Syntheses, Calcium Channel Antagonist and Anticonvulsant Activities of Substituted 1,4-Dihydro-3,5-pyridinedicarboxylates Containing Various 3-Alkyl Ester Substituents

Sai-hay Yiu and Edward E. Knaus*
Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8

Key Words: Hantzsch 1,4-dihydropyridines; calcium channels, smooth muscle relaxation; anticonvulsant activity

Summary

Abstract

A group of 3-alkyl 5-isopropyl 4-aryl-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylates $\mathbf{1 0 - 2 0}$ containing an amine, quaternary ammonium, aryl(heteroaryl)alkenyl, 4-(4-fluorophenyl)-piperazin-1-yl or methoxy moiety in the C-3 alkyl ester R-substituent in combination with a $\mathrm{C}-4$ phenyl ring bearing a $2,3-\mathrm{Cl}_{2}$, $3-\mathrm{NO}_{2}, 3-\mathrm{NMe}_{2}, 4-\mathrm{NMe}_{2}$ or $3.4 .5-(\mathrm{OMe})_{3} \mathrm{X}$-substituent were prepared using the Hantzsch 1,4-dihydropyridine reaction. In vitro calcium channel antagonist activity (CCA) was determined using a guinea pig ileum longitudinal smooth muscle assay. In the C-4 3-nitrophenyl series of compounds, the C-3 ester R-substituent was a determinant of CCA activity where the relative potency order was $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}$-(2 -methylphenyl) $2 \geq-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} . \mathrm{HCl}>$ $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}$-(3-methyl-2-thienyl) $)_{2}>-\mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+} \mathrm{NMe}_{3} \mathrm{I}^{-}$. The position and nature of the $\mathrm{C}-4$ phenyl X-substituent, were also determinants of CCA activity where the relative activity order was $3-\mathrm{NMe}_{2}>4-\mathrm{NMe}_{2}>3,4,5$-(OMe)3. Anticonvulsant activities were determined in mice using the subcutaneous metrazol (scMet) and maximal electroshock (MES) screens. The compounds investigated were generally not effective for protecting againist scMet induced seizures, except for $10\left\{\mathrm{X}=2,3-\mathrm{Cl}_{2}, \mathrm{R}=2\right.$-[4-(4-fluorophenyl)piperazin-1-yl]ethyl) and $\mathbf{1 4 a}(\mathrm{X}=3-\mathrm{NMe} 2 . \mathrm{HCl}, \mathrm{R}$ $=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OMe}$), which exhibited modest activity. Compound 11a ($\mathrm{X}=3-\mathrm{NO}_{2}, \mathrm{R}=-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} . \mathrm{HCl}$) was the most effective agent in the MES screen. All of the compounds investigated. except for 11b ($\mathrm{X}=3-\mathrm{NO}_{2}, \mathrm{R}=-\mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+} \mathrm{NMe}_{3} \Gamma, K \mathrm{p}=0.15$), are lipophilic with n-octanol/aqueous phosphate buffer ($\mathrm{pH}=7.4$) partition coefficients ($K \mathrm{p}$) in the 121-424 range relative to the reference drug nimodipine ($K \mathrm{p}=187$). The structure-activity relationships acquired reinforce the concept that calcium is only one of several factors that are involved in seizure generation.

Introduction

Although the mechanisms responsible for epileptic seizures are not fully elucidated, there is convincing evidence that calcium is involved. A pathological influx of calcium into neurons ${ }^{[1]}$ is most likely associated with neuronal damage in status epilepticus ${ }^{[2]}$. Furthermore, the calcium channel agonist Bay K 8644, which stimulates the influx of calcium into cells, induces seizures in a dosage dependent manner ${ }^{[3]}$. These observations prompted investigations to evaluate the potential use of calcium channel antagonists (CCAs) as a
novel class of antiepileptic drugs. In this regard, verapamil (1) was reported to retard the rate of kindling seizures in rats ${ }^{[4]}$, and flunarizine (2) ${ }^{[5]}$ was portrayed as a potential antiepileptic drug for the future. Nimodipine (3), a 1,4-dihydropyridine (DHP) CCA, provided protection against seizures induced by maximal electroshock (MES) ${ }^{[6-7]}$, pentylenetetrazole ${ }^{[8-10]}$ and picrotoxin ${ }^{[11]}$ (see Figure 1).

It was therefore of interest, as part of our on-going program to develop calcium channel modulators, to design brain-targeted 1,4-dihydropyridine CCAs as potential anticonvulsant agents. Accordingly, 1,4-DHP compounds possessing a variety of substituents $\left(2,3-\mathrm{Cl}_{2}, 3-\mathrm{NO}_{2}, 3-\mathrm{NMe}_{2}, 4-\mathrm{NMe}_{2}, 3,4,5-\right.$ OMe_{3}) on the $\mathrm{C}-4$ phenyl ring system have been investigated to determine structure-activity relationships for/between CCA and anticonvulsant activities. The localization of anticonvulsant drugs in the brain may be limited by either i) their ability to effectively cross the blood brain barrier (BBB), or ii) their rapid egress from brain ${ }^{[12]}$, which would result in a sub-therapeutic brain concentration. To overcome these limitations, lipophilic amine moieties such as 2-[4-(4-fluoro-phenyl)piperazin-1-yl]ethyl (10) and 2-dimethylaminoethyl (11a) were attached to the C-3 ester moiety. It was envisaged that these lipophilic moieties may enhance their ability to cross the BBB, and undergo subsequent protonation which would allow binding to a negative domain, to provide an anchor on the extracellular side of the lipid-bilayer, on the 1,4-DHP binding site ${ }^{[13]}$. Knutsen et al. reported that attachment of a lipophilic 4,4-bis(3-methyl-2-thienyl)-3-butenyl (tiagabine, 4), or 4,4-bis(2-methylphenyl)-3-butenyl, substituent to the $\mathrm{N}-1$ nitrogen atom of nipecotic acid or guvacine provided potent GABA-uptake inhibition agents that possessed in vivo efficacy as anticonvulsant agents ${ }^{[14]}$. It was therefore of interest to determine the effect which attachment of a C-3 4,4-bis(2-methylphenyl)-3-butenyl- (12) and 4,4-bis(3-methyl-2-thienyl)-3-butenyl- (13) ester substituent has on CCA and anticonvulsant activities.

Chemistry

4,4-Bis(2-methylphenyl)-1-buten-4-ol (6c), required for the synthesis of 4,4-bis(2-methylphenyl)-3-butenyl acetoacetate (7c), was prepared according to a method previously developed ${ }^{[15]}$, and 2-[4-(4-fluorophenyl)piperazin-1-yl]ethanol ($6 \mathrm{~d}, 55 \%$ yield), required for the preparation of 2-[4-(4-fluorophenyl)piperazin-1-yl]ethyl acetoacetate (7d),

Figure 1. Structures of verapamil (1), flunarizine (2), nimodipine (3), and tiagabine (4).
was synthesized by the condensation of 1-(4fluorophenyl)piperazine with 2-bromoethanol in the presence of $\mathrm{Et}_{3} \mathrm{~N}$. The alkyl acetoacetate analogues (7a, 7c, 7d),

Scheme 1. Reagents and conditions: i, $\mathrm{Et}_{3} \mathrm{~N}, 95^{\circ} \mathrm{C}, 3 \mathrm{~h}$ (Products 7a, 7c, 7d).
electron-withdrawing substituents such as $\mathbf{8 b - c}$ ($20-69 \%$ yield). Reaction of the 2 -dimethylaminoethyl ester analogue 11a with iodomethane afforded the corresponding 2 trimethylammoniumethyl iodide 11b in 99% yield.
An alternate method was used to synthesize the 4,4-bis(3-methyl-2-thienyl)-3-butenyl ester 13 . Thus, the β-elimination of acrylonitrile from the 2-cyanoethyl ester moiety of $\mathbf{1 8}$ using the non-nucleophilic base 1,8 -diazabicyclo[5.4.0]un-dec-7-ene (DBU) yielded 3 -isopropyl 1,4-dihydro-2,6-di-methyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate 19 in 66% yield. Subsequent condensation of 19 with 4 -bromo-1,1-bis-(3-methyl-2-thienyl)-1-butene in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ afforded the target compound 13 in 27% yield.
Since 3-dimethylaminobenzaldehyde which may be useful for the Hanzsch synthesis of $\mathbf{1 4 a - b}$ is not commercially available, an alternative method was employed for their synthesis. Accordingly, hydrogenation of the 3-nitrophenyl compounds 17a-b using 10% palladium-on-charcoal and H_{2} gas at 55 psi afforded the respective 3 -aminophenyl derivatives $\mathbf{2 0 a} \mathbf{- b}$. The subsequent reaction of $\mathbf{2 0 a}$ and $\mathbf{2 0 b}$ with formaldehyde and sodium cyanoborohydride in the presence of zinc chloride afforded the respective 3 -dimethylaminophenyl products $\mathbf{1 4 a}(44 \%)$ and $\mathbf{1 4 b}(50 \%)$. This reductive-methylation reaction is a modification of the Escheweiler-Clarke reaction ${ }^{[17]}$ and is suitable for the methylation of primary amines. Sodium cyanoborohydride is a useful and selective reducing agent in this reaction since the electron-withdrawing cyano-group reduces its reactivity ${ }^{[18]}$ thereby preventing any undesired reduction of the $1,4-$ DHP C-3 and/or C-5 ester moieties.
required for the Hantzsch condensation reaction (Scheme 2), were prepared by the $\mathrm{Et}_{3} \mathrm{~N}$-catalyzed reaction of diketene (5) with the respective alcohol ($\mathbf{6 a}, \mathbf{6 c}$ or $\mathbf{6 d}$) in $84-85 \%$ yield as illustrated in Scheme 1.2-Cyanoethyl acetoacetate (7b) was prepared according to the procedure of Ogawa et al. ${ }^{[16]}$ and 2-methoxyethyl acetoacetate (7e) was purchased from the Aldrich Chemical Co.
The 1,4-DHP compounds (10, 11a, 12, 15a-b, 16a-b, 17a-b, 18) were prepared by the Hantzsch reaction. Thus, condensation of the substituted-benzaldehyde (8ad) with an alkyl acetoacetate analogue (7a-e) and isopropyl 3-aminocrotonate (9) in ethanol yielded the respective 1,4-DHP product in 19-69\% yield as illustrated in Scheme 2. Reactions employing the benzaldehyde derivatives 8 a and $8 \mathbf{8 d}$, which possess the respective electron-donating 4-dimethylamino and 3,4,5-trimethoxyphenyl substituents require a higher reaction temperature of $100^{\circ} \mathrm{C}$ using 2 -methoxyethanol as solvent, and a longer reaction time of 48 h (see Scheme 2 legend for reaction conditions). The product yield for these latter reactions are lower (19$42 \%$) relative to those reactions employing benzaldehyde derivatives that possess

Scheme 2. Reagents and conditions: i, EtOH, reflux, 16 h (10, 11a, 12, 17-18), or 2-methoxyethanol, $100^{\circ} \mathrm{C}, 48 \mathrm{~h}(\mathbf{1 5 a - b}, \mathbf{1 6 a - b})$, ii, MeI, acetone, reflux, 24 h ; iii, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$; iv, 4-bromo-1,1-bis(3-methyl-2-thienyl)-1-butene, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 25^{\circ} \mathrm{C}$, $120 \mathrm{~h} ; \mathrm{v}, \mathrm{H}_{2}$ gas, $55 \mathrm{psi}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{EtOH}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h} ; \mathrm{vi}, \mathrm{HCHO}(37 \% ~ w / v), \mathrm{NaCNBH}_{3}, \mathrm{ZnCl}_{2}, \mathrm{MeOH}$, $25^{\circ} \mathrm{C}, 18 \mathrm{~h} ; \mathrm{HCl}, \mathrm{EtOH}$.
Table 1. Physical, calcium channel antagonist activity and partition coefficients of 3-alkyl 5 -isopropyl 4-aryl-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylates (10-16).

Compd	X	R	Cryst. solvent	$\mathrm{mp}{ }^{\circ} \mathrm{C}$	$\begin{gathered} \% \\ \text { Yield } \end{gathered}$	Formula	Anal. ${ }^{[/]}$	Calcium channel antagonist activity ${ }^{1 C_{50}} \mathrm{M}^{[b]}$	Partition coeff. ${ }^{[c]}$
10	2,3-Cl ${ }_{2}$	[d]	$\mathrm{NR}^{\text {[]] }}$	65-70	48	$\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{FN}_{3} \mathrm{O}_{4}$	$\mathrm{C}, \mathrm{H}, \mathrm{N}^{\text {[f] }}$	$1.59 \pm 0.09 \times 10^{-8}$	265
11a	$3-\mathrm{NO}_{2}$	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} \cdot \mathrm{HCl}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane	121-125	61	$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{ClN}_{3} \mathrm{O}_{6}$	$\mathrm{C}, \mathrm{H}, \mathrm{N}^{[f]}$	$6.07 \pm 0.60 \times 10^{-8}$	230
11b	$3-\mathrm{NO}_{2}$	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{3}^{+} \mathrm{I}^{-}$	acetone-hexane	178-186	99	$\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{6}$	C,H,N	$1.39 \pm 0.00 \times 10^{-5}$	0.15
12	$3-\mathrm{NO}_{2}$	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CAr}_{2}{ }^{[8]}$	EtOAc-hexane	157-159	49	$\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{6}$	C,H,N	$2.25 \pm 0.01 \times 10^{-8}$	385
13	$3-\mathrm{NO}_{2}$	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHet}_{2}{ }^{[1]}$	$i-\mathrm{Pr}_{2} \mathrm{O}$-hexane	105-107	27	$\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$	C,H,N	$4.45 \pm 0.28 \times 10^{-6}$	424
14a	$3-\mathrm{NMe} 2 . \mathrm{HCl}$	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OMe}$	EtOH	209-210	19	$\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{ClN}_{2} \mathrm{O}_{5}$	C,H,N	$1.96 \pm 0.03 \times 10^{-7}$	137
14b	$3-\mathrm{NMe}_{2}$	$i \mathrm{Pr}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane	136-139	50	$\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}$	C, $\mathrm{H}, \mathrm{N}^{[\mathrm{li]}}$	$3.47 \pm 0.26 \times 10^{-8}$	129
15a	$4-\mathrm{NMe}_{2}$	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OMe}$	EtOAc-hexane	139-141	25	$\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}$	C,H,N	$1.33 \pm 0.02 \times 10^{-5}$	121
15b	$4-\mathrm{NMe}_{2}$	${ }^{\text {iPr }}$	EtOAc-hexane	135-136	19	$\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}$	C,H,N	$7.61 \pm 1.50 \times 10^{-6}$	104
16a	3,4,5-(OMe) ${ }_{3}$	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OMe}$	EtOAc-hexane	119-120	42	$\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{8}$	C,H,N	$2.84 \pm 0.00 \times 10^{-5}$	208
16b	3,4,5-(OMe) ${ }_{3}$	${ }_{i} \mathrm{Pr}$	EtOAc-hexane	161-162	20	$\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{7}$	C,H,N	$3.09 \pm 0.03 \times 10^{-5}$	259
Nimodipine (3)								$1.49 \pm 0.08 \times 10^{-8}$	187

${ }^{[a]}$ Microanalytical analyses were within $\pm 0.4 \%$ of theoretical values, unless otherwise indicated.
${ }^{[b]}$ The molar concentration of antagonist test compound causing a 50% decrease in the slow component, or tonic contractile response, (IC ${ }_{50} \pm$ SEM) in guinea pig ileal longitudinal smooth muscle by the muscarinic agonist carbachol $\left(1.6 \times 10^{-7} \mathrm{M}\right.$) was determined graphically from the dose-response curve ($n=3$).
${ }^{[d]}$ The partition coefficient is defined as the concentration of the test compound in n-octanol / concentration in an aqueous phosphate buffer at $\mathrm{pH}=7.4$. (d) $\mathrm{CH}_{2} \mathrm{CHN}_{2}{ }^{-1 /-5}$
${ }^{[\mathrm{e}]} \mathrm{NR}=$ Not recrystallized. ${ }^{[f]} / 2$ molecule of water of hydration, ${ }^{[\mathrm{g}]} \mathrm{Ar}=o$-tolyl, ${ }^{[\mathrm{h]}]} \mathrm{Het}=2-\left(3\right.$-methylthienyl), ${ }^{[\mathrm{i}]} 1 / 4$ molecule of water of hydration.
Table 2. Anticonvulsant test results for 3-alkyl 5-isopropyl 4-aryl-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylates (10-16).

Compd	MES ${ }^{[9]}$				$\mathrm{scMet}{ }^{[\mathrm{b}]}$						Toxicity Test				Class ${ }^{[5]}$
	$100 \mathrm{mg} / \mathrm{kg}$		$300 \mathrm{mg} / \mathrm{kg}$		$100 \mathrm{mg} / \mathrm{kg}$		$300 \mathrm{mg} / \mathrm{kg}$		$30 \mathrm{mg} / \mathrm{kg}$		$100 \mathrm{mg} / \mathrm{kg}$		$300 \mathrm{mg} / \mathrm{kg}$		
	$0.5 \mathrm{~h}^{[\mathrm{d}]}$	4 h	0.5 h	4 h											
10	0/3	$\mathrm{ND}^{[\mathrm{c]}}$	0/1	ND	1/1	ND	ND	ND	0/4	$1^{[f]} / 2$	8/8	4/4	$4^{[f]} / 4$	ND	4
11a	3/3	0/3	1/1	ND	$1 / 1^{[f]}$	ND	ND	ND	0/4	0/2	7/8	$3^{[\mathrm{ff} /} / 4$	$4^{[f]} / 4$	ND	1
11b	ND	$4^{[f]} / 4$	ND	$8^{[f]} / 8$	ND	$4^{[f]} / 4$	ND	4							
12	0/3	0/3	0/1	0/1	0/1	0/1	0/1	0/1	0/4	0/2	0/8	0/4	0/4	$0 / 2$	3
13	0/3	0/3	0/1	0/1	0/1	0/1	0/1	0/1	0/4	0/2	0/8	0/4	0/4	0/2	3
14a	0/3	0/3	1/1	1/1	0/1	0/1	0/1	1/1	0/4	0/2	2/8	4/4	4/4	$2 / 2$	2
	$2 / 2(0.25 \mathrm{~h})$	1/2(1 h)													
14b	0/3	0/3	0/1	1/1	0/1	0/1	0/1	0/1	0/4	0/2	0/8	0/4	0/4	1/2	2
15a	0/3	0/3	0/1	1/1	0/1	0/1	0/1	0/1	0/4	0/2	0/8	0/4	0/4	$0 / 2$	2
15b	0/3	0/3	0/1	0/1	0/1	0/1	0/1	0/1	0/4	0/2	0/8	0/4	0/4	0/2	3
16a	0/3	0/3	$0 / 1$	0/1	0/1	0/1	0/1	0/1	0/4	0/2	0/8	0/4	0/4	$0 / 2$	3
16b	0/3	0/3	0/1	0/1	0/1	0/1	0/1	0/1	0/4	0/2	0/8	0/4	0/4	$0 / 2$	3
Nimodipine (3)	e (3) $0 / 3$	1/3	0/1	1/1	0/1	0/1	0/1	0/1	0/4	0/2	0/8	0/4	0/4	$2 / 2$	1

[^0]
Results and Discussion

The in vitro calcium channel antagonist activities of the racemic compounds 10-16, and the reference drug nimodipine (3), were determined using the muscarinic receptor-mediated (carbachol) Ca^{2+}-dependent contraction of guinea pig ileum longitudinal smooth muscle (GPILSM) assay. These results and their n-octanol-aqueous phosphate buffer ($\mathrm{pH}=$ 7.4) partition coefficients are summarized in Table 1. The most potent calcium channel antagonist compounds $10\{R=$ 2-[4-(4-fluorophenyl)piperazin-1-yl]ethyl\}, 11a ($\mathrm{R}=2$-dimethylaminoethyl), 12 [$\mathrm{R}=4,4$-bis(2-methylphenyl)-3butenyl], and $\mathbf{1 4 b}(\mathrm{R}=i$ - Pr) were approximately equiactive ($\mathrm{IC}_{50}=1.59 \times 10^{-8}$ to $6.07 \times 10^{-8} \mathrm{M}$ range) to the reference drug nimodipine ($\mathrm{IC}_{50}=1.49 \times 10^{-8} \mathrm{M}$). A comparison of the C-4 3-nitrophenyl series of compounds showed the C-3 ester R -substituent was a determinant of activity where the relative potency order was $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}$-(2-methylphenyl) ${ }_{2}$ (12) $\geq-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} . \mathrm{HCl}$ (11a) $>-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}$-(3-methyl-2-thienyl) 2 (13) $>-\mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+} \mathrm{NMe}_{3} \mathrm{I}^{-}$(11b). The significant reduction in potency observed upon elaboration of the $\mathrm{C}-3$ $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} . \mathrm{HCl}$ substituent of $11 \mathrm{a}\left(\mathrm{IC}_{50}=6.07 \times 10^{-8}\right.$ M) to the $-\mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+} \mathrm{NMe}_{3} \mathrm{I}^{-}$analogue (11b) ($\mathrm{IC} 50=1.39 \times$ $10^{-5} \mathrm{M}$) is likely due to the fact that a polymethylene spacer of at least eight carbon atoms $\left[-\mathrm{CO}_{2}\left(\mathrm{CH}_{2}\right)_{8}{ }^{+} \mathrm{NMe}_{3} \mathrm{I}^{-}\right]$is required for maximal binding to the L-type binding site for charged trimethylammonium alkyl compounds ${ }^{[13]}$. The position, and nature, of the phenyl X-substituent were also determinants of activity where the relative activity orders were $3-\mathrm{NMe}_{2} \cdot \mathrm{HCl}(14 \mathrm{a})>4-\mathrm{NMe}_{2}(15 \mathrm{a}) \approx 3,4,5-(\mathrm{OMe})_{3}(\mathbf{1 6 a})$, and $3-\mathrm{NMe}_{2}(\mathbf{1 4 b})>4-\mathrm{NMe}_{2}(\mathbf{1 5 b})>3,4,5-(\mathrm{OMe})_{3}(\mathbf{1 6 b})$. These results ($\mathrm{X}=3-\mathrm{NMe}_{2}>4-\mathrm{NMe}_{2}$) are consistent with the well-documented structure-activity relationship for $1,4-$ DHPs that C-4 meta-X-phenyl > para-X-phenyl ${ }^{[19-20]}$. In the C-4 3-nitrophenyl series of compounds, all agents (11a, 12, $13 ; K p=230,385,424$, respectively) except for the trimethylammoniumethyl iodide compound ($\mathbf{1 1 b}, K \mathrm{p}=0.15$) are more lipophilic than the reference drug nimodipine ($K p=187$). The high lipophilicity of compounds 11a, 12, and 13 should allow their facile passage across the blood-brain-barrier ${ }^{[21]}$. In contrast, compounds ($\mathbf{1 4 a} \mathbf{- b}, \mathbf{1 5 a}-\mathbf{b}$) possessing a $\mathrm{C}-4$ phenyl X $=3-\mathrm{NMe}_{2}$ or $4-\mathrm{NMe}_{2}$ subsituent are less lipophilic ($K \mathrm{p}=$ 104-137 range) than the corresponding $X=3,4,5$-(OMe$)_{3}$ compounds ($\mathbf{1 6 a}-\mathbf{b}, K \mathrm{p}=208$ and 259 , respectively).

The anticonvulsant activities were determined by the U.S. National Institutes of Health, Antiepileptic Drug Development Program. In Phase 1 identification of anticonvulsant activity in mice, test compounds were administered via intraperitoneal injection and challenged by maximal electroshock (MES) and subcutaneous metrazol (scMet) induced seizures ${ }^{[22-23]}$. Compounds which are effective in these seizure challenges are regarded to be effective for absence or petit mal (scMet), and generalized tonic clonic or grand mal (MES) epilepsy. Toxicity of the test compounds was determined using the rotorod toxicity test ${ }^{[22-23]}$. The results summarized in Table 2 indicate that none of the compounds investigated protect mice from scMet induced seizures, except for compounds $10\left\{X=2,3-\mathrm{Cl}_{2}, \mathrm{R}=2-[4-(4-\right.$ fluorophenyl)piperazin-1-yl]ethyl\} and 14a (X = $3-\mathrm{NMe}_{2} \cdot \mathrm{HCl}, \mathrm{R}=-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OMe}$) which protected $1 / 1$ mice at $0.5 \mathrm{~h}(100 \mathrm{mg} / \mathrm{kg}$ ip dose), and at 4 h ($300 \mathrm{mg} / \mathrm{kg}$ ip dose)
post drug administration, respectively. These results suggest that another type of calcium current, other than the L-type ${ }^{[24]}$ which is modulated by CCAs, may be involved in seizure initiation ${ }^{[25]}$. A number of compounds 11a ($\mathrm{X}=3-\mathrm{NO}_{2}, \mathrm{R}=$ $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} \cdot \mathrm{HCl}$), 14a ($\mathrm{X}=3-\mathrm{NMe}_{2} \cdot \mathrm{HCl}, \mathrm{R}=$ $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OMe}$), 14b ($\mathrm{X}=3$ - $\mathrm{NMe}_{2}, \mathrm{R}=i$ - Pr) and 15a ($\mathrm{X}=$ 4- $\mathrm{NMe}_{2}, \mathrm{R}=-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OMe}$) protected mice against MES induced seizures. Compound 11a, which was the most effective in the MES screen, protected $3 / 3$ mice ($100 \mathrm{mg} / \mathrm{kg}$ ip dose) at 30 min post drug administration, although it was quite toxic. The high toxicity of compounds 10 and 11 b precluded their evaluation in the MES and scMet screens. It is quite possible that this extreme toxicity exhibited by 11 b ($\mathrm{X}=$ 3- $\mathrm{NO}_{2}, \mathrm{R}=-\mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+} \mathrm{NMe}_{3} \mathrm{I}^{-}$) is due to its acetylcholinelike $\mathrm{C}-3$ ester substituent $\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+} \mathrm{NMe}_{3} \mathrm{I}^{-}\right)$which may allow it to act as a potent CNS cholinergic agonist. Although compound 12 [$\mathrm{X}=3-\mathrm{NO}_{2}, \mathrm{R}=-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}$ -(2-methylphenyl) 2_{2}] exhibited comparable CCA activity to nimodipine and is highly lipophilic ($\mathrm{Kp}=385$), it was inactive and non-toxic in the MES screen.
The classification of anticonvulsant activity (see Table 2) indicates that the position of the X -substituent on the $\mathrm{C}-4$ phenyl ring is a determinant of anticonvulsant activity for active compounds (11a, 14a, 14b, 15a) with an activity profile meta $>$ para $>3,4,5$-(OMe) 3 (inactive). These results reinforce the concept that calcium is only one of several factors that are involved in seizure initiation ${ }^{[26]}$.

Acknowledgments

We are grateful to the Medical Research Council of Canada (Grant No. MT-8892) for financial support of this research and to the Anticonvulsant Drug Development Program, Epilepsy Branch, NINCDS, Bethesda, for the anticonvulsant test data.

Experimental

Melting points were determined using a Thomas Hoover capillary apparatus and are uncorrected. IR spectra were acquired using a Nicolet 5DX-FT spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AM- 300 spectrometer using CDCl_{3} or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ as solvent with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. The assignment of exchangeable protons ($\mathrm{N} H, \mathrm{OH}$) was confirmed by the addition of $\mathrm{D}_{2} \mathrm{O}$. Quantitative UV analyses, to determine partition coefficients, were performed using a Philips PU 8700 Series UV/visible spectrophotometer. Silica gel column chromatography was performed using Merck silica gel 60 ASTM ($70-230$ mesh). Microanalyses were within \pm 0.4% of theoretical values for all elements listed, unless otherwise stated. 1,1-Bis(2-methylphenyl)-1-buten-4-ol (6c) ${ }^{[15]}$, 2-cyanoethyl acetoacetate (7b) ${ }^{[16]}$ and 4-bromo-1,1-bis(3-methyl-2-thienyl)-1-butene ${ }^{[14]}$ were synthesized according to literature procedures. 2-Methoxyethyl acetoacetate (7e), isopropyl 3-aminocrotonate (9) and all other reagents used were purchased from the Aldrich Chemical Co.

2-[4-(4-Fluorophenyl)]piperazin-1-yl]ethanol 6d

A solution of 1-(4-fluorophenyl)piperazine ($4.5 \mathrm{~g}, 25 \mathrm{mmol}$), 2-bromoethanol ($3.2 \mathrm{~g}, 25 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(7 \mathrm{ml}, 50.2 \mathrm{mmol})$ in acetone (50 ml) was refluxed for 24 h . The solvent was removed in vacuo, the residue obtained was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ and washed with water (3×25 $\mathrm{mi})$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent was removed in vacuo, and the residue obtained was purified by silica gel column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(96: 4, v / v)$ as eluent to give $6 \mathbf{d}$ as a white foam ($3.1 \mathrm{~g}, 55 \%$).- ${ }^{1} \mathbf{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 6.86-7.01(\mathrm{~m}, 4 \mathrm{H}$, phenyl hydrogens), $3.68\left(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.15(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}$, piperazinyl $\mathrm{H}-3$ and $\mathrm{H}-5), 2.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.71(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}$, piperazinyl $\mathrm{H}-2$ and
$\mathrm{H}-6), 2.64\left(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$. Product 6 d was used immediately for the synthesis of $7 \mathbf{d}$.

2-Dimethylaminoethyl Acetoacetate 7a

Freshly distilled diketene $(8.4 \mathrm{~g}, 100 \mathrm{mmol})$ was added dropwise to a solution of N, N-dimethylethanolamine ($8.9 \mathrm{~g}, 100 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{ml}$, 9.2 mmol) at $60^{\circ} \mathrm{C}$ with stirring. Diketene was added at a rate such that the temperature of the reaction mixture did not exceed $80^{\circ} \mathrm{C}$. After the addition was completed, the reaction was allowed to proceed at $95^{\circ} \mathrm{C}$ for an additional 3 h . The reaction mixture was purified by distillation in vacuo to yield 7 a as a colourless liquid ($14.6 \mathrm{~g}, 84 \%$), bp $98-99^{\circ} \mathrm{C}$; IR (film): $v=1745 \mathrm{~cm}^{-1}$ $\left(\mathrm{CO}_{2}\right), 1726(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.20\left(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COOCH}_{2}\right)$, $3.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{COCH} \mathrm{COO}_{2}\right), 2.53\left(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NMe}_{2}\right), 2.23(\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CO}$ and NCH_{3}). Product 7a was used immediately for the synthesis of 11a.

4,4-Bis(2-methylphenyl)-3-butenyl-Acetoacetate 7c

The title compound 7 c was prepared according to the procedure used for the preparation of 7 a by reaction of $6 \mathbf{c}(1.0 \mathrm{~g}, 4 \mathrm{mmol})$, diketene $(0.44 \mathrm{~g}, 5.2$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{ml}, 9.2 \mathrm{mmol})$. The reaction product was purified by silica gel column chromatography using EtOAc-hexane ($1: 2, v / v$) as eluent to afford 7 c as a yellow oil ($1.2 \mathrm{~g}, 84 \%$); IR (film): $v=1745 \mathrm{~cm}^{-1}\left(\mathrm{CO}_{2}\right)$, $1721(\mathrm{C}=\mathrm{O})$.- ${ }^{\mathrm{I}} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.08-7.27(\mathrm{~m}, 8 \mathrm{H}$, phenyl hydrogens), $\left.5.79(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 4.23(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COOCH})_{2}\right), 3.45(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{COO}\right), 2.44\left(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{C}\right), 2.29(\mathrm{~s}, 3 \mathrm{H}$, aryl- CH_{3}), $2.27\left(\mathrm{~s}, 3 \mathrm{H}\right.$, aryl- $\left.\mathrm{CH}_{3}\right), 2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right)$. Product 7 c was used immediately for the synthesis of 12.

2-[4-(4-Fluorophenyl)piperazin-1-yl]ethyl Acetoacetate 7d

The title compound 7d was prepared according to the procedure used for the preparation of 7 a by reaction of $6 \mathrm{~d}(2.4 \mathrm{~g}, 10 \mathrm{mmol})$, diketene $(0.84 \mathrm{~g}$, $10 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{ml}, 9.2 \mathrm{mmol})$. The reaction product was purified by silica gel column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(96: 4, v / v)$ as eluent to afford 7d as a yellow oil ($2.6 \mathrm{~g}, 85 \%$); IR (film): $v=1776 \mathrm{~cm}^{-1}$ $\left(\mathrm{CO}_{2}\right), 1720(\mathrm{C}=\mathrm{O}), 1229(\mathrm{C}-\mathrm{F}) .-{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 6.82-6.97(\mathrm{~m}, 4 \mathrm{H}$, phenyl hydrogens), $4.30\left(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COOCH}_{2}\right), 3.47(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{COCH}_{2} \mathrm{COO}$), 3.09 (t, $J=4.9 \mathrm{~Hz}, 4 \mathrm{H}$, piperazinyl H-3, H-5), 2.63-2.73 (m, $6 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{2}$ and piperazinyl $\left.\mathrm{H}-2, \mathrm{H}-6\right), 2.27(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3 \mathrm{CO})$. Product 7d was used immediately for the synthesis of $\mathbf{1 0}$.

3-[4,4-Bis(2-methylphenyl)-3-butenyl] 5-Isopropyl 1,4-Dihydro-
2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate 12.
General Method for the Synthesis of 3-Alkyl 5-Isopropyl 1,4-Dihydro-
2,6-dimethyl-4-aryl-3,5-pyridinedicarboxylate analogues 10, 11a, 15a-b, 16a-b, 17a-b, 18

A solution of 3 -nitrobenzaldehyde $8 \mathrm{c}(0.49 \mathrm{~g}, 3.24 \mathrm{mmol}$), 4,4-bis(2-methylphenyl)-3-butenyl acetoacetate $7 \mathrm{c}(1.09 \mathrm{~g}, 3.24 \mathrm{mmol})$ and isopropyl 3-aminocrotonate $9(0.46 \mathrm{~g}, 3.24 \mathrm{mmol})$ in $95 \% \mathrm{EtOH}(80 \mathrm{ml})$ was refluxed for 16 h . The solvent was removed in vacuo, and the residue obtained was purified by silica gel column chromatography using EtOAc-hexane ($1: 4, v / v$) as eluent. Recrystallization of the product from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane afforded 12 as a yellow crystalline solid $(1.0 \mathrm{~g}, 49 \%) ; \mathrm{mp} 157-159^{\circ} \mathrm{C} ; \mathrm{IR}(\mathrm{KBr}): \mathrm{v}=$ $3353 \mathrm{~cm}^{-1}(\mathrm{NH}), 1696,1664(\mathrm{C}=\mathrm{O}), 1532,1359\left(\mathrm{NO}_{2}\right) .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right):$ $\delta 8.10(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, nitrophenyl $\mathrm{H}-2), 7.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, nitrophenyl $\mathrm{H}-4), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, nitrophenyl $\mathrm{H}-6), 7.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, nitrophenyl $\mathrm{H}-5$), $7.02-7.20(\mathrm{~m}, 8 \mathrm{H}, o$-tolyl hydrogens), $5.62-5.67(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{NH}, \mathrm{CH}=\mathrm{C}$), 5.06 (s, 1H, H-4), 4.95 (septet, $1 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{CHMe} 2$), 4.10 $\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COOCH}_{2}\right), 2.30-2.42(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}-2$ and $\mathrm{C}-6 \mathrm{CH} 3$ and $\mathrm{CH}_{2}-\mathrm{CH}=$), $2.20\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.08(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}$, CHCH_{3}).

Compounds 10, 11a, 15a-b, 16a-b, 17a-b and 18 were prepared, using the same procedure used to prepare 12, by condensation of a substituted-benzaldehyde (8a-d), isopropyl 3-aminocrotonate (9) and an acetoacetate derivative (7a-e) as illustrated in Scheme 2.

3-[2-[4-(4-Fluorophenyl)piperazin-1-yl]ethyl] 5-Isopropyl 4-(2,3-Dichlo-rophenyl)-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate 10

Product 10 was purified by silica gel column chromatography using EtOAc-hexane ($1: 1, v / v$) as eluent; IR (KBr): $v=3472 \mathrm{~cm}^{-1}(\mathrm{NH}), 1700$ $(\mathrm{C}=\mathrm{O})$. $-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.33$ (dd, $J=7.9, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$, dichlorophenyl H-4), 7.25 (dd, $J=7.9, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$, dichlorophenyl H-6), 7.08 (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, dichlorophenyl H-5), $6.84-7.00$ ($\mathrm{m}, 4 \mathrm{H}$, fluorophenyl hydrogens), 5.64 (s, $1 \mathrm{H}, \mathrm{N} H$), 5.45 (s, $1 \mathrm{H}, \mathrm{H}-4$), 4.99 (septet, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$, CHMe 2), $4.10-4.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COOCH}_{2}\right), 3.07$ ($\mathrm{brt}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}$, piperazinyl $\mathrm{H}-3$ and $\mathrm{H}-5$), $2.50-2.64\left(\mathrm{~m}, 6 \mathrm{H}\right.$, piperazinyl $\mathrm{H}-2, \mathrm{H}-6$ and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.32 (s, $6 \mathrm{H}, \mathrm{C}-2$ and $\mathrm{C}-6 \mathrm{CH}_{3}$), $1.26\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.06(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}$).

3-[2-(Dimethylamino)ethyl] 5-Isopropyl 1,4-Dihydro-2,6-dimethyl-4-(3-ni-trophenyl)-3,5-pyridinedicarboxylate hydrochloride 11a

The free base of 11a was purified by silica gel column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(19: 1, v / v)$ as eluent. A solution of this free base in $\mathrm{EtOH}(20 \mathrm{ml})$, precooled to $5^{\circ} \mathrm{C}$, was treated with a saturated solution of HCl in $\mathrm{EtOH}(2 \mathrm{ml})$. Removal of the solvent in vacuo and recrystallization of the solid obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane afforded 11a as a yellow crystalline solid; IR (KBr): $v=3435 \mathrm{~cm}^{-1}(\mathrm{NH}), 1697(\mathrm{C}=\mathrm{O}), 1533,1350\left(\mathrm{NO}_{2}\right)$.${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 12.95\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{N}^{+} H \mathrm{Me}_{2}\right.$), 8.09 (s, 1 H, aryl H-2), 8.02 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-4), $7.64(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-6), 7.42 (t, $J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-5), $6.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), 5.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 4.99$ (septet, $J=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$), $4.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COOCH} \mathrm{C}_{2}\right), 3.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}^{+} \mathrm{Me}_{2}\right)$, 2.74 and 2.73 (two s, 3 H each, $\mathrm{N}^{+} \mathrm{CH}_{3}$), 2.43 and 2.37 (two s, 3 H each, $\mathrm{C}-2$, $\left.\mathrm{C}-6 \mathrm{CH}_{3}\right), 1.27\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.15\left(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.

3-(2-Methoxyethyl) 5-Isopropyl 1,4-Dihydro-2,6-dimethyl-4-(4-dimethyl-aminophenyl)-3,5-pyridinedicarboxylate 15a

The product was purified by silica gel column chromatography using EtOAc-hexane ($1: 1, v / v$) as eluent to yield $15 a$ as a yellow crystalline solid; IR (KBr): $v=3351 \mathrm{~cm}^{-1}(\mathrm{NH}), 1695,1651(\mathrm{C}=\mathrm{O}), 1111(\mathrm{C}-\mathrm{O}-\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.16(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, aryl H-2, H-6), $6.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, aryl H-3, H-5), 5.56 (br s, $1 \mathrm{H}, \mathrm{N} H), 4.95$ (septet, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe} 2$), $4.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 4.19\left(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COOCH}_{2}\right), 3.58(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{OMe}\right), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.89(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH} 3), 2.33$ and 2.32 (two s, 3H each, $\mathrm{C}-2$ and $\left.\mathrm{C}-6 \mathrm{CH}_{3}\right), 1.25\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.15(\mathrm{~d}, J=$ $6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}$).

3,5-Diisopropyl 1,4-Dihydro-2,6-dimethyl-4-(4-dimethylaminophenyl)-3,5pyridinedicarboxylate $15 b$

The reaction product was recrystallized from EtOAc-hexane; IR (KBr): v $=3394 \mathrm{~cm}^{-1}(\mathrm{NH}), 1691(\mathrm{C}=\mathrm{O}) .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 2 H , aryl H-2, H-6), 6.62 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, aryl H-3, H-5), 5.47 (br s, 1 H , NH), 4.97 (septet, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHMe}$), $4.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 2.90(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 2.33\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}-2\right.$ and $\left.\mathrm{C}-6 \mathrm{CH}_{3}\right), 1.26\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CHCH}_{3}\right)$, $1.16\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.

3-(2-Methoxyethyl) 5-Isopropyl 1,4-Dihydro-2,6-dimethyl-
 4-(3,4,5-trimethoxyphenyl)-3,5-pyridinedicarboxylate 16a

The product was purified by silica gel column chromatography using EtOAc-hexane ($1: 1, v / v$) as eluent to afford 16a as yellow crystals; IR (KBr): $v=3335 \mathrm{~cm}^{-1}(\mathrm{NH}), 1689(\mathrm{C}=\mathrm{O}), 1111(\mathrm{C}-\mathrm{O}-\mathrm{C}) .-{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 86.54$ ($\mathrm{s}, 2 \mathrm{H}$, aryl H-2, H-6), 5.57 ($\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}$), 4.97-5.04 (m, 2H, CHMe $\mathrm{C}_{2}, \mathrm{H}-4$), $4.23\left(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COOCH}_{2}\right), 3.81$ and $3.80\left(\mathrm{two} \mathrm{s}, 9 \mathrm{H}\right.$ total, aryl $\left.\mathrm{OCH} \mathrm{H}_{3}\right)$, $3.59\left(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OMe}\right), 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 2.45(\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{C}-2$ and $\left.\mathrm{C}-6 \mathrm{CH}_{3}\right), 1.26\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.16(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}$, CHCH_{3}).

3,5-Diisopropyl 1,4-Dihydro-2,6-dimethyl-4-(3,4,5-trimethoxyphenyl)-3,5-pyridinedicarboxylate $16 b$

The product was purified by silica gel column chromatography using EtOAc-hexane ($1: 1, v / v$) as eluent to afford 16 b as yellow crystals; IR (KBr): $v=3361 \mathrm{~cm}^{-1}(\mathrm{NH}), 1695(\mathrm{C}=\mathrm{O}) .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.53(\mathrm{~s}, 2 \mathrm{H}$, aryl H-2, H-6), 5.53 (br s, 1H, NH), 4.95-5.04 (m, 3H, CHMe2 and H-4), 3.81
and 3.79 (two s, 9 H total, OCH_{3}), $2.35\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}-2\right.$ and $\left.\mathrm{C}-6 \mathrm{CH}_{3}\right), 1.26(\mathrm{~d}, \mathrm{~J}$ $\left.=6.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.18\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.

3-(2-Methoxyethyl) 5-Isopropyl 1,4-Dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate 17a

The product was purified by silica gel column chromatography using EtOAc-hexane ($1: 3, v / v$) as eluent prior to recrystallization from EtOAc-hexane to yield 17a as yellow crystals (69\%); mp 124-125 ${ }^{\circ} \mathrm{C}$ (Lit. mp $125-$ $\left.126^{\circ} \mathrm{C}\right)^{[28]}$; IR $(\mathrm{KBr}): v=3312 \mathrm{~cm}^{-1}(\mathrm{NH}), 1696(\mathrm{C}=\mathrm{O}), 1532,1352\left(\mathrm{NO}_{2}\right) .-$ ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.14(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$, aryl $\mathrm{H}-2), 8.01$ (ddd, $J=9.0, J$ $=1.2, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-4), 7.67 (ddd, $J=9.0, J=1.2, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-6), $7.38(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-5), $5.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{N} H), 5.10(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-4$), 4.95 (septet, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}$), 4.17 (m, $2 \mathrm{H}, \mathrm{COOCH}$), $3.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OMe}\right), 3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.37\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}-2\right.$ and $\left.\mathrm{C}-6 \mathrm{CH}_{3}\right)$, $1.26\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.09\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$. Product 17a was used immediately for the synthesis of 20a.

3,5-Diisopropyl 1,4-Dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate 17b

The product was purified by silica gel column chromatography using EtOAc-hexane ($1: 2, v / v$) as eluent prior to recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ hexane to give 17 b as a yellow solid (64%), mp $130-131^{\circ} \mathrm{C}$; IR (KBr): $v=$ $3362 \mathrm{~cm}^{-1}(\mathrm{NH}), 1652,1701(\mathrm{C}=\mathrm{O}), 1531,1348\left(\mathrm{NO}_{2}\right) .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 8.14(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-2), 8.00 (ddd, $J=8.0, J=1.2, J=1.2 \mathrm{~Hz}$, 1 H , aryl H-4), 7.65 (ddd, $J=8.0, J=1.2, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-6), 7.37 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-5), $5.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{N} H), 5.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 4.95$ (septet, $\left.J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}\right), 2.36(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}-2$ and $\mathrm{C}-6 \mathrm{CH} 3), 1.26(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $\left.6 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.10\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CHCH}_{3}\right)$. Product 17 b was used immediately for the synthesis of $\mathbf{2 0 b}$.

3-(2-Cyanoethyl) 5-Isopropyl 1,4-Dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate 18

The product was purified by silica gel column chromatography using EtOAc-hexane ($1: 2, v / v$) as eluent, prior to recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ hexane, to afford 18 as yellow crystals (26%), mp $132-136^{\circ} \mathrm{C}$; IR (KBr); v $=3378 \mathrm{~cm}^{-1}(\mathrm{NH}), 2254(\mathrm{CN}), 1647,1696(\mathrm{C}=\mathrm{O}), 1532,1352\left(\mathrm{NO}_{2}\right) .-{ }^{1} \mathrm{H}$ NMR (CDCl $)^{2}: \delta 8.13(\mathrm{~s}, 1 \mathrm{H}$, aryl H-2), $8.03(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-4), $7.68(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-6), $7.41(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-5), 5.76 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{N} H), 5.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 4.97$ (septet, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$), $4.22-4.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COOCH}_{2}\right), 2.65(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} 2 \mathrm{CN}), 2.40$ and 2.38 (two s, 3 H each, $\mathrm{C}-2$ and $\left.\mathrm{C}-6 \mathrm{CH}_{3}\right), 1.28\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$, $1.12\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$. Product 18 was used for the synthesis of compound 19.

Isopropyl 1,4-Dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate 19

1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, $3.4 \mathrm{~g}, 22.4 \mathrm{mmol}$) was added to a solution of $18(3.1 \mathrm{~g}, 7.5 \mathrm{mmol})$ in $\mathrm{MeOH}(50 \mathrm{ml})$ and the reaction was allowed to proceed at $25^{\circ} \mathrm{C}$ for 48 h with stirring prior to adjustment of the pH to 1 using 2 N HCl . The resulting yellow solid was filtered, washed successively with water ($3 \times 35 \mathrm{ml}$) and ether ($3 \times 25 \mathrm{ml}$), and the pale yellow product 19 was dried in vacuo ($1.77 \mathrm{~g}, 66 \%$); mp $165-169^{\circ} \mathrm{C}(\mathrm{dec})$; IR (KBr): $v=2154-3846 \mathrm{~cm}^{-1}(\mathrm{COOH}), 3364(\mathrm{NH}), 1699(\mathrm{C}=\mathrm{O}$, acid), $1679(\mathrm{C}=\mathrm{O}$, ester), 1528, $1349\left(\mathrm{NO}_{2}\right) .-{ }^{1} \mathrm{H}$ NMR [($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]: \delta 11.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{COOH})$, $8.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), 7.99-8.02(\mathrm{~m}, 2 \mathrm{H}$, aryl H-4 and H-2), $7.52-7.61(\mathrm{~m}, 2 \mathrm{H}$, aryl H-6, H-5), 4.94 (s, 1H, H-4), 4.82 (septet, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe} 2$), 2.28 and 2.27 (two s, 3 H each, $\mathrm{C}-2$ and $\mathrm{C}-6 \mathrm{CH}_{3}$), $1.19\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$, $1.04\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$. Product 19 was used for the synthesis of compound 13.

3-[4,4-Bis-(3-methyl-2-thienyl)-3-butenyl] 5-Isopropyl 1,4-Dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate 13

A solution of 19 ($1.6 \mathrm{~g}, 4.4 \mathrm{mmol}$), 4-bromo-1,1-bis(3-methyl-2-thienyl)-1-butene ($1.7 \mathrm{~g}, 5.2 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.23 \mathrm{~g}, 8.8 \mathrm{mmol})$ in dry DMF (20 ml) was stirred at $25^{\circ} \mathrm{C}$ for $120 \mathrm{~h} . \mathrm{HCl}(6 \mathrm{~N})$ was then added until the pH of the solution was 1 during which unreacted $19(0.5 \mathrm{~g})$ precipitated. After filtration, the solvent was partially removed in vacuo to remove as much

DMF as possible. The residue obtained was dissolved in ethyl acetate (20 $\mathrm{ml})$ and washed with water ($3 \times 25 \mathrm{ml}$). After drying the organic layer ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), the solvent was removed in vacuo and the residue obtained was eluted from a silica gel column using ethyl acetate-hexane $(2: 5, v / v)$ as eluent. Unreacted 4-bromo-1,1-bis(3-methyl-2-thienyl)-1-butene (0.8 g) eluted first. The product 13 eluted next as a yellow foam that was recrystallized from isopropyl ether-hexane as a light yellow crystalline solid which turned to a purple black colour on standing ($0.72 \mathrm{~g}, 27 \%$), mp $105-107^{\circ} \mathrm{C}$; IR (KBr): v $=3376 \mathrm{~cm}^{-1}(\mathrm{NH}), 1691(\mathrm{C}=\mathrm{O}), 1528,1349\left(\mathrm{NO}_{2}\right), 712(\mathrm{CH}$, thiophene).${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 8.13(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-2), 7.94 (dd, $J=7.9, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-4), $7.64(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-6), $7.28(\mathrm{t}, J=7.9 \mathrm{~Hz}$, 1 H , aryl H-5), $7.22(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$, thienyl $\mathrm{H}-5), 7.06(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$, thienyl H-5) , $6.85(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$, thienyl H-4), $6.76(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$, thienyl H-4), $6.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), 5.93(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 5.08(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-4$), 4.95 (septet, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}$), $4.14(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{COOCH}_{2} \mathrm{CH}_{2}$), $2.44\left(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C}=\right.$), 2.36 and 2.34 (two s, 3 H each, $\mathrm{C}-2$ and $\mathrm{C}-6 \mathrm{CH}_{3}$), 2.03 and 1.95 (two s, 3 H each, thienyl CH_{3}), 1.25 $\left(\mathrm{d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.10\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.

3-(2-Methoxyethyl) 5-Isopropyl 4-(3-Aminophenyl)-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate 20a, and the Related Compound $20 b$

A solution of $17 \mathrm{a}(0.41 \mathrm{~g}, 0.98 \mathrm{mmol})$ in $\mathrm{EtOH}(30 \mathrm{ml})$ was added to a pressure bottle containing 10% palladium-on-carbon $(0.1 \mathrm{~g})$. This solution and its contents was shaken under an atmosphere of hydrogen gas at 55 psi for 2 h . Filtration of the palladium catalyst, and evaporation of the solvent in vacuo afforded 20 a as a grey coloured oil $(0.37 \mathrm{~g}, 95 \%$); IR (film): $v=3338$ $\mathrm{cm}^{-1}(\mathrm{NH}), 1648(\mathrm{C}=\mathrm{O}) .-{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.98(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, aryl $\mathrm{H}-5), 6.70(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-6), $6.65(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-2), 6.46 (dd, $J=7.7, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-4), 5.70 (br s, 1 H , dihydropyridyl $\mathrm{N} H), 4.94-4.98(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHMe} 2$ and $\mathrm{H}-4), 4.10-4.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COOCH}_{2}\right)$, 3.53-3.59 (m, 4H, $\mathrm{CH}_{2} \mathrm{OMe}$ and $\left.\mathrm{NH}_{2}\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.31(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}-2$ and C-6 CH3 $), 1.24\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.14(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}$, CHCH_{3}). Product 20a was used immediately for the synthesis of compound 14a.

3,5-Diisopropyl 4-(3-Aminophenyl)-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate $20 b$

Product 20b which was prepared starting from 17b, using the method described above for the synthesis of 20 a from 17 a , was isolated as a yellow foam (99\%); IR (KBr): $v=3343 \mathrm{~cm}^{-1}(\mathrm{NH}), 1645$ ($\mathrm{C}=\mathrm{O}$).- ${ }^{\mathrm{I}} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.98(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, aryl $\mathrm{H}-5), 6.70(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, aryl $\mathrm{H}-6), 6.62(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-2), 6.46 (dd, $\mathrm{J}=7.7, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$, aryl $\mathrm{H}-4), 5.59(\mathrm{~s}, 1 \mathrm{H}$, dihydropyridyl NH$), 4.90-5.59(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHMe} 2$ and $\mathrm{H}-4)$, 3.30-3.70 (br s, $2 \mathrm{H}, \mathrm{N} \mathrm{H}_{2}$), $2.31\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}-2\right.$ and $\left.\mathrm{C}-6 \mathrm{CH}_{3}\right), 1.25(\mathrm{~d}, \mathrm{~J}=6.2$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.15\left(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$. Product 20 b was used immediately for the synthesis of compound $\mathbf{1 4 b}$.

3-(2-Methoxyethyl) 5-Isopropyl 1,4-Dihydro-2,6-dimethyl-4-(3-dimethyl-aminophenyl)-3,5-pyridinedicarboxylate Hydrochloride 14 a and the Related Compound 14b

A procedure for the reductive-methylation of primary amines reported by Kim et al. ${ }^{[27]}$ was used for the preparation of 14a. To a stirred solution of 20a ($2.7 \mathrm{~g}, 7.0 \mathrm{mmol}$) and $37 \% ~ w / v$ formaldehyde ($1.7 \mathrm{ml}, 21.0 \mathrm{mmol}$) in $\mathrm{MeOH}(25 \mathrm{ml})$ was added a suspension of sodium cyanoborohydride (0.44 $\mathrm{g}, 7.0 \mathrm{mmol}$) and zinc chloride ($0.48 \mathrm{~g}, 3.5 \mathrm{mmol}$) in $\mathrm{MeOH}(25 \mathrm{ml})$. The reaction was allowed to proceed at $25^{\circ} \mathrm{C}$ for 18 h before addition of NaOH (50 ml of 0.2 N). The organic solvent was removed in vacuo before extracting the aqueous residue with EtOAc ($3 \times 25 \mathrm{ml}$). The combined ethyl acetate extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed in vacuo. The residue obtained was purified by silica gel column chromatography using EtOAc-hexane ($1: 2, v / v$) as eluent to afford the free base of 14a as a yellow oil. This oil was then dissolved in $\mathrm{EtOH}(50 \mathrm{ml})$ and a saturated solution of HCl in $\mathrm{EtOH}(40 \mathrm{ml})$ was added at $0^{\circ} \mathrm{C}$. This solution was stirred for 15 min , the solvent was removed in vacuo, and the residue obtained was recrystallized from EtOH to yield 14 a as a white crystalline solid ($0.62 \mathrm{~g}, 19 \%$); mp $209-210^{\circ} \mathrm{C}$ (dec); IR (KBr): v=3471, $3198 \mathrm{~cm}^{-1}(\mathrm{NH}), 1689(\mathrm{C}=\mathrm{O}) .-{ }^{1} \mathrm{H}$ NMR [(CD3) $\left.)_{2} \mathrm{SO}\right]: \delta 8.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.80-7.64$ (br m, 4H, phenyl hydrogens), 4.87 (s, $1 \mathrm{H}, \mathrm{H}-4$), 4.81 (septet, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}_{2}$), 4.04-4.14
($\mathrm{m}, 2 \mathrm{H}, \mathrm{COOCH}_{2}$), 3.52 (t, $\mathrm{J}=4.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OMe}$), 3.26 ($\mathrm{s}, 3 \mathrm{H}$, OCH_{3}), 3.01 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{N}^{+} \mathrm{CH}_{3}$), 2.27 and 2.26 (two s, 3 H each, $\mathrm{C}-2$ and $\mathrm{C}-6$ $\left.\mathrm{CH}_{3}\right), 1.18\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.05\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.

3,5-Diisopropyl 1,4-Dihydro-2,6-dimethyl-4-(3-dimethylaminophenyl)3,5 -pyridinedicarboxylate $14 b$

The product 14b (free base), prepared starting from 20b using the same procedure used for the synthesis of 14a from 20a above, was purified by silica gel column chromatography using EtOAc-hexane ($1: 2, v / v$) as eluent prior to recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane; $\mathrm{IR}(\mathrm{KBr}): \mathrm{v}=3356 \mathrm{~cm}^{-1}(\mathrm{NH})$, 1692, $1648(\mathrm{C}=\mathrm{O})$.- ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 87.09(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-5), 6.77 (br m, 1H, aryl H-6), 6.68 (br m, 1H, aryl H-2), 6.55 (br m, 1H, aryl $\mathrm{H}-4$), 5.53 (br s, 1H, NH), 4.97 (m, 3H, two CHMe2 and H-4), 2.91 ($\mathrm{s}, 6 \mathrm{H}$, NCH_{3}), $2.33\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}-2\right.$ and $\left.\mathrm{C}-6 \mathrm{CH}_{3}\right), 1.25\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CHCH}_{3}\right)$, $1.16\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.

3-[2-(Trimethylammonium)ethyl] 5-Isopropyl 1,4-Dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate Iodide 11 b

A solution of the free base $11 \mathrm{a}(2.3 \mathrm{~g}, 5.4 \mathrm{mmol})$ and iodomethane (1.32 $\mathrm{ml}, 9.3 \mathrm{mmol}$) in acetone (30 ml) was refluxed for 16 h . The yellow residue which was obtained after removing the solvent was recrystallized from acetone-hexane to give 11b as a bright yellow crystalline solid ($3.4 \mathrm{~g}, 99 \%$), mp 178-186 ${ }^{\circ} \mathrm{C}$; IR (KBr): $v=3335 \mathrm{~cm}^{-1}(\mathrm{NH}), 1694(\mathrm{C}=\mathrm{O}), 1526,1351$ $\left(\mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR [$\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]: \delta 8.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), 8.05(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-2), 7.99 (dd, $J=7.9, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{aryl} \mathrm{H}-4), 7.64$ (d, $J=7.9 \mathrm{~Hz}$, 1 H , aryl H-6), 7.48 (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, aryl H-5), $5.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4$), 4.93 (septet, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}$), $4.42-4.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COOCH}_{2}\right), 3.66-3.76$ $\left.\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}^{+} \mathrm{Me}_{3}\right), 3.13\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{N}^{+}\left(\mathrm{CH}_{3}\right)\right)_{3}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-2 \mathrm{CH}_{3}\right), 2.30(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}-6 \mathrm{CH}_{3}\right), 1.24\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.15(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}$, CHCH_{3}).

Determination of Partition Coefficients (Kp)

n-Octanol-phosphate buffer partition coefficient (K p) values were determined using a modified procedure based on the method of Fujita et al. ${ }^{[29]}$ n-Octanol (500 ml) was purified by successive washing with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ $(3 \times 30 \mathrm{ml}$ of N$), \mathrm{NaOH}(3 \times 30 \mathrm{ml}$ of N$)$ and water $(3 \times 100 \mathrm{ml})$ prior to distillation in vacuo at $80^{\circ} \mathrm{C}(3 \mathrm{~mm} \mathrm{Hg})$.
n-Octanol and aqueous phosphate buffer ($\mathrm{pH}=7.4$) were mutually saturated, before use for K p determinations, by stirring equal volumes of each component at $25^{\circ} \mathrm{C}$ for 16 h . After standing for 1 h , the two layers were separated.
Standard solutions were prepared by dissolving an accurately weight amount ($7.5-10 \mathrm{mg}$) of the test compound in 5 ml of n-octanol, except for 11b which was dissolved in the phosphate buffer, (solution A). Known volumes of this solution were then diluted in volumetric flasks to give five standard solutions. Each solution was then analyzed by UV spectrometry and a calibration curve was prepared by plotting absorbance versus concentration. The wavelength selected for UV analyses was determined from the UV spectrum of each test compound ($\lambda_{\max }$ varies from $345-360 \mathrm{~nm}$). A known volume of solution $\mathrm{A}(150 \mu \mathrm{l})$ was then pipetted into a glass tube containing n-octanol (4 ml) and phosphate buffer $\mathrm{pH}=7.4$ (40 ml). The tube with its contents was then shaken for 1 h at $25^{\circ} \mathrm{C}$. After standing for 15 min , the tube was centrifuged for $10 \mathrm{~min}(3,600 \mathrm{rpm})$ to completely separate the two layers. The n-octanol layer was removed for UV analysis, except for 11b where the aqueous layer was analyzed. The concentration of the test compound in the n-octanol layer was then determined from the calibration curve. The difference in concentration before and after partitioning gives the amount of the test compound that was partitioned in the aqueous buffer. The partition coefficient was calculated from the equation $K p=$ concentration of test compound in octanol/concentration of test compound in phosphate buffer.

In Vitro Calcium Channel Antagonist Assay

The calcium channel antagonist activities were determined as the molar concentration of the test compound required to produce 50% inhibition of the muscarinic receptor-mediated (carbachol, $1.67 \times 10^{-7} \mathrm{M}$) Ca^{2+} dependent contractions (tonic response) of guinea pig ileum longitudinal smooth muscle (GPILSM) using the procedure reported previously ${ }^{[30]}$. The IC C_{50} value (\pm SEM, $n=3$) was determined graphically from the dose-response curve.

Subcutaneous Metrazol and Maximal Electroshock Anticonvulsant Screens

The subcutaneous metrazol (scMet) and maximal electroshock (MES) induced seizure screens were performed by the Anticonvulsant Development Program, Epilepsy Branch, NINCDS, Bethesda using the procedures previously reported ${ }^{[31]}$. Briefly, the scMet seizure threshold test was performed by administering $85 \mathrm{mg} / \mathrm{kg}$ of metrazol as a 0.5% solution in the posterior midline. Protection in this screen was defined as a failure to observe a single episode of clonic spasms of at least 5 s duration during a 30 min period following administration of the test compound. MES seizures were elicited with a 60 cycle ac of 50 mA intensity delivered for 0.2 s via corneal electrodes. A drop of 0.9% saline was instilled in the eye prior to application of electrodes. Abolition of the hind limb tonic extension component of the seizure was defined as protection in the MES screen.

References

[1] T. Griffiths, M. C. Evans, B. S. Meldrum, Neurosci. 1983, 10.385-395; Neurosci. 1984, 12, 557-567.
[2] K. Inamura, E. Martius, K. Themner, S. Tapper, J. Pallon, G. Lovestam, K. G. Malmqvist, B. K. Siesjo, Brain Res. 1990, 514, 49-54.
[3] G. B. D. Sarro, B. S. Meldrum, G. Nistico, Br. J. Pharmacol. 1988, 93. 247-256.
[4] J. N. D. Wurpel, S.N. Iyer, Epilepsia 1994, 35, 443-449.
[5] I.E. Leppik, Epilepsia 1994, 35 (Suppl 4), S29-S40.
[6] F. B. Meyer, P. W. Tally, R. E. Anderson, T. M. Sundt, T. L. Yaksh, F. W. Sharbrough, Brain Res. 1986, 384, 180-183.
[7] G. J. Sills, A. Carswell, M. J. Brodie, Epilepsia 1994, 35, 437-442.
[8] L. G. Larkin, G. G. Thompson, G. Scobie, G. Forrest, J. E. Drennan, M. J. Brodie, Epilepsia 1992, 33, 760-769.
[9] F. B. Meyer, R. E. Anderson, T. M. Sundt, T. L. Yaksh, F. W. Sharbrough, Epilepsia 1987, 28, 409-414.
[10] P. Popoli, A. Pèzzola, S. DeCarolis, Arch. Int. Pharmacodyn. Ther. 1988, 292, 58-67.
[11] J. Thomas, Brain Res. Bull. 1990, 24, 11-15.
[12] N. Bodor, L. Prokai, W. M. Wu, H. Farag, S. Jonalagadda, M. Kawamura, J. Simpkins, Science 1992, 257, 1698-1700.
[13] N. Baindur, A. Rutledge, D. J. Triggle, J. Med. Chem. 1993, 36. 3743-3745.
[14] K. E. Andersen, C. Braestrup, F. C. Grnwald, A. S. Jrgensen, E. B. Nielsen, U. S. Sonnewald, P. O. Srensen, P. D. Suzdak, L. J. S. Knutsen, J. Med. Chem. 1993, 36, 1716-1725.
[15] N. Iqbal, Z.-Y. Wei, G. B. Baker, E. E. Knaus, Can. J. Chem., in press.
[16] T. Ogawa, A. Nakazato, K. Tsuchida, K. Hatyama, Chem. Pharm. Bull. 1993, 41, 108-116.
[17] H. T. Clarke, H. B. Gillespie, S. Z. Weisshaus, J. Am. Chem. Soc. 1933, 55, 4571-4587.
[18] C. F. Lane, Synthesis 1975, 135-146.
[19] A. M. Triggle, E. Shefter, D. J. Triggle, J. Med. Chem. 1980, 23. 1442-1445.
[20] R. Fossheim, K. Svarteng, A. Mostad, C. Rømming, E. Shefter, D. J. Triggle, J. Med. Chem. 1982, 25, 126-131.
[21] C. Hansch, J. P. Bjorkroth, A. Leo, J. Pharm. Sci. 1987, 76, 663-687.
[22] R. L. Krall, J. K. Penry, B. G. White, H. J. Kupferberg, E. Swinyard, Epilepsia 1978, 19, 409-428.
[23] E. Swinyard, J. H. Woodhead in Antiepileptic Drugs (Ed.: D.M. Woodbury, J. K. Penry, C. E. Pippenger), Raven Press, New York, 1982, pp. 111-126.
[24] W. A. Catterall, M. J. Seagar, M. Takahashi, J. Biol. Chem. 1988, 263. 3535-3538.
[25] D. A. Coulter, J. R. Huguenard, D. A. Prince, Neurosci. Lett. 1989, 98, 74-78; Ann. Neurol. 1989, 25, 582-593.
[26] D. Johnson, J. J. Hablitz, Nature 1980, 286, 391-393.
[27] S. Kim, C. H. Oh, J. S. Ko, K. H. Ahn, Y. J. Kim, J. Org. Chem. 1985, 50, 1927-1932.
[28] H. Meyer, E. Wehinger, F. Bossert, D. Scherling, Arzneim.-Forsch. 1983, 33, 106-111.
[29] T. Fujita, J. Iwasa, C. Hansch, J. Am. Chem. Soc. 1964, 86, 5175-5180.
[30] L. Dagnino, M. C. Li-Kwong-Ken, M. W. Wolowyk, H. Wynn, C. R. Triggle, E. E. Knaus, J. Med. Chem. 1987, 30, 640-646.
[31] C. Y. Fiakpui, M. N. Namchuk, E. E. Knaus, Drug Design Delivery 1990, 6, 111-121.

Received: September 24, 1996 [FP151]

[^1]
[^0]: ${ }^{[a, b]}$ The results for the MES and scMet seizure tests are expressed as the number of animals protected/the number of animals tested. The test compound was administered ip to mice using either polyethylene glycol (PEG) or methylcellulose ($0.5 \% \mathrm{w} / \mathrm{v}$) as the vehicle.
 ${ }^{[c]}$ Classification of antiepileptic results; Class $1=$ anticonvulsant activity at a dose of $100 \mathrm{mg} / \mathrm{kg}$ or less, Class 2 = anticonvulsant activity at a dose greater than $100 \mathrm{mg} / \mathrm{kg}$, Class 3 = no anticonvulsant activity up to a dose of $300 \mathrm{mg} / \mathrm{kg}$, Class $4=$ test compound shows toxicity at a dose equal to or less than $30 \mathrm{mg} / \mathrm{kg}$. ${ }^{[d]}$ Time after test compound administration. ${ }^{[\mathrm{e}]} \mathrm{ND}=$ not determined. ${ }^{[f]}$ The test compound caused mortality.

[^1]: Anzeigenleitung: H.-G. Schwarz, D-69451 Weinheim - VCH Verlagsgesellschaft mbH, Postfach 10161, D-69451 Weinheim.
 Alle Rechte, insbesondere die der Übersetzung in fremde Sprachen, vorbehalten. Kein Teil dieser Zeitschrift darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form - durch Fotokopie, Mikrofilm oder irgendein anderes Verfahren - reproduziert oder in eine von Maschinen, insbesondere von Datenverarbeitungsmaschinen verwendbare Sprache übertragen oder übersetzt werden.- All rights reserved (including those of translation into foreign languages). No part of this issue may be reproduced in any form - photoprint, microfilm, or any other means - nor transmitted or translated into a machine language without the permission in writing of the publishers.- Von einzelnen Beiträgen oder Teilen von ihnen dürfen nur einzelne Vervielfältigungsstücke für den persönlichen und sonstigen eigenen Gebrauch hergestellt werden. Die Weitergabe von Vervielfältigungen, gleichgültig zu welchem Zweck sie hergestellt werden, ist eine Urheberrechtsverletzung. Der Inhalt dieses Heftes wurde sorgfältig erarbeitet. Dennoch übernehmen Autoren, Herausgeber, Redaktion und Verlag für die Richtigkeit von Angaben, Hinweisen und Ratschlägen sowie für eventuelle Druckfehler keine Haftung. This journal was carefully produced in all its parts. Nevertheless, authors, editors and publishers do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.- Die Wiedergabe von Gerbrauchsnamen, Handelsnamen, Warenbezeichnungen u. dgl. in dieser Zeitschrift berechtigt nicht zu der Annahme, daß solche Namen ohne weiteres von jedermann benutzt werden dürfen. Es handelt sich häufig um gesetzlich eingetragene Warenzeichen, auch wenn sie in dieser Zeitschrift nicht als solche gekennzeichnet sind. Druck und Buchbinder: Druck Partner Rübelmann GmbH, D-69502 Hemsbach.- Unverlangt zur Rezension eingehende Bücher werden nicht zurückgesandt.
 For USA and Canada: Archiv der Pharmazie (ISSN 0365-6233) is published monthly.- Printed in the Federal Republic of Germany.
 US Postmaster: Periodicals postage paid at Jamaica, NY 11431. Air freight and mailing in the USA by Publications Expediting Services Inc., 200 Meacham Ave., Elmont NY 11003. Send address changes to: "Archiv der Pharmazie", c/o Publications Expediting Services Inc., 200 Meacham Ave., Elmont NY 11003
 Valid for users in the USA: The appearance of the code at the bottom of the first page of an article in this journal (serial) indicates the copyright owner's consent that copies of the article may be made for personal or internal use, or for the personal or internal use of specific clients. This consent is given on the condition, however, that copier pay the stated per copy fee throught the Copyright Clearance Center, Inc., for copying beyond that permitted by Sections 107 for 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective work, or for resale. For copying from back volumes of this journal see »Permissions to Photo-Copy: Publisher's Fee List« of the CCC.
 Printed on chlorine- and acid-free paper/Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

