 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ was added dropwise. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 min and then $\mathrm{Et}_{3} \mathrm{~N}$ $(0.35 \mathrm{~mL}, 2.48 \mathrm{mmol})$ was added. After being stirred at $-78^{\circ} \mathrm{C}$ for 10 min , the ice bath was removed. The mixture was stirred at rt for 1 h and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with EtOAc three times. The combined extracts were washed with saturated NaHCO_{3}, dried over $\mathrm{Mg} \mathrm{SO}_{4}$ and concentrated to leave a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to give aldehyde 27 ($67.0 \mathrm{mg}, 81 \%$): liquid; $R_{\mathrm{f}}=0.25$ (hexane/EtOAc 1:1); $[\alpha]_{\mathrm{D}}^{23}+74\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (neat) 1803, 1683, 1045, $773 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.78-1.88$ $(\mathrm{m}, 2 \mathrm{H}), 4.32(\mathrm{dt}, J=5.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.17 (dd, $J=15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=15.2,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.64(\mathrm{dd}, J=15.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=15.2,10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 9.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$-APT NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 8.9(+), 26.2(-), 80.7(+), 82.8(+), 132.4(+), 134.3(+), 135.5$ $(+), 148.3(+), 153.9(-), 193.2(+)$; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{4}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$197.0814, found 197.0813. Cf. β-Acetoxyaldehyde 26 from 25: $R_{\mathrm{f}}=0.20$ (hexane/EtOAc 1:1).

(3R,6R,7S,E)-1-[(tert-Butyldimethylsilyl)oxy]-6,7-dihydroxynon-4-en-3-yl acetate (31)

To an ice-cold solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(61 \mathrm{mg}, 0.0528 \mathrm{mmol})$ and AcOH ($0.090 \mathrm{~mL}, 1.57 \mathrm{mmol}$) in THF (2.6 mL) was added a solution of epoxide $22(272 \mathrm{mg}, 0.949 \mathrm{mmol})$ in THF (2.6 mL). After 4 h of stirring at $0{ }^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}_{2}(35 \mathrm{wt} / \mathrm{v} \%, 0.50 \mathrm{~mL}$, 5.15 mmol) was added to the resulting mixture. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , diluted with saturated NaHCO_{3} and extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated, which was purified by chromatography on silica gel (hexane/EtOAc) to give diol 31 ($302 \mathrm{mg}, 92 \%$): liquid; $R_{\mathrm{f}}=0.19$ (hexane/EtOAc $2: 1$); $[\alpha]_{\mathrm{D}}^{22}+23$ (c 1.0, CHCl_{3}); IR (neat) $3430,1740,1254,1098,837,777 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~s}$, $1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.13(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.65$ $(\mathrm{t}, J=5.6 \mathrm{~Hz} .2 \mathrm{H}), 4.09-4.14(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{dt}, J=7.6,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.73(\mathrm{dd}, J=15.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dd}, J=15.6,5.2 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$-APT NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.4(+$), $10.3(+), 18.3$ $(-), 21.3(+), 25.1(-), 25.9(+), 37.3(-), 59.0(-), 71.4(+), 74.7$ $(+), 75.6(+), 130.4(+), 131.4(+), 170.6(-)$; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{Si}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$347.2254, found 347.2251.

($2 E, 4 E$)-5-[(4R,5S)-5-Ethyl-2-oxo-1,3-dioxolan-4-yl]penta-2,4dienal (32)

A mixture of diol 31 ($251 \mathrm{mg}, 0.723 \mathrm{mmol}$), triphosgene $(107 \mathrm{mg}, 0.362 \mathrm{mmol})$ and pyridine $(0.35 \mathrm{~mL}, 4.34 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL})$ was stirred at rt for 1 h and diluted with saturated NaHCO_{3}. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated to leave a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to give the corresponding carbonate ($234 \mathrm{mg}, 87 \%$): liquid; $R_{\mathrm{f}}=0.62$ (hexane/ EtOAc $2: 1$); $[\alpha]_{\mathrm{D}}^{20}+15\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (neat) 1806, 1740, 1236, 1096, 838, $777 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.04(\mathrm{~s}, 6 \mathrm{H})$, $0.88(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.51-1.94(\mathrm{~m}, 4 \mathrm{H}), 2.06$ (s, 3 H), $3.59-3.71(\mathrm{~m}, 2 \mathrm{H}), 4.61$ (ddd, $J=9.2,7.6,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dt}, J=6.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ (ddd, $J=15.6,7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{ddd}, J=15.6,6.8,0.8 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.4(+), 9.9(+), 18.3$ $(-), 21.2(+), 23.4(-), 25.9(+), 37.1(-), 58.7(-), 70.7(+), 79.2$ $(+), 81.4(+), 123.8(+), 135.7(+), 154.4(-), 170.1(-)$.

A solution of the above carbonate ($222 \mathrm{mg}, 0.595 \mathrm{mmol}$) and $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(6 \mathrm{mg}, 0.032 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ and $\mathrm{MeOH}(1.5 \mathrm{~mL})$ was stirred at $-15{ }^{\circ} \mathrm{C}$ for 9 h and diluted with saturated NaHCO_{3}. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated to leave a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to give the corresponding alcohol ($114 \mathrm{mg}, 74 \%$): liquid; $R_{\mathrm{f}}=0.23$ (hexane/EtOAc 1: 1); $[\alpha]_{\mathrm{D}}^{21}+24\left(c 1.1, \mathrm{CHCl}_{3}\right.$); IR (neat) 3480,

1798, 1735, 1242, 1041, $756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.51-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.96(\mathrm{~m}, 3 \mathrm{H})$, $2.10(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.74(\mathrm{~m}, 2 \mathrm{H}), 4.62$ (ddd, $J=9.4,7.4,4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.47-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{ddd}, J=$ $15.6,7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.90 (ddd, $J=15.6,6.4,0.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$-APT NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.9(+), 21.1(+), 23.3(-)$, $37.1(+), 58.2(-), 70.5(+), 79.1(+), 81.4(+), 123.6(+), 135.3(+)$, 154.4 (-), 170.7 (-).

To a solution of $(\mathrm{COCl})_{2}(0.10 \mathrm{~mL}, 1.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \mathrm{~mL})$ was added DMSO $(0.12 \mathrm{~mL}, 1.69 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After 20 min of stirring at $-78{ }^{\circ} \mathrm{C}$, a solution of the above alcohol ($141 \mathrm{mg}, 0.547 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added dropwise. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min and then $\mathrm{Et}_{3} \mathrm{~N}(0.46 \mathrm{~mL}, 3.30 \mathrm{mmol})$ was added. After being stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min , the ice bath was removed and the mixture was stirred at rt further 2 h . The resulting mixture was diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc three times. The combined extracts were washed with saturated NaHCO_{3}, dried over MgSO_{4} and concentrated to leave a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to give aldehyde 32 ($99 \mathrm{mg}, 92 \%$): liquid; $R_{\mathrm{f}}=$ 0.35 (hexane/EtOAc 1:1); $[\alpha]_{\mathrm{D}}^{20}+4.9$ (c 1.4, CHCl_{3}); IR (neat) 1801, 1684, 1182, 1038, $757 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.07(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.78(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{ddd}, J=9.4$, $7.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=15.2$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{dd}, J=15.6$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.12 (dd, $J=15.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.62(\mathrm{~d}, J=$ 7.6 Hz, 1 H); ${ }^{13} \mathrm{C}$-APT NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.9(+), 23.6$ $(-), 78.6(+), 81.3(+), 132.7(+), 133.2(+), 133.9(+), 148.4(+)$, $154.0(-)$, $193.3(+)$; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{4}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$ 197.0814, found 197.0814.

(5Z,8Z,11Z,13E,15E,17R,18R)-17,18-Dihydroxyicosa-5,8,11,13,15-pentaenoic acid ((18R)-Resolvin E3)

A solution of iodide 46 ($399 \mathrm{mg}, 1.24 \mathrm{mmol}$) and PPh_{3} ($491 \mathrm{mg}, 1.87 \mathrm{mmol}$) in MeCN (6 mL) was heated under reflux for 8 h , cooled to rt , and concentrated. The residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ repeatedly to give phosphonium salt 28 ($696 \mathrm{mg}, 96 \%$), which was used for the next reaction without further purification: viscous liquid; $R_{\mathrm{f}}=0.38\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ $10: 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.62$ (quint., $J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.95(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.55$ $(\mathrm{m}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.81-3.92(\mathrm{~m}$, $2 \mathrm{H}), 5.16-5.44$ (m, 3 H$), 5.56-5.68$ (m, 1 H$), 7.66-7.76$ (m, 6 H), 7.76-7.92 (m, 9 H).

To a solution of the above phosphonium salt 28 in THF $(3 \mathrm{~mL})$ was added NaHMDS (1.0 M in THF, 1.0 mL , 1.00 mmol) at $-78^{\circ} \mathrm{C}$. After 30 min of stirring at $-78^{\circ} \mathrm{C}$, aldehyde 27 ($99 \mathrm{mg}, 0.505 \mathrm{mmol}$) in THF (2 mL) was added dropwise. The mixture was warmed to $-20^{\circ} \mathrm{C}$ over 4 h and poured onto a mixture of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and EtOAc with vigorous stirring. The resulting mixture was extracted with EtOAc three times. The combined extracts were washed with saturated NaHCO_{3}, dried over MgSO_{4} and concentrated to leave a residue, which was passed through a short column of silica gel (hexane/EtOAc) to give a mixture of carbonate 29 and diol 30
(3:1 by ${ }^{1} \mathrm{H}$ NMR spectroscopy). The Wittig reaction was repeated and the products were purified by chromatography on silica gel (hexane/EtOAc). Carbonate 29: $R_{\mathrm{f}}=0.75$ (hexane/ EtOAc 1:1); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.04(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.64-1.84(\mathrm{~m}, 4 \mathrm{H}), 2.05-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.80(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}$, $3 \mathrm{H}), 4.26$ (dt, $J=7.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.30-5.47(\mathrm{~m}, 4 \mathrm{H}), 5.53(\mathrm{dt}, J=11.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dd}, J=$ $15.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=15.0$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=15.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=$ $15.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.0(+$), $24.7(-), 25.6(-), 26.0(-), 26.3(-), 26.5(-), 33.4(-), 51.5(+)$, $82.5(+), 83.2(+), 125.2(+), 127.1(+), 128.0(+), 128.6(+), 128.9$ $(+), 129.1(+), 130.2(+), 131.5(+), 132.9(+), 136.9(+), 154.4(-)$, 174.0 (-). Diol 30: $R_{\mathrm{f}}=0.49$ (hexane/EtOAc 1:1); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.50(\mathrm{~m}, 1 \mathrm{H})$, $1.54-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.70$ (quint., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.10 (dt, $J=$ $6.8,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.24-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.37(\mathrm{~s}, 1 \mathrm{H}), 2.81(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.92-3.00(\mathrm{~m}, 2 \mathrm{H})$, $3.37-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.32-5.49(\mathrm{~m}, 5 \mathrm{H}), 5.70(\mathrm{dd}, J=15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{t}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=14.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=$ $15.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.55 (dd, $J=14.8,11.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.1(+), 24.8(-), 25.7(-), 25.9(-)$, $26.3(-), 26.7(-), 33.6(-), 51.7(+), 75.7(+), 76.1(+), 127.5(+)$, $128.5(+), 128.8(+), 129.1(+), 131.1(+), 132.0(+), 132.4(+)$, $133.0(+), 174.4(-)$.

To an ice-cold solution of the above mixture in THF (4 mL) and $\mathrm{MeOH}(4 \mathrm{~mL})$ was added $2 \mathrm{~N} \mathrm{LiOH}(2.5 \mathrm{~mL}, 5.00 \mathrm{mmol})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 h and diluted with McIlvaine's phosphate buffer (pH 5.0). The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined extracts were dried over MgSO_{4} and concentrated to leave a residue, which was purified by chromatography on silica gel $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ to give ($18 R$)-resolvin E3 ($132 \mathrm{mg}, 78 \%$ over two steps), which was further purified by using recycling HPLC (LC-Forte/R equipped with YMC-Pack SIL-60, hexane/EtOAc 25:75, $25 \mathrm{~mL} \mathrm{~min}^{-1}$): liquid; $R_{\mathrm{f}}=0.39\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) ;[\alpha]_{\mathrm{D}}^{22}+31$ (c 0.19 , $\mathrm{MeOH})$; lit. ${ }^{6}[\alpha]_{\mathrm{D}}^{25}+34(c \quad 0.16, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.63$ (m, 1 H), 1.67 (quint., $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.13(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{t}, J=5.8$ Hz, 2 H), $3.30-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.89$ (br s, $3 \mathrm{H}), 5.32-5.46(\mathrm{~m}, 5 \mathrm{H}), 5.74(\mathrm{dd}, J=15.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{t}$, $J=11.2,1 \mathrm{H}), 6.24(\mathrm{dd}, J=14.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=$ $15.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=14.8,11.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{APT}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 10.6(+), 26.0(-), 26.6(-), 27.1(-)$, $27.6(-), 34.3(-), 76.6(+), 77.3(+), 128.6(+), 129.2(+), 129.6$ $(+), 129.8(+), 130.1(+), 131.2(+), 133.4(+), 133.7(+), 134.3(+)$, $177.1(-)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those reported in ref. 6.

(5Z,8Z,11Z,13E,15E,17R,18S)-17,18-Dihydroxyicosa-5,8,11,13,15-pentaenoic acid ((18S)-Resolvin E3)

A solution of iodide $46(234 \mathrm{mg}, 0.727 \mathrm{mmol})$ and PPh_{3} ($279 \mathrm{mg}, 1.06 \mathrm{mmol}$) in MeCN (3.5 mL) was heated under
reflux for 9 h , cooled to rt , and concentrated. The residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ repeatedly to give phosphonium salt 28 ($417 \mathrm{mg}, 98 \%$), which was used for the next reaction without further purification.

To a solution of the above phosphonium salt 28 in THF $(2 \mathrm{~mL})$ was added NaHMDS (1.0 M in THF, 0.51 mL , 0.510 mmol) at $-78{ }^{\circ} \mathrm{C}$. After 30 min of stirring at $-78^{\circ} \mathrm{C}$, aldehyde $32(50 \mathrm{mg}, 0.255 \mathrm{mmol})$ in THF (1.5 mL) was added dropwise. The mixture was warmed to $0{ }^{\circ} \mathrm{C}$ over 3 h and poured onto a mixture of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and EtOAc with vigorous stirring. The resulting mixture was extracted with EtOAc three times. The combined extracts were washed with saturated NaHCO_{3}, dried over MgSO_{4} and concentrated to leave a residue, which was passed through a short column of silica gel (hexane/EtOAc) to give a mixture of carbonate 33 and diol 34 ($3: 2$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy). The Wittig reaction was repeated and the products were purified by chromatography on silica gel (hexane/EtOAc). Carbonate 33: $R_{\mathrm{f}}=0.74$ (hexane/ EtOAc 1:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.02(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.53-1.77(\mathrm{~m}, 4 \mathrm{H}), 2.10(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.66(\mathrm{~s}, 3 \mathrm{H}), 4.61$ (ddd, $J=9.2,7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-5.44(\mathrm{~m}, 4 \mathrm{H}), 5.52(\mathrm{dt}, J=11.0,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.64(\mathrm{dd}, J=15.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ (dd, $J=14.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=15.2,10.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.63 (dd, $J=14.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$-APT NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.0(+), 23.5(-), 24.8(-), 25.7(-), 26.3(-), 26.6(-)$, $33.5(-), 51.6(+), 80.3(+), 81.6(+), 122.6(+), 127.2(+), 128.1$ $(+), 128.6(+), 129.0(+), 129.2(+), 130.4(+), 131.3(+), 132.9(+)$, $136.9(+)$, $154.6(-), 174.1(-)$. Diol 34: $R_{\mathrm{f}}=0.48$ (hexane/EtOAc $1: 1) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.36-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.70$ (quint., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.06-2.14 (m, $3 \mathrm{H}), 2.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.92-2.99(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H})$, 4.13-4.19 (m, 1 H), $5.32-5.48(\mathrm{~m}, 5 \mathrm{H}), 5.77$ (dd, $J=15.2$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=15.0$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.37$ (dd, $J=15.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=$ $15.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ APT NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.3(+$), $24.8(-), 25.3(-), 25.7(-), 26.3(-), 26.7(-), 33.6(-), 51.7(+)$, $75.4(+), 75.9(+), 127.5(+), 128.5(+), 128.7(+), 128.8(+)$, $129.1(+), 130.9(+), 131.0(+), 132.0(+), 133.4(+), 174.3(-)$.

To an ice-cold solution of the above mixture in THF (2 mL) and $\mathrm{MeOH}(2 \mathrm{~mL})$ was added $2 \mathrm{~N} \mathrm{LiOH}(1.0 \mathrm{~mL}, 2.00 \mathrm{mmol})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 h and diluted with McIlvaine's phosphate buffer (pH 5.0). The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined extracts were dried over MgSO_{4} and concentrated to leave a residue, which was purified by chromatography on silica gel ($\mathrm{Et}_{2} \mathrm{O}$) to give (18S)-resolvin E3 ($54 \mathrm{mg}, 64 \%$ over two steps), which was further purified by using recycling HPLC (LC-Forte/R equipped with YMC-Pack SIL-60, hexane/EtOAc $25: 75,25 \mathrm{~mL} \mathrm{~min}{ }^{-1}$): liquid; $R_{\mathrm{f}}=0.44\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) ;[\alpha]_{\mathrm{D}}^{23}+11$ (c 0.15 , MeOH); lit. ${ }^{6}[\alpha]_{\mathrm{D}}^{27}+7.7$ (c 0.15, MeOH); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.64$ $(\mathrm{m}, 1 \mathrm{H}), 1.67$ (quint., $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{t}, J=5.8 \mathrm{~Hz}$,
$2 \mathrm{H}), 3.41$ (ddd, $J=9.4,6.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.87$ (br s, 3 H), $5.33-5.45(\mathrm{~m}, 5 \mathrm{H}), 5.81$ (dd, $J=15.2$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=14.4,10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.36(\mathrm{dd}, J=15.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=14.4,11.4 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$-APT NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 10.6(+), 26.0(-), 26.6$ $(-), 26.7(-), 27.1(-), 27.6(-), 34.4(-), 76.5(+), 77.3(+), 128.6$ $(+), 129.0(+), 129.6(+), 129.78(+), 129.81(+), 130.1(+), 131.1(+)$, $133.4(+), 133.9(+), 134.2(+), 177.6(-)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those reported in ref. 6 .

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP15H05904.

Notes and references

1 Y. Isobe, M. Arita, S. Matsueda, R. Iwamoto, T. Fujihara, H. Nakanishi, R. Taguchi, K. Masuda, K. Sasaki, D. Urabe, M. Inoue and H. Arai, J. Biol. Chem., 2012, 287, 10525.

2 (14R,15S)-diHETE: (a) O. Radmark, C. Serhan, M. Hamberg, U. Lundberg, M. D. Ennis, G. L. Bundy, T. D. Oglesby, P. A. Aristoff, A. W. Harrison, G. Slomp, T. A. Scahill, G. Weissmann and B. Samuelsson, J. Biol. Chem., 1984, 259, 13011; (b) U. Ramstedt, C. N. Serhan, U. Lundberg, H. Wigzell and B. Samuelsson, Proc. Natl. Acad. Sci. U. S. A., 1984, 81, 6914.
3 RvD4: (a) J. W. Winkler, S. K. Orr, J. Dalli, C.-Y. C. Cheng, J. M. Sanger, N. Chiang, N. A. Petasis and C. N. Serhan, Sci. Rep., 2016, 6, 18972; (b) C. N. Serhan, S. Hong, K. Gronert, S. P. Colgan, P. R. Devchand, G. Mirick and R.-L. Moussignac, J. Exp. Med., 2002, 196, 1025; (c) H. Arnardottir, S. K. Orr, J. Dalli and C. N. Serhan, Mucosal Immunol., 2016, 9, 757.
4 MaR2: B. Deng, C.-W. Wang, H. H. Arnardottir, Y. Li, C.-Y. C. Cheng, J. Dalli and C. N. Serhan, PLoS One, 2014, 9, e102362.

5 Y. Isobe, M. Arita, R. Iwamoto, D. Urabe, H. Todoroki, K. Masuda, M. Inoue and H. Arai, J. Biochem., 2013, 153, 355.

6 D. Urabe, H. Todoroki, K. Masuda and M. Inoue, Tetrahedron, 2012, 68, 3210.
7 S. Yoshida, M. Asano and Y. Kobayashi, Tetrahedron Lett., 2005, 46, 7243.
8 (a) Y. Kobayashi, S. Yoshida, M. Asano, A. Takeuchi and H. P. Acharya, J. Org. Chem., 2007, 72, 1707; (b) Y. Kobayashi, M. Asano, S. Yoshida and A. Takeuchi, Org. Lett., 2005, 7, 1533.

9 Y. Kobayashi, Y. Nakayama and R. Mizojiri, Tetrahedron, 1998, 54, 1053.
10 K. Sonogashira, J. Organomet. Chem., 2002, 653, 46.
11 W. Boland, N. Schroer and C. Sieler, Helv. Chim. Acta, 1987, 70, 1025.
12 B. E. Rossiter, T. R. Verhoeven and K. B. Sharpless, Tetrahedron Lett., 1979, 4733.
13 S. E. Denmark and S.-M. Yang, J. Am. Chem. Soc., 2004, 126, 12432.

14 K. Matsumura, S. Hashiguchi, T. Ikariya and R. Noyori, J. Am. Chem. Soc., 1997, 119, 8738.

15 From Alfa Aesar.
16 Synthesized by hydrozirconation of the TBS ether 41 (Scheme 7) with $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}$ generated in situ followed by iodination in 80% yield (see the ESI \dagger).
17 The reaction conditions for the TBS desilylation of 37 were optimized first (Scheme 6), and then applied to 24 and the carbonate derived from 31. The use of TBAF (3 equiv.) in THF at $0^{\circ} \mathrm{C}$ for 30 min caused the migration of the Ac group in 38 to the prim- OH to afford 39 as the sole product. Deprotection with PPTS (1 equiv.) in EtOH at $0{ }^{\circ} \mathrm{C}$ took 3 days to afford 38 without migration, whereas the deprotection at rt for 14 h produced a $86: 14$ mixture of 38 and 39. In contrast, $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mol} \%)$ in $\mathrm{MeOH} / \mathrm{THF}$ (1:1) at $0{ }^{\circ} \mathrm{C}$ for 4 h gave a $90: 10$ mixture. Finally, p-TsOH $\cdot \mathrm{H}_{2} \mathrm{O}$ at $-15{ }^{\circ} \mathrm{C}$ for 8 h then to $0{ }^{\circ} \mathrm{C}$ over 2 h afforded 38 in 71% yield.
18 Enantioenriched 8 is commercially available.
19 (a) C. G. Pelletier, J. Dumas, Y. L. Merrer and J.-C. Depezay, J. Carbohydr. Chem., 1992, 11, 969; (b) Y. Leblanc, B. Fitzsimmons, J. Adams and J. Rocach, Tetrahedron Lett., 1985, 26, 1399.
20 J. Germain and P. Deslongchamps, J. Org. Chem., 2002, 67, 5269.

[^0]: Department of Biotechnology, Tokyo Institute of Technology, B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan. E-mail: ykobayas@bio.titech.ac.jp \dagger Electronic supplementary information (ESI) available: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of all new compounds. See DOI: 10.1039/c8ob03196g

