An access to C5-alkylated indolines/indoles via Michaeltype Friedel-Crafts alkylation using aryl-nitroolefins

Berrak Ertugrul, Haydar Kilic, Farrokh Lafzi, and Nurullah Saracoglu
J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b00973 • Publication Date (Web): 19 Jun 2018

Downloaded from http://pubs.acs.org on June 20, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

An access to C5-alkylated indolines/indoles via Michael-type Friedel-Crafts alkylation using aryl-nitroolefins

Berrak Ertugrul, ${ }^{\ddagger}$ Haydar Kilic,,${ }^{\not \perp} \S$ Farrokh Lafzi, ${ }^{\ddagger}$ Nurullah Saracoglu, ${ }^{\neq *}$
${ }^{\ddagger}$ Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey
${ }^{\perp}$ Oltu Vocational Training School, Atatürk University, Erzurum, 25400, Turkey
§ East Anatolia High Technology Application and Research Center (DAYTAM), Atatürk University, Erzurum, 25240, Turkey

Abstract

A straightforward synthetic route toward C5-alkylated indolines/indoles has been developed. The strategy is composed of $\mathrm{Zn}(\mathrm{OTf})_{2}$-catalyzed Friedel-Crafts alkylation of N benzylindolines with nitroolefins, and a series of diverse indolines was first obtained in up to 99\% yield. This reaction provides a direct and practical route to a variety of the C5-alkylated indolines which were also utilized for accessing corresponding indoles. Indoline derivatives with free NH groups could be obtained through an N-deprotection reaction. Moreover, the primary alkyl nitro groups in both indolines and indoles are amenable to further synthetic elaborations thereby broadening the diversity of the products.

■ INTRODUCTION

The indole scaffold is one of the most widely studied organic templates over the past century as it is associated with biologically active compounds and natural products it is and crucial for the discovery of new drugs. ${ }^{1}$ The indole motif is a bacterial intercellular signaling molecule and is found in the structure of many natural products such as tryptophan (1) (essential amino acid), and serotonin (2) (neurotransmitter). ${ }^{2}$ In 2014, the indole ring was reported to present in 24 marketed drugs as the fourth most prevalent heteroaromatic ring used for the discovery of drugs. ${ }^{3}$ For example, sumatriptan $(3)^{4}$ and eletriptan hydrobromide (4) ${ }^{5}$ are two of the triptan class drugs used for the treatment of migraine and cluster headaches. Indomethacin (5) is a nonsteroidal anti-inflammatory drug (NSAID) used to treat pain or inflammation caused by many conditions such as arthritis, gout, ankylosing spondylitis, bursitis, or tendinitis. ${ }^{6}$ Indoline skeleton is found in the structures of natural products and
biologically active compounds. ${ }^{7}$ Their simple or complex structures are responsible for their potent biological activities in a range of molecules. Physostigmine (6) is a reversible inhibitor of acetylcholinesterase and used to reverse the effects of certain drugs or substances that interfere with nerve-muscle communication. ${ }^{8}$ Silodosin (7), a drug that is including indoline ring, is a selective antagonist of alpha-1 adrenoreceptors and is used for the treatment of the signs and symptoms of benign prostatic hyperplasia (BPH). ${ }^{9}$ The binary indole-indoline alkaloids such as vincristine (8) and vinblastine (9) were also isolated from Catharanthus roseus and used clinically in the treatment of cancers including various lymphomas and sarcomas, advanced testicular cancer, breast cancer, and acute leukemia (Figure 1). ${ }^{10}$

Figure 1. Several examples of alkaloids and drugs containing the indole and indoline motifs.

Tryptophan (1)
a natural amino acid

Eletriptan hydrobromide (4) migraine treatment

Serotonin (2)
neurotransmitter

Indomethacin (5)
anti-inflammatory

Silodosin (7)
alpha-1 adrenergic selective antagonist

Vincristine: $\mathrm{R}=\mathrm{CHO}$ (8)
Vinblastin: $R=\operatorname{Me}(9)$ anti-cancer

The indole is one of the most important of the privileged structures not only in the area of medicinal chemistry/drug discovery but also in other research areas such as agrochemistry and material science. ${ }^{11}$ Furthermore, indole-based phosphorus ligands are reported to perform in catalytic systems. ${ }^{12}$ Accordingly, the development of new methods for the construction of the indole ring has been extensively investigated for more than a century. Access to the functionalized indoles can be broadly categorized into three main strategies. ${ }^{13}$ The first approach involves many name reactions wherein the indole ring and embedded functionalities are constructed from benzenoid precursors or other structures through condensation reactions or by metal-catalyzed means. ${ }^{12,14,15}$ Classical
syntheses such as Fischer, ${ }^{16}$ Bartoli, ${ }^{17}$ and Larock ${ }^{18}$ are at the forefront among a multitude of other synthetic protocols. The second and third protocols include the derivatization of the indole nucleus itself, either through halogenation and following cross-coupling methodology or direct $\mathrm{C}-\mathrm{H}$ activation. ${ }^{19}$

Nitroolefins are important and invaluable building blocks in organic synthesis and have been widely used in a number of carbon-carbon bond-forming reactions. ${ }^{20}$ Particularly, the Friedel-Crafts reactions employing nitroolefins as the electrophilic partner are very attractive in indole chemistry, since the nitro groups of the products allow subsequent versatile transformations such as the synthesis of tryptamine and carboline derivatives. ${ }^{21}$ While many alkylation methods exist for the functionalization of indoles in a directly or directed $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ functionalization at $\mathrm{N} 1,{ }^{22,23} \mathrm{C} 2,{ }^{24}$ and $\mathrm{C} 3^{25}$ in chiral and achiral meaning as a result of the inherent reactivity of the pyrrole-type ring, C-H functionalization on the benzenoid ring is limited. Despite this, the directing group-assisted catalytic methods that allow derivatization at the less activated positions, C4-C7, have been recently developed. ${ }^{26}$ In fact, the most sparingly observed selectivity in the direct functionalization of the indole benzenoid ring is the access to the C5 position. However, to the best of our knowledge, there has been no previous report on catalytic C-H alkylation at the C5-position of indoles. Herein, we described a facile approach for the C5-selective Friedel-Crafts type C-H alkylation of N-benzylindoline with β-aryl-nitroolefins. Notably, the resultant N-benzyl-C5-alkylated indolines can be readily converted to C5-alkylated indoles under oxidative conditions and deprotected.

- RESULTS AND DISCUSSIONS

In our previous studies, a series of nitrostyrene derivatives were evaluated to yield N-alkylated indolines as electrophilic partners against indoline. ${ }^{23}$ To our surprise, we noticed that the reaction between β-nitrostyrene and indoline using $\mathrm{Zn}(\mathrm{OTf})_{2}$ as a catalyst afforded a C 5 -alkylated product along with an N-alkylation product. This observation encouraged us to study this reaction in detail. To prevent the N-alkylation, the nitrogen atom of indoline was protected by the benzyl group. The reaction of indoline with benzyl bromide in the conditions reported in the literature led to 1benzylindoline (10a). ${ }^{27}$ Using a similar reaction, we also obtained the 1-benzyl-2-methylindoline (10b) and ethyl 1-benzylindoline-2-carboxylate (10c). The reaction of 1-benzylindoline (10a) and β nitrostyrene (11a) was initially tested as a model reaction to optimize the reaction conditions with different catalysts, solvents, and temperature. The optimization results are summarized in Table 1. We found that zinc salts gave the expected reaction. Gratifyingly, the best result was obtained with a catalytic amount of zinc triflate (0.2 equiv) in ethanol at $25^{\circ} \mathrm{C}$ (Table 1, entry 16), where the desired
product 12aa was obtained in 98\% yield as the only product. The structure of 12aa was unequivocally determined by NMR spectroscopy.

Table 1. Optimization Conditions for Reaction of 1-Benzylindoline (10a) and β-Nitrostyrene (11a).

entry	catalyst	x (mol\%)	solvent	$T\left({ }^{\circ} \mathrm{C}\right)$	t (h)	yield (\%)
1	$\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	0.5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	2	-
2	$\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	0.1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	2	-
3	$\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	0.5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	24	-
4	$\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	0.5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	2	-
5	$\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	2	-
6	$\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	0.2	EtOH	25	12	-
7	$\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}$	0.2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	2	-
8	$\mathrm{Mg}(\mathrm{OTf})_{2}$	0.1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	24	-
9	$\mathrm{Mg}(\mathrm{OTf})_{2}$	0.5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	24	-
10	$\mathrm{Zn}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2}$	0.2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	4	-
11	$\mathrm{Zn}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2}$	0.2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	24	-
12	$\mathrm{Zn}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2}$	0.2	Toluene	25	24	-
13	$\mathrm{Zn}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2}$	0.2	EtOH	25	5	95
14	$\mathrm{Zn}(\mathrm{OTf})_{2}$	0.2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	5	-
15	$\mathrm{Zn}(\mathrm{OTf})_{2}$	0.2	Toluene	25	5	90
16	$\mathrm{Zn}(\mathrm{OTf})_{2}$	0.2	EtOH	25	5	98
17	$\mathrm{Cu}(\mathrm{OTf})_{2}$	0.2	EtOH	25	12	-

With the optimized conditions in hand, we next examined the scope of nitroolefins (11a-k) ${ }^{28}$ with 1benzylindoline (10a) to test the feasibility of preparing a variety of 5 -alkylated indolines (Scheme 1). The reaction of N-benzylindoline (10a) could tolerate a wide range of nitroolefins (11a-k) bearing electron-withdrawing and donating groups on the aryl ring, and all of the cases delivered the desired products (12aa-12ak) in good to excellent yields (57-99\% yields). Then, the influence of the electronic nature of the substituent at the 2 -position on the saturated ring of indoline was examined. The 2-methyl- N-benzylindoline (10b) was studied, and the results revealed that the methyl substituent had no impact on the reaction progress and yields (12ba-bk, 74-97\%). But, indoline (10c) with electronwithdrawing ester substituent exhibited lower reactivity, affording the some of the desired products in much lower yields (12ca-ce, 42-56\%). We postulated that electron donating rings adjacent to olefin system deactivate the nitroolefin by increasing the electron density, whereas the ester substituent on indoline leads to relatively lower reactivity due to both electronic reasons (which can be mesomeric or inductive) and the possible interactions between the catalyst and the ester. On the other hand, in comparison with the electron-donating benzyl group, when N-acetylindoline (10d) with an electronwithdrawing group was employed as a substrate, no reaction occurred because of the presumably
reduced nucleophilicity. A possible mechanism for the $\mathrm{Zn}(\mathrm{OTf})_{2}$ catalyzed Michael-type Friedel-Crafts reaction between 1-benzylindolines (10) and nitroolefins (11) is proposed in Scheme 2. The nitroolefin was activated upon chelation to Zn (II) to form a four-membered intermediate [A], which undergoes a nucleophilic addition of indoline from the accessible C5-position to provide the Friedel-Crafts alkylation adduct $[\mathbf{B}]$. Subsequently, H -transfer to provide aromatization leads to product formation. We postulate that tertiary nitrogen atom of indoline directs substitution to the ortho- and parapositions. But an absence of ortho-product 13 has been attributed to a steric hindrance between benzyl and the electrophile, which, do not tolerate intermediate [C].

It was hoped that the methodology will provide a facile access to Friedel-Crafts product 12I, which can be a precursor of silodosin using a medication for the symptomatic treatment of benign prostatic hyperplasia. However, the reaction of indoline 10a and 2-nitroprop-1-ene (11I) failed to give the corresponding product 121 under the above optimum and other conditions (Table 2, Entries 1-14), the starting materials are recovered in almost quantitative yields. This suggests that both an electron-rich nitroolefin fails to play a role in this type of Friedel-Crafts and a methyl group attached to an alkene prevents the approach of the donor molecule.

Next, we intended to dehydrogenate indolines 12aa-12ak to give the corresponding indoles. Firstly, 12aa as a model molecule was subjected to oxidation reaction with oxidizing reagents such as MnO_{2} and 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ), ${ }^{23}$ and these dehydrogenations resulted in a complex mixture. Our previous study showed that DEAD oxidized protection-free indoline to indole. ${ }^{23}$ To our great pleasure, the oxidation of 12aa with diethyl azodicarboxylate (DEAD) as a milder oxidant in methylene chloride at room temperature for 2 h worked well and the expected product 13aa was obtained in 55% yield (Scheme 3). Encouraged by this result, the oxidations of other indolines 12ab-aj under same conditions were studied, and the corresponding 1-benzyl indoles 13ab-13aj were obtained with good yields (55-90\%) (Scheme 3). The oxidation of the indoline 12ai including furan ring under the same conditions gave inseparable product mixture. Recently, Davis and group reported an oxidation of amines to imines utilizing DEAD. ${ }^{29}$ The proposed mechanisms for the oxidation reaction of indoline are shown in Scheme 4. The first has been previously proposed by Davis and group via a triazane intermediate [D] for the conversion of seconder amines to imines (Scheme 4, A-pathway). Secondly, the oxidation can occur through an intermolecular hydride transfer (Scheme 4, B-pathway).

Scheme 1. Scope of Indolines (10a-c) and Nitroolefins (11a-k).

${ }^{\text {a }}$ Reaction conditions: 10a-c (1.0 equiv), 11a-k (1.0 equiv). Isolated yield.

Scheme 2. Plausible Reaction Mechanism for C5-Alkylation of 1-Benzylindoline (10a).

Table 2. Reaction between 1-Benzylindoline (10a) and 2-Nitroprop-1-ene (12I).

entry	catalyst	x (mol\%)	solvent	$T\left({ }^{\circ} \mathrm{C}\right)$	$t(\mathrm{~h})$
1	$\mathrm{Zn}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2}$	0.2	Etor	25	5
2	$\mathrm{Zn}(\mathrm{OTf})_{2}$	0.2	EtOH	25	5
3	$\mathrm{Zn}(\mathrm{OTf})_{2}$	0.5	Etor	25	5
4	$\mathrm{Zn}(\mathrm{OTf})_{2}$	0.2	Toluen	80-100	12
5	$\mathrm{Zn}(\mathrm{OTf})_{2}$	0.2	DMF	25	12
6	AuCl_{3}	0.2	EtOH	25	5
7	SnCl_{2}	0.2	EtOH	25	5
8	AlCl_{3}	0.2	Etor	25	5
9	AlCl_{3}	0.2	THF	25	5
10	$\mathrm{Zn}(\mathrm{OTf})_{2}$-TFA	0.2	EtOH	25	3
11	$\mathrm{Zn}(\mathrm{OTf})_{2}-p-\mathrm{TSA}$	0.2	EtOH	25	3
12	TFA	0.2	EtOH	25	5
13	p-TSA	0.2	EtOH	25	5
14	$\mathrm{Zn}(\mathrm{OTf})_{2}$	0.2	2-nitropropen	25	5

[^0]Scheme 3. Scope of Indolines (12aa-ak) to Indoles (14aa-ak).

${ }^{\text {a Reaction conditions: }} \mathbf{1 2}$ (1.0 equiv) and DEAD (1.1 equiv) in DCM were stirred at room temperature for 12 h . Isolated yield.

Scheme 4. Proposed Mechanisms for the Oxidation of Indolines (12) to Indoles (14).

Next, we turned our attention to the removal of the benzyl-protecting group of C5-alkylated indolines 12 and indoles 14 to access main skeletons. The corresponding N-benzylindoline 12aa and indole 14aa were chosen as representative substrates. To observe its behavior toward catalytic hydrogenation of both benzyl and nitro group, indoline 12aa was subjected to a Pd-catalyzed hydrogenation reaction. Catalytic hydrogenation gave an inseparable mixture of amine and hydroxylamine derivatives 15-17 via the reduction of the nitro group, whereas no deprotection of benzyl group was observed (Scheme 5). The formation of indole $\mathbf{1 7}$ can be attributed to the Pd-catalyzed oxidation of indoline 15. Furthermore, neither hydrogenolysis catalyzed by palladium hydroxide on carbon $\left(\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}\right),{ }^{30}$ nor oxidative debenzylation with cerium (IV) ammonium nitrate (CAN) ${ }^{31}$ resulted in any reaction. The starting material was recovered in nearly quantitative yields in both cases. Since three debenzylation attempts were not successful, we decided to investigate whether Deaton-Rewolinski's ${ }^{32}$ and GiggConant's ${ }^{33}$ debenzylation conditions were viable for our purpose. According to this procedure, while treatment of N-benzylindoline 12aa with potassium tert-butoxide/dimethyl sulfoxide (DMSO) and oxygen at room temperature afforded unexpected ketones 18 and 19 in 39 and 43\% yield, indole derivative 14aa gave ketone 20 in 48% yield under the same conditions (Scheme 6). The proposed mechanism for this unexpected transformation is shown in Scheme 7. This mechanism was adapted from a proposed mechanism for the N-debenzylation of amides by Gigg and Conant. ${ }^{33}$ The resulting benzylic anion [E] under basic conditions reacts with oxygen. The peroxy anion intermediate, [F], is easily reduced in the presence of DMSO to afford dimethyl sulfone and an alkoxide, [G], which breaks down to generate ketone 19 and nitromethane. We propose that the formation of ketone 18 involves debenzylation of 19 followed by an oxidation of indoline to indole (Scheme 7).

Scheme 5. Catalytic hydrogenation of 12aa.

Scheme 6. Reaction of 12aa and 14aa with t-BuOK/DMSO and Oxygen.

Scheme 7. Proposed Mechanism for Formation of Ketones 18/19.

To overcome this problem, we explored a two-step protocol which has been successfully applied for debenzylation of 5 -trimethylsilyl- N-benzylindoline. ${ }^{27}$ The first step of this protocol was the hydrogenolysis in the presence of acetic anhydride so that following the splitting off of the N-benzyl group, the amino group was acetylated. In the second step, N-acetyl group was hydrolyzed by KOH in diethylene glycol to the corresponding indoline. Catalytic hydrogenolysis in acetic anhydride of indoline 12aa as a test reaction gave 5-alkylated- N-acetylindoline 21aa in 50\% yield. Unfortunately, an alkaline hydrolysis of 21aa provided a complex product mixture which cannot be separated. Probably, the nitro-alkane structure is not stable under basic conditions, therefore, we decided to use tertbutoxycarbonyl (Boc) group as the protecting group, which can be easier deprotected, instead of an acetyl group. Using di-tert-butyl dicarbonate ($\mathrm{Boc}_{2} \mathrm{O}$), the desired product 22aa was formed in 93\% yield (Scheme 8). In connection with this result, we examined such consecutive debenzylation/Bocdeprotection reaction on other N-benzylindolines $12 a b-a h$ and successfully obtained the corresponding indolines in 80-93\% yield (Scheme 8). Unfortunately, the use of 12aj and 12ak as substrates failed to give the desired products 22aj and 22ak during the deprotection step using such reagents as trifluoroacetic acid (TFA), ${ }^{34}$ molecular iodine, ${ }^{35}$ tetrabutylammonium fluoride (TBAF), ${ }^{36}$ and boron trifluoride diethyl etherate $\left(\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\right) .{ }^{37}$ It is noteworthy that the reaction of indoline substrate 12ae bearing a bromine atom on the phenyl ring under the optimized conditions led to an inseparable mixture of the expected product 22ae and the by-product 22aa via reduction of the bromine atom. Notably, $\mathrm{Pd}(\mathrm{OH})_{2}$-catalyzed hydrogenation in the presence of $\mathrm{Boc}_{2} \mathrm{O}$ followed by deprotection with TFA afforded the debrominated product 22aa. Furthermore, when we evaluated the debenzylation of N benzylindole derivatives 12aa as a model compound with both the consecutive debenzylation/Bocdeprotection reaction and $\mathrm{Pd} / \mathrm{C}-$ catalyzed hydrogenation in $\mathrm{MeOH}, \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$-catalyzed hydrogenation in t - $\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$, and oxidative debenzylation with a CAN, no formation of 23aa occurred and the starting material was recovered in almost quantitative yield. Gratifyingly, the oxidation of the unprotected-indolines with DEAD gave the desired indole 23 in a moderate yield (40-58\%), as demonstrated in Scheme 9.

Scheme 8. Scope of Debenzylation for Indolines.

22ab (93\%)

22ac (87%)

22ag (87%)

22ah (85%)
${ }^{\text {a }}$ Reaction conditions: 12 (1.0 equiv), $\mathrm{Boc}_{2} \mathrm{O}(1.1 \mathrm{mmol})$, and $\mathrm{Pd} / \mathrm{C}(0.2 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{DCM}$ were stirred under hydrogen atmosphere. To a solution of $\mathbf{2 1}$ in DCM was added TFA (1 mL). Isolated yield.

Scheme 9. Scope of Unprotected indolines to Indoles.

${ }^{\text {a }}$ Reaction conditions: $\mathbf{2 2}$ (1.0 equiv) and DEAD (1.1 equiv) in DCM were stirred at room temperature for 12 h . Isolated yield.

To access new silodosin precursors, we also probed the scope of the reduction of the aliphatic nitro groups in the indolines/indoles to amines. N-BenzyIndoline 12aa was taken as the model substrate and subjected to reduction with LiAlH_{4} and $\mathrm{Zn}-\mathrm{HCl}$. However, complex mixtures were observed. When $\mathrm{SnCl}_{2} / \mathrm{AcOH}$ was used reduction was not observed. Using $\mathrm{NaBH}_{4}-\mathrm{NiCl}_{2}$ system in methanol as reducing agent, the reaction produced a mixture of the desired amine 24aa as a major product along with a possible partial reduction product which could not be separated by chromatography and crystallization. Therefore, the crude reduction mixture in methanol was reacted with concentrated HCl to precipitate the amine as its insoluble hydrochloride salt, which could then be recrystallized from ether (Scheme 10). Furthermore, while nine hydrochloride salts 25 were obtained from the corresponding nitro groups in excellent yields (84-97\%), only indolines 12ac and 12aj did not produce the desired results (Scheme 10). Contrarily, the reduction with the $\mathrm{NaBH}_{4}-\mathrm{NiCl}_{2}$ system in methanol was also applied to reduce the aliphatic nitro group of indole derivatives 14 and afforded the corresponding amines 26 in high to excellent yields (78-95\%) (Scheme 11). Finally, the reduction of the nitro group in indole 23aa without N-benzyl group as a model compound with $\mathrm{NaBH}_{4}-\mathrm{NiCl}_{2}$ system afforded the corresponding amine 27aa with 92\% yield (Scheme 12).

Scheme 10. Reduction Scope of Nitro Groups in N-Benzylindolines.

25aa (97\%)

25ae (87\%)

25ah (94\%)

25ai (87\%)
${ }^{\text {a }}$ Reaction conditions: $\mathbf{1 2}$ (1.0 equiv), $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (1.0 equiv), and NaBH_{4} (5.0 equiv) in MeOH were stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h . To a solution of $\mathbf{2 4}$ in MeOH (0.5 mL) was added $\mathrm{HCl}(12 \mathrm{M}, 1.2$ equiv). Isolated yield.

- CONCLUSION

In summary, we have developed an effective strategy for the synthesis of diverse C5-alkylated indolines by zinc triflate-catalyzed Michael-type Friedel-Crafts reaction of N -benzylindolines with nitroolefins. The new approach displays a powerful method for the direct C5-alkylation of indolines. The corresponding indolines were oxidized using diethyl azodicarboxylate to afford a series of C5alkylated indoles in good to excellent yields. Furthermore, the C5-alkylated N-benzylindolines were further functionalized through debenzylation and oxidation reactions. Nitroalkane groups could be
transformed into corresponding amine-hydrochloride salts and amines with sodium borohydride catalyzed by nickel(II) chloride. The present protocol provides a useful synthetic strategy to access various biologically active C5-alkylated indolines/indoles. The asymmetric synthesis of C5-alkylated indolines/indoles, study their bioactivities and synthesis of new silodosin-analogs will be our focus in the future.

Scheme 11. Reduction Scope of Nitro Groups in N-Benzylindoles.

${ }^{\text {a }}$ Reaction conditions: 14 (1.0 equiv), $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (1.0 equiv), and NaBH_{4} (5.0 equiv) in MeOH were stirred at $0^{\circ} \mathrm{C}$ for 0.5 h . Isolated yield.

Scheme 12. Synthesis of Indole 27aa.

■ EXPERIMENTAL SECTION

General Experimental Methods. All reagents and solvents were purchased from commercial suppliers (Sigma-Aldrich) and used without further purification. Column chromatography and thin-layer chromatography (TLC) were performed using Silica gel 60 (70-230 Fluka) and Silica gel 60 HF254 (Fluka), respectively. Melting points were determined on Buchi 539 capillary melting apparatus and are uncorrected. Infrared spectra were recorded on a Mattson 1000 FT-IR spectrophotometer. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectra were recorded on 400 (100)-MHz Varian and Bruker spectrometer and are reported in δ units with SiMe_{4} as the internal standard. Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift $(\delta, p p m)$, multiplicity ($s=$ singlet, $d=$ doublet, $t=$ triplet, $q=q u a r t e d, p=$ pentet, $m=$ multiplet, $b s=$ broad singlet, bd = broad doublet) and coupling constant(s) in Hz , integration. Elemental analyses were carried out on a Leco CHNS-932 instrument. High-resolution mass spectrometry measurements were recorded on a Q-TOF mass spectrometer.

General Procedure 1 (GP1): Preparation of N-Protected indolines (10a, 10b)

N-Protected indolines was synthesized according to literature. Indoline ($5.0 \mathrm{~g}, 42 \mathrm{mmol}$) was added to saturated NaHCO_{3} in 15 mL of water and the mixture was stirred with heating to $90-95{ }^{\circ} \mathrm{C}$. Benzyl bromide ($7.2 \mathrm{~g}, 42 \mathrm{mmol}$) was added dropwise during 1.5 hr , and stirring and heating was continued for an additional 3.5 hr . After cooling the layers were separated, and the aqueous layer was extracted with ether. The combined organic layers were washed with water and dried over sodium sulfate. Concentration and purification through silica gel column chromatography gave desired N-protected indolines.

1-Benzylindoline (10a). ${ }^{38}$ Compound 10a was obtained using GP1. Column chromatography (EtOAc/Hexane (1:9)) gave the product as colourless oil ($8.2 \mathrm{~g}, 93 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.44-7.34(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.34-7.26(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.16-7.06(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.79-6.63(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H})$, $6.56(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 4.30\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.36\left(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.02\left(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.5,138.4,130.0,128.4,127.9,127.3,127.1,124.5,117.7,107.0,53.7$, 53.6, 28.5. IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3394,3026,2919,2823,1875,1607,1488,1471,1453,1357,1269,1154$, 1026, 980, 865, 790. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}: \mathrm{C}, 86.08 ; \mathrm{H}, 7.22 ; \mathrm{N}, 6.69$; found: C, 86.01; H, 6.92; N, 6.64. $R f=0.60$ (EtOAc/Hexane (1:9), 254 nm).

1-Benzyl-2-methylindoline (10b). ${ }^{39}$ Compound 10b was obtained using GP1. Column chromatography (EtOAc/Hexane (1:9)) gave the product as purple oil (16.7 g, 99\% yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.50-7.42(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 7.11(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}$, $=C H, 1 H), 6.76(\mathrm{t}, J=7.1 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=7.1 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=16.1 \mathrm{~Hz}, \mathrm{~A}$ part of AB system, $\left.C_{2}, 1 \mathrm{H}\right), 4.31\left(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, \mathrm{~B}\right.$ part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 3.88-3.80(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 3.29(\mathrm{dd}$, $J=15.4,9.0 \mathrm{~Hz}, A$ part of $A B$ system, $\left.C_{2}, 1 \mathrm{H}\right), 2.80\left(\mathrm{dd}, J=15.4,9.0 \mathrm{~Hz}, \mathrm{~B}\right.$ part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right)$, $1.42\left(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.8,139.4,128.9,128.6,127.57,127.52$, $127.0,124.3,117.6,107.0,60.7,51.3,37.5,19.8 . \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3026,2963,2836,1606,1483,1452$, 1352, 1268, 1236, 1145, 1024, 900, 854, 745. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}: \mathrm{C}, 86.05 ; \mathrm{H}, 7.67 ; \mathrm{N}, 6.27$; found: C, 86.26; H, 7.45; N, 6.03. Rf = 0.64 (EtOAc/Hexane (1:9), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}$ 224.1434; Found 224.1435.

Ethyl 1-benzylindoline-2-carboxylate (10c). ${ }^{40}$ Ethyl 1-benzylindoline-2-carboxylate (10c) was synthesized according to literature. ${ }^{40}$ A mixture of ethyl indoline-2-carboxylate ($1.0 \mathrm{~g}, 5.23 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.17 \mathrm{~g}, 15.69 \mathrm{mmol})$ and benzyl bromide $(2.68,15.69 \mathrm{mmol})$ in 10 mL DMF was heated with an oil bath to $100^{\circ} \mathrm{C}$. On cooling the reaction mixture was poured into ice water and extracted with ether. The extract was washed with water and dried over sodium sulfate. Concentration and purification through silica gel column chromatography (EtOAc/Hexane (2:8)) gave the product as light yellow oil (1.35 g, 91\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.27(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.27-7.20(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.05$ $-7.00(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.67(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=15.5 \mathrm{~Hz}, \mathrm{~A}$ part of AB system, $\mathrm{CH}_{2}, 1 \mathrm{H}$), $4.30\left(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, \mathrm{~B}\right.$ part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.23(\mathrm{dd}, J=10.2,8.3 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H})$, 4.18-4.03 (m, CH2, 2H), 3.37 (dd, $J=15.9,10.2 \mathrm{~Hz}$, A part of AB system, $\mathrm{CH}_{2}, 1 \mathrm{H}$), 3.19 (dd, $J=15.9,8.3$ Hz, B part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 1.20\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.9,151.5$, $137.9,128.5,127.9,127.8,127.2,127.0,124.2,118.2,107.2,65.5,61.0,52.2,33.5,14.2$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, $\left.\mathrm{cm}^{-1}\right): 3556,3060,3029,2980,2930,2905,2855,1878,1728,1607,1485,1453,1328,1262,1191$, 1162, 1028, 745, 698. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 76.84; H, 6.81; N, 4.98; found: C, 76.77; H, 6.61; N, 4.91. $\mathrm{Rf}=0.48$ (EtOAc/Hexane (1:9), 254 nm).

N -Acetylindoline (10d). ${ }^{41} \mathrm{~N}$-Acetylindoline (10d) was synthesized according to literature. ${ }^{41}$ Indoline $(2.00 \mathrm{~g}, 16.78 \mathrm{mmol})$ is dissolved in acetic anhydride ($7.92 \mathrm{~mL}, 83.92 \mathrm{mmol}$) at room temperature, followed by addition of pyridine ($0.812 \mathrm{~mL}, 10.07 \mathrm{mmol}$). The reaction mixture is heated with an oil bath to $120^{\circ} \mathrm{C}$ and maintained for 4 h . The reaction is quenched by addition of $2 \mathrm{~N} \mathrm{NaOH}(10 \mathrm{~mL})$, and the resulting mixture is diluted with ethyl acetate $(2 \times 30 \mathrm{~mL})$. The phases are separated, and the organic phase is washed with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and purification through silica gel column chromatography (EtOAc/Hexane (2:8)) gave the product as white crystals ($2.62 \mathrm{~g}, 96 \%$ yield; $\mathrm{mp} 97-98{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~d}, \mathrm{~J}$
$=7.7 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 7.21-7.10(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=7.7 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 4.01\left(\mathrm{t}, J=8.5 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right)$, 3.16 ($\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}$), $2.19\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.8,143.1,131.3,127.7$, 124.7, 123.7, 117.1, 48.9, 28.1, 24.4. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}: \mathrm{C}, 74.51 ; \mathrm{H}, 6.88$; $\mathrm{N}, 8.69$; found: C , 74.70; H, 6.99; N, 8.52. Rf = 0.13 (EtOAc/Hexane (3:7), 254 nm).

General Procedure 2 (GP2): Synthesis of Nitroolefines (11a-k)

Nitroolefines were synthesized according to literature. ${ }^{28 b}$ Aldehyde (1.0 equiv), nitromethane (6.0 equiv) and piperidine (0.1 equiv) were added sequentially to a round-bottomed flask containing toluene (3 mL). To this mixture anhydrous FeCl_{3} (0.1 equiv) was added, and the mixture was heated to reflux slowly for 4 h . Progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was cooled to room temperature. The excess solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (EtOAc/Hexane (1:9)) to give desired nitroalkenes 11a-k.
(E)-1-(2-Nitrovinyl)-4-(trifluoromethyl)benzene (11b). ${ }^{42}$ Compound 11b was obtained using GP2. Column chromatography (EtOAc/Hexane (1:9)) gave the product as light yellow crystals ($392 \mathrm{mg}, 87 \%$ yield; $\mathrm{mp} 76-77{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03$ (d, $J=13.7 \mathrm{~Hz}, \mathrm{~A}$ part of AB system, $=C H, 1 H$), $7.74-7.72\left(m, A A^{\prime}\right.$ part of $A A^{\prime} B^{\prime}$ system, $\left.=C H, 2 H\right), 7.69-7.67\left(m, B B^{\prime}\right.$ part of $A A^{\prime} B^{\prime}$ system, $=C H, 2 H), 7.63(d, J=13.7 \mathrm{~Hz}, B$ part of $A B$ system, $=C H, 1 H) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.9$, 137.1, 133.6 - 133.3 ($\mathrm{m}, 1 \mathrm{C}$), 129.2, 126.36 ($\mathrm{q}, \mathrm{J}=3.7 \mathrm{~Hz}, 1 \mathrm{C}$), 124.8, 122.1. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right.$): 3435, 3110, 1925, 1640, 1524, 1416, 1342, 1325, 1165, 1115, 1068, 968, 830. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NO}_{2}$: C, 49.78; H, 2.79; N, 6.45; found: C, 49.99; H, 2.91; N, 6.21. Rf = 0.73 (EtOAc/Hexane (3:7), 254 nm).
(E)-N,N-Dimethyl-4-(2-nitrovinyl)aniline (11f). ${ }^{43}$ Compound 11 f was obtained using GP2. Column chromatography (EtOAc/Hexane (2:8)) gave the product as red crystals (216 mg , 82\% yield; mp 179$180^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}$, A part of AB system, $=\mathrm{CH}, 1 \mathrm{H})$, $7.51(\mathrm{~d}, J=13.4 \mathrm{~Hz}, \mathrm{~B}$ part of $A B$ system, $=C H, 1 \mathrm{H}), 7.45-7.43\left(\mathrm{~m}, ~ A A^{\prime}\right.$ part of $A A^{\prime} \mathrm{BB}^{\prime}$ system, $=C \mathrm{H}, 2 \mathrm{H}$), $6.71-6.69\left(\mathrm{~m}, \mathrm{BB}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $\left.=\mathrm{CH}, 2 \mathrm{H}\right), 3.10\left(\mathrm{~s}, \mathrm{CH}_{3}, 6 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 153.0, 140.3, 132.0, 131.4, 117.2, 111.9, 40.0. IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2917,1617,1555,1438,1417,1327$, 1236, 1068, 968, 808, 798. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 62.49; H, 6.29; N, 14.57; found: C, 62.28; H, 6.24; N, 14.45. Rf = 0.32 (EtOAc/Hexane (3:7), 254 nm).
(E)-1,2,3-Trimethoxy-5-(2-nitrovinyl)benzene (11h). ${ }^{44}$ Compound 11 h was obtained using GP2. Column chromatography (EtOAc/Hexane (3:7)) gave the product as yellow crystals ($1.04 \mathrm{~g}, 85 \%$ yield; mp 144$145{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}$, A part of AB system, $=\mathrm{CH}, 1 \mathrm{H})$, $7.53(\mathrm{~d}, J=13.6 \mathrm{~Hz}, \mathrm{~B}$ part of AB system, $=\mathrm{CH}, 1 \mathrm{H}), 6.76(\mathrm{~s},=\mathrm{CH}, 2 \mathrm{H}), 3.91\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 3.90\left(\mathrm{~s}, \mathrm{CH}_{3}, 6 \mathrm{H}\right)$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.9,142.0,139.5,136.6,125.5,126.6,61.3,56.5 . \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2945$, 2841, 1625, 1581, 1509, 1491, 1420, 1337, 1249, 1193, 1132, 971, 819. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{5}$: C, 55.23; H, 5.48; N, 5.86; found: C, 55.45; H, 5.43; N, 5.61. Rf = 0.28 (EtOAc/Hexane (3:7), 254 nm).
(E)-5-(2-Nitrovinyl)-1H-indole (11j). ${ }^{45}$ Compound 11j was obtained using GP2. Column chromatography (EtOAc/Hexane (3:7)) gave the product as dark yellow crystals ($545 \mathrm{mg}, 83 \%$ yield; $\mathrm{mp} 154-155^{\circ} \mathrm{C}$ (Acetone/hexane)). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) $\delta 10.67$ (bs, NH, 1H), 8.22 (d, J=13.5 Hz, =CH, A part of $A B$ system, $=C H 1 H), 8.08(s,=C H, 1 H), 7.93(d, J=13.5 \mathrm{~Hz},=C H, B$ part of $A B$ system $,=C H, 1 H)$, 7.61 (dd, $J=8.6,1.6 \mathrm{~Hz}$, A part of $A B$ system, $=C H, 1 H), 7.56(\mathrm{~d}, J=8.6 \mathrm{~Hz}, \mathrm{~B}$ part of AB system, $=\mathrm{CH}$, 1H), $7.49-7.44(m,=C H, 1 H), 6.68-6.57(m,=C H, 1 H) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Acetone- d_{6}) δ 142.1, 139.4, $135.5,129.5,127.6,125.4,122.7,122.5,113.3,103.7$. IR (Acetone, cm^{-1}): 3376, 2733, 1605, 1494, 1329, 1300, 1285, 1217, 1129, 973, 894, 805, 766. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 63.83; H, 4.29; N, 14.89; found: C, 63.50; H, 4.53; N, 14.57. $\mathrm{Rf}=0.40$ (Acetone/Hexane (3:7), 254 nm).
(E)-3-(2-Nitrovinyl)-1H-indole (11k). ${ }^{40}$ Compound 11k was obtained using GP2. Column chromatography (EtOAc/Hexane (3:7)) gave the product as dark yellow crystals ($420 \mathrm{mg}, 78 \%$ yield; mp 167-168 ${ }^{\circ} \mathrm{C}$ (Acetone/hexane)). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) $\delta 11.29$ (bs, NH, 1H), 8.40 (d, J= 13.5 Hz, A part of $A B$ system, $=C H, 1 H), 8.19-8.18(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 8.02-7.96(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.93(\mathrm{~d}, \mathrm{~J}=$ $13.5 \mathrm{~Hz}, \mathrm{~B}$ part of AB system, $=\mathrm{CH}, 1 \mathrm{H}), 7.65-7.56(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.41-7.22(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, Acetone-d ${ }_{6}$) $\delta 138.2,135.1,134.0,132.1,125.2,123.7,122.2,120.6,112.9,108.9$. IR (Acetone, cm^{-1}): $3433,2078,1638,1476,1310,1237,1132,965$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$: $\mathrm{C}, 63.83$; H, 4.29; N, 14.89; found: C, 63.97; H, 4.43; N, 14.66. Rf = 0.27 (Acetone/Hexane (3:7), 254 nm).

2-Nitroprop-1-ene (11I). 2-Nitroprop-1-ene (11) was synthesized according to literature. ${ }^{46}$ 2-Nitro-1butanol ($2.10 \mathrm{~g}, 20 \mathrm{mmol}$) and phthalic anhydride ($5.92 \mathrm{~g}, 40 \mathrm{mmol}$) was added to a round-bottomed flask. The reaction mixture was heated to $150-200^{\circ} \mathrm{C}$ and distillated under water aspirator pressure. The desired product distilled over with water into an ice-cooled receiving flask. The aqueous layer was separated and the organic layer was dried over sodium sulfate to give compound 11I. Compound 111 was recovered as blue-green oil ($890 \mathrm{mg}, 52 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.4(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 5.6$ ($\mathrm{s},=\mathrm{CH}, 1 \mathrm{H}$), $2.2\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.2,118.2$, 17.1. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3363$, 2889, 1718, 1556, 1361, 1230, 1002, 849. Anal. Calcd for $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NO}_{2}$: C, 41.38; H, 5.79; N, 16.09; found: C, 41.13; H, 5.86; N, 15.72. Rf = 0.43 (EtOAc/Hexane (1:9), 254 nm).

General Procedure 3 (GP3): Preparation of C5-Alkylated Indolines

To a solution of β-nitrostyrene derivatives (1.0 equiv.) in ethanol (10 mL) was added $\mathrm{Zn}(\mathrm{OTf})_{2}(0.2$ equiv.) at room temperature. After stirring for 30 min , a solution of N-alkyl indoline (1.0 equiv.) in
ethanol (5 mL) was added dropwise for 5 min to the solution. The mixture was stirred for 12 h at room temperature. After removal of the solvent, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and washed with water $(2 \times 30 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and purification through silica gel column chromatography gave desired C5-alkylation products.
(\pm)-1-Benzyl-5-(2-nitro-1-phenylethyl)indoline (12aa). Compound 12aa was obtained using GP3. Column chromatography (EtOAc/Hexane (1:9)) gave the product as light yellow crystals ($2.36 \mathrm{~g}, 98 \%$ yield; $\mathrm{mp} 77-78{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$). ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.21(\mathrm{~m},=\mathrm{CH}, 10 \mathrm{H}), 6.94-6.87$ $(\mathrm{m},=\mathrm{CH}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=8.0 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 4.94(\mathrm{dd}, \mathrm{J}=11.7,7.4 \mathrm{~Hz}$, A part of AB system, CH $2,1 \mathrm{H}), 4.89$ (dd, J = 11.7, 7.4 Hz, B part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.78(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 4.20\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.30(\mathrm{t}$, $\left.J=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.91\left(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.0,140.1,138.3,130.9$, 128.9, 128.5, 128.2, 127.9, 127.6, 127.3, 127.2, 126.6, 124.0, 106.9, 79.7, 53.7, 53.6, 48.7, 28.5. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3430,3028,2916,2827,1615,1551,1496,1453,1377,1271,1156,1079,1029,890$, 809, 734. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 77.07; H, 6.19; N, 7.82; found: C, 76.85; H, 6.26; $\mathrm{N}, 7.70 . \mathrm{Rf}=$ 0.64 (EtOAc/Hexane (1:9), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} 359.1760$; Found 359.1740.
(\pm)-1-Benzyl-5-(2-nitro-1-(4-(trifluoromethyl)phenyl)ethyl)indoline (12ab). Compound 12ab was obtained using GP3. Column chromatography (EtOAc/Hexane (1:9)) gave the product as light yellow oil (141 mg, 78\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.47$ ($\mathrm{m}, \mathrm{AA}^{\prime}$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $=\mathrm{CH}$, $2 H), 7.28-7.26\left(m, B^{\prime}\right.$ part of ${A A^{\prime} B B^{\prime}}^{2}$ system, $\left.=C H, 2 H\right), 7.24-7.23(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.20-7.13(\mathrm{~m},=\mathrm{CH}$, $1 \mathrm{H}), 6.80-6.76(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.31(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 4.90-4.80\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.78-4.72(\mathrm{~m}, \mathrm{CH}$, $1 \mathrm{H}), 4.12\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.23\left(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.83\left(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 152.3,144.2,138.1,131.1,129.7,129.4,128.5,127.9,127.8,127.2,127.11,126.6,125.9$ (q, J = 3.7 $\mathrm{Hz}), 123.8,106.9,79.1,53.5,53.4,48.4,28.4$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3439,1618,1554,1497,1376,1326$, 1266, 1164, 1118, 1069, 736, 701. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 67.60 ; \mathrm{H}, 4.96 ; \mathrm{N}, 6.57$; found: C , 67.47; H, 4.74; N, 6.29. Rf = 0.32 (EtOAc/Hexane (1:9), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$ 427.1633; Found 427.1661.
(\pm)-4-(1-(1-Benzylindolin-5-yl)-2-nitroethyl)phenol (12ac). Compound 12ac was obtained using GP3. Column chromatography (EtOAc/Hexane (2:8)) gave the product as brown oil ($2.28 \mathrm{~g}, 99 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3) $\delta 7.36-7.34(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.31-7.25(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.10-7.09\left(\mathrm{~m}, \mathrm{AA}^{\prime}\right.$ part of $A A^{\prime} B B^{\prime}$ system $\left.=C H, 2 H\right), 6.96-6.86(m,=C H, 2 H), 6.75-6.74\left(m, B B^{\prime}\right.$ part of $A A^{\prime} B B^{\prime}$ system $\left.=C H, 2 H\right)$, $6.45(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 4.90-4.89\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.88(\mathrm{bs}, \mathrm{OH}, 1 \mathrm{H}), 4.73(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 4.23$ ($\mathrm{s}, \mathrm{CH}_{2}, 2 \mathrm{H}$), $3.31\left(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.92\left(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.1$, $152.1,138.4,132.3,131.2,129.0,128.9,128.8,128.2,127.5,126.7,124.2,116.0,107.3,80.2,53.90$,
53.89, 48.2, 28.7. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3361,3025,2823,1613,1550,1513,1496,1376,1265,1174,834$, 734. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 73.78; $\mathrm{H}, 5.92$; $\mathrm{N}, 7.48$; found: $\mathrm{C}, 73.92 ; \mathrm{H}, 5.63 ; \mathrm{N}, 7.27 . \mathrm{Rf}=0.31$ (EtOAc/Hexane (3:7), 254 nm). HRMS (APCI-TOF) m/z: [M + H ${ }^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} 375.1709$; Found 375.1683.
(\pm)-1-Benzyl-5-(1-(4-fluorophenyl)-2-nitroethyl)indoline (12ad). Compound 12ad was obtained using GP3. Column chromatography (EtOAc/Hexane (1:9)) gave the product as yellow oil ($2.11 \mathrm{~g}, 93 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.37(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.34-7.32(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m},=\mathrm{CH}$, $2 H), 7.05(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz},=\mathrm{CH}, 2 \mathrm{H}), 7.00-6.88(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.49-6.46(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 4.93(\mathrm{dd}, \mathrm{J}=8.3$, $\left.2.8 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.86-4.79(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 4.27\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.36\left(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.97(\mathrm{t}, \mathrm{J}=8.3$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.2(\mathrm{~d}, \mathrm{~J}=245.9 \mathrm{~Hz}), 152.3,138.4,136.1,131.3,129.4$ (d, $J=8.1 \mathrm{~Hz}), 128.8,128.19,128.14,127.5,126.7,124.1,116.1(\mathrm{~d}, \mathrm{~J}=21.4 \mathrm{~Hz}), 107.1,79.9,53.9,53.7$, 48.1, 28.7. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3029,2918,2830,1889,1604,1551,1508,1376,1268,1228,1160,1098$, 1015, 943, 890, 837. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{FN}_{2} \mathrm{O}_{2}$: C, 73.39; H, 5.62; N, 7.44; found: C, 73.27; H, 5.57; N, 7.27. $\mathrm{Rf}=0.32$ (EtOAc/Hexane (1:9), 254 nm). HRMS (APCI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}_{2}$ 377.1665; Found 377.1642.
(\pm)-1-Benzyl-5-(1-(4-bromophenyl)-2-nitroethyl)indoline (12ae). Compound 12ae was obtained using GP3. Column chromatography (EtOAc/Hexane (1:9)) gave the product as yellow oil ($1.90 \mathrm{~g}, 99 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.43\left(\mathrm{~m}, \mathrm{AA}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $=\mathrm{CH}, 2 \mathrm{H}$), $7.35-7.23(\mathrm{~m},=\mathrm{CH}$, $5 \mathrm{H}), 7.13-7.11\left(\mathrm{~m}, \mathrm{BB}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $\left.=\mathrm{CH}, 2 \mathrm{H}\right), 6.89-6.83(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.40(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $=C H, 1 H), 4.91\left(d d, J=11.4,7.0 \mathrm{~Hz}\right.$, A part of $A B$ system, $\left.C_{2}, 1 H\right), 4.86(d d, J=11.4,7.0 \mathrm{~Hz}, B$ part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.78-4.71(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 4.21\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.32\left(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.92(\mathrm{t}, \mathrm{J}=$ $\left.8.3 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.2,139.1,138.2,132.0,131.1,129.3,128.5,127.8$, $127.5,127.2,126.6,123.8,121.3,106.9,79.4,53.6,53.4,48.1,28.4$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3414,3025$, $2806,1678,1551,1488,1376,1202,1071,1006,883,802,730$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}_{2}$: C, 63.17; H, 4.84; N, 6.41; found: C, 63.40; H, 4.83; N, 6.32. Rf = 0.30 (EtOAc/Hexane (1:9), 254 nm). HRMS (APCITOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{2}$ 437.0859; Found 437.0834.
(\pm)-4-(1-(1-Benzylindolin-5-yl)-2-nitroethyl)-N,N-dimethylaniline (12af). Compound 12af was obtained using GP3. Column chromatography (EtOAc/Hexane (2:8)) gave the product as light green oil (61 mg, 57% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.22(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.20-7.17(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.03-7.01$ $\left(\mathrm{m}, ~ A A^{\prime}\right.$ part of $A A^{\prime} B^{\prime}$ system, $\left.=C H, 2 H\right), 6.89-6.77(\mathrm{~m},=C H, 2 H), 6.60-6.58\left(\mathrm{~m}, \mathrm{BB}^{\prime}\right.$ part of $A A^{\prime} \mathrm{BB}^{\prime}$ system, $=\mathrm{CH}, 2 \mathrm{H}), 6.32(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 4.80\left(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.62(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H})$, $4.13\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.21\left(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.94-2.70\left(\mathrm{~m}, \mathrm{CH}_{2}, \mathrm{CH}_{3}, 8 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.8,149.7,138.3,130.8,129.1,128.5,128.2,127.8,127.6,127.1,126.4,123.9,112.7,106.8,80.0$,
53.7, 53.6, 47.8, 40.5, 28.4. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 2918, 2850, 1734, 1611, 1552, 1521, 1351, 1265, 1078, 881, 737. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 74.79; H, 6.78; N, 10.47; found: C, 74.85; H, 6.52; N, 10.33. Rf $=0.54$ (EtOAc/Hexane (3:7), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}$ 402.2182; Found 402.2156.
(\pm)-1-Benzyl-5-(1-(2,5-dimethoxyphenyl)-2-nitroethyl)indoline (12ag). Compound 12ag was obtained using GP3. Column chromatography (EtOAc/Hexane (2:8)) gave the product as green oil (1.78 g, 89\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.35(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.33-7.24(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.03-6.99(\mathrm{~m}$, $=C H, 2 H), 6.84(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.78-6.75(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.46(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 5.20-$ $5.16(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 5.01\left(\mathrm{dd}, \mathrm{J}=12.7,8.3 \mathrm{~Hz}, \mathrm{~A}\right.$ part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.90(\mathrm{dd}, \mathrm{J}=12.7,8.3 \mathrm{~Hz}, \mathrm{~B}$ part of $A B$ system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.24\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.82\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 3.75\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 3.33\left(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$, $2 \mathrm{H}), 2.95\left(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.8,152.1,151.3,138.6,130.9,129.8$, $128.7,128.1,127.8,127.4,127.1,124.5,115.8,112.1,112.0,107.1,78.6,56.3,55.8,53.96,53.95,43.2$, 28.7. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3435,2953,2834,1615,1551,1497,1376,1226,1048,1025,805,736$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 71.75; H, 6.26; $\mathrm{N}, 6.69$; found: $\mathrm{C}, 71.78 ; \mathrm{H}, 5.98 ; \mathrm{N}, 6.61$. $\mathrm{Rf}=0.60$ (EtOAc/Hexane (3:7), 254 nm). HRMS (APCI-TOF) m/z: [M + H] Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}$ 419.1971; Found 419.1942.
(\pm)-1-Benzyl-5-(2-nitro-1-(3,4,5-trimethoxyphenyl)ethyl)indoline (12ah). Compound 12ah was obtained using GP3. Column chromatography (EtOAc/Hexane (2:8)) gave the product as green oil (1.43 g, 65\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.27(\mathrm{~m},=\mathrm{CH}, 5 \mathrm{H}), 6.97-6.88(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.49-6.39(\mathrm{~m}$, $=\mathrm{CH}, 3 \mathrm{H}), 4.92\left(\mathrm{dd}, J=12.4,8.1 \mathrm{~Hz}\right.$, A part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.87(\mathrm{dd}, J=12.4,8.1 \mathrm{~Hz}, \mathrm{~B}$ part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.73(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 4.22\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.83\left(\mathrm{~s}, \mathrm{CH}_{3}, 6 \mathrm{H}\right), 3.82\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right)$, $3.33\left(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.94\left(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.7,152.3,138.4$, $137.4,135.8,131.2,128.8,128.2,128.0,127.4,126.6,124.1,107.1,104.9,79.9,61.0,56.4,53.8,53.7$, 49.1, 28.7. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 2937,2837,1614,1590,1551,1495,1454,1421,1377,1329,1238,1127$, 1005, 908, 814. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 69.63; H, 6.29; N, 6.25; found: C, 69.63; H, 6.43; N, 6.64. $R f=0.44$ (EtOAc/Hexane (3:7), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}$ 449.2076; Found 449.2053.
(\pm)-1-Benzyl-5-(1-(furan-2-yl)-2-nitroethyl)indoline (12ai). Compound 12ai was obtained using GP3. Column chromatography (EtOAc/Hexane (2:8)) gave the product as brown oil ($2.29 \mathrm{~g}, 91 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3) $\delta 7.39-7.33(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.33-7.22(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.99(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 6.96-$ $6.94\left(\mathrm{~m}, ~ A A^{\prime}\right.$ part of $A A^{\prime} B^{\prime}$ system, $\left.=C H, 1 H\right), 6.45-6.43\left(\mathrm{~m}, \mathrm{BB}^{\prime}\right.$ part of $A A^{\prime} \mathrm{BB}^{\prime}$ system, $\left.=C H, 1 \mathrm{H}\right), 6.32$ (dd, $J=3.2,2.0 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=3.2 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=11.9,7.6 \mathrm{~Hz}, \mathrm{~A}$ part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.85-4.79(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 4.75\left(\mathrm{dd}, J=11.9,7.6 \mathrm{~Hz}\right.$, B part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.24\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$,
$2 \mathrm{H}), 3.35\left(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.96\left(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.2,152.6$, $142.5,138.4,131.1,128.7,128.0,127.4,127.2,125.9,124.1,110.5,107.1,107.1,78.7,53.8,53.6,43.4$, 28.6. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3445,2845,1617,1552,1497,1376,1267,1146,1013,810,736$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 72.40 ; \mathrm{H}, 5.79 ; \mathrm{N}, 8.04$; found: $\mathrm{C}, 72.51 ; \mathrm{H}, 5.72 ; \mathrm{N}, 8.15$. $\mathrm{Rf}=0.67$ (EtOAc/Hexane (1:9), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}$ 349.1552; Found 349.1528.
(\pm)-5-(1-(1-Benzylindolin-5-yl)-2-nitroethyl)-1H-indole (12aj). Compound 12aj was obtained using GP3. Column chromatography (Acetone/Hexane (2:8)) gave the product as brown oil ($1.85 \mathrm{mg}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}), 7.51(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.37-7.23(\mathrm{~m},=\mathrm{CH}, 6 \mathrm{H}), 7.20-7.15$ $(\mathrm{m},=\mathrm{CH}, 1 \mathrm{H}), 7.08-7.03(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.00-6.93(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.53-4.48(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 6.42(\mathrm{~d}, \mathrm{~J}=$ $7.9 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 5.03-4.95\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.94-4.86(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 4.21\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.29(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.91\left(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.0,138.6,135.1,131.8,131.0$, $129.5,128.7,128.3,128.1,127.4,126.7,125.0,124.3,122.3,119.5,111.7,107.1,102.9,80.5,53.9$ (2C), 49.0, 28.7. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3422,1614,1549,1496,1377,1266,1094,894,732$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 75.55; H, 5.83; N, 10.57; found: C, 75.29; H, 5.99; N, 10.24. Rf $=0.41$ (EtOAc/Hexane (3:7), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}$ 398.1869; Found 398.1854.
(\pm)-3-(1-(1-Benzylindolin-5-yl)-2-nitroethyl)-1H-indole (12ak). Compound 12ak was obtained using GP3. Column chromatography (Acetone/Hexane (2:8)) gave the product as brown oil ($1.85 \mathrm{mg}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 7.35-7.23$ (m, =CH, $6 \mathrm{H}), 7.21-7.15(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.10-6.98(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 6.41(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 5.10-4.97(\mathrm{~m}$, $\left.\mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.90-4.82(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 4.19\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) 3.31-3.24\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.92-2.86\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right)$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 152.6,138.4,136.5,130.8,128.5,128.3,127.9,127.2,126.8,126.3,124.0$, $122.6,121.4,119.8,119.2,115.3,111.3,106.9,80.1,53.7(2 \mathrm{C}), 41.2,28.5$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3419$, 3047, 2957, 2913, 2829, 1615, 1548, 1495, 1456, 1378, 1265, 1098, 808, 741. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 75.55; H, 5.83; N, 10.57; found: C, 75.31; H, 6.00; N, 10.63. Rf $=0.36$ (EtOAc/Hexane (3:7), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}$ 398.1869; Found 398.1847.
(dia)-1-Benzyl-2-methyl-5-(2-nitro-1-phenylethyl)indoline (12ba). Compound 12ba was obtained using GP3. Thin layer chromatography (EtOAc/Hexane (1:9)) gave the product as yellow oil (1.08 mg, 86\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.31(\mathrm{~m},=\mathrm{CH}, 10 \mathrm{H}), 7.04(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 6.98-6.93(\mathrm{~m},=\mathrm{CH}$, 1H), $6.39-6.37(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 5.06-4.82\left(\mathrm{~m}, \mathrm{CH}, \mathrm{CH}_{2}, 3 \mathrm{H}\right), 4.45(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}$, B part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.28\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, \mathrm{~B}\right.$ part of AB system $\left., \mathrm{CH}_{2}, 1 \mathrm{H}\right), 3.88-3.81\left(\mathrm{~m}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 3.27-3.20(\mathrm{~m}$, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 2.75\left(\mathrm{dd}, \mathrm{J}=15.6,9.4 \mathrm{~Hz}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 1.44-1.37\left(\mathrm{~m}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $152.5,140.6,139.4,130.0,129.2,128.9,128.4,127.9,127.7,127.6,127.3,127.0,126.9,124.0,123.9$, 107.0, 79.9, 61.1, 51.5, 49.0, 37.6, 20.0. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3061,3028,2963,2925,2839,1615,1551$,

1494, 1453, 1377, 1354, 1270, 1161, 1109, 1002, 910, 879. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 77.39 ; \mathrm{H}, 6.50$; N, 7.52; found: C, 77.35; H, 6.50; N, 7.61. Rf = 0.68 (EtOAc/Hexane (1:9), 254 nm). HRMS (APCI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}$ 373.1916; Found 373.1894.
(dia)-1-Benzyl-2-methyl-5-(2-nitro-1-(4-(trifluoromethyl)phenyl)ethyl)indoline (12bb). Compound 12bb was obtained using GP3. Thin layer chromatography (EtOAc/Hexane (1:9)) gave the product as yellow oil ($756 \mathrm{mg}, 74 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.55$ ($\mathrm{m}, \mathrm{AA}^{\prime}$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $=\mathrm{CH}$, $2 H), 7.37-7.35\left(\mathrm{~m}, \mathrm{BB}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $\left.=\mathrm{CH}, 2 \mathrm{H}\right), 7.33-7.27(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.27-7.18(\mathrm{~m},=\mathrm{CH}$, $1 \mathrm{H}), 6.84(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.0,2.4 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 5.07-4.63$ ($\mathrm{m}, \mathrm{CH}, \mathrm{CH}_{2}, 3 \mathrm{H}$), 4.32 ($\mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}, \mathrm{~A}$ part of AB system, $\mathrm{CH}_{2}, 1 \mathrm{H}$), 4.14 ($\mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}, \mathrm{~B}$ part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 3.78-3.69(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 3.12\left(\mathrm{dd}, \mathrm{J}=15.7,9.0 \mathrm{~Hz}\right.$, A part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 2.62$ (dd, J = 15.7, 9.0 Hz, B part of AB system, $\mathrm{CH}_{2}, 1 \mathrm{H}$), $1.28(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $152.5,144.3,139.0,130.1,128.7,128.1,127.4,127.2,127.0,126.89,126.84,126.1-126.0$ (m, C), $123.7,123.6,106.9,79.3,60.8,51.17,51.16,48.6,37.3,19.8$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3434,2963,1618,1553$, 1494, 1376, 1325, 1163, 1117, 1069, 808, 731, 700. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$: $\mathrm{C}, 68.17 ; \mathrm{H}, 5.26 ; \mathrm{N}$, 6.36; found: C, 68.41; H, 5.36; N, 6.23. Rf = 0.70 (EtOAc/Hexane (1:9), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$ 441.1790; Found 441.1763.
(dia)-4-(1-(1-Benzyl-2-methylindolin-5-yl)-2-nitroethyl)phenol (12bc). Compound 12bc was obtained using GP3. Thin layer chromatography (EtOAc/Hexane (2:8)) gave the product as brown oil (1.15 g, 97\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.29(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.27-7.25(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.10-7.08(\mathrm{~m}$, $A A^{\prime}$ part of $A A^{\prime} B^{\prime}$ system, $\left.=C H, 2 H\right), 6.88(\mathrm{~s},=C H, 1 H), 6.82(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.75-6.73\left(\mathrm{~m}, \mathrm{BB}^{\prime}\right.$ part of $A^{\prime} B^{\prime} B^{\prime}$ system, $\left.=C H, 2 H\right), 6.24-6.22(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 5.00(\mathrm{bs}, \mathrm{OH}, 1 \mathrm{H}), 4.91-4.80(\mathrm{~m}, \mathrm{CH}, 2 \mathrm{H})$, $4.71(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 4.33\left(\mathrm{~d}, J=16.0 \mathrm{~Hz}\right.$, A part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.15(\mathrm{~d}, J=16.0 \mathrm{~Hz}, \mathrm{~B}$ part of $A B$ system, $\left.C_{2}, 1 \mathrm{H}\right), 3.80-3.62(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 3.12\left(\mathrm{dd}, J=15.2,8.6 \mathrm{~Hz}\right.$, A part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right)$, 2.63 (dd, $J=15.2,9.5 \mathrm{~Hz}, B$ part of $A B$ system, $C_{2}, 1 \mathrm{H}$), $1.29(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ (154.9, 152.2, 139.2, 132.4, 129.99, 129.97, 129.0, 128.7, 127.5, 127.2, 126.7, 126.6, 123.8, 123.7, 115.9, 106.9, 80.1, 60.9, 51.3, 48.1, 37.4, 19.8. IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3434,2964,2077,1614,1550$, 1513, 1494, 1377, 1266, 1175, 1103, 835. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 74.21; H, 6.23; N, 7.21; found: C, 74.10; H, 6.08; N, 7.16. Rf = 0.44 (EtOAc/Hexane (3:7), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}$ 389.1865; Found 389.1836.
(dia)-1-Benzyl-5-(1-(4-fluorophenyl)-2-nitroethyl)-2-methylindoline (12bd). Compound 12bd was obtained using GP3. Thin layer chromatography (EtOAc/Hexane (1:9)) gave the product as yellow oil (1.05 g, 90\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.17(\mathrm{~m},=\mathrm{CH}, 7 \mathrm{H}), 7.06-6.97(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.87$ $(\mathrm{s},=\mathrm{CH}, 1 \mathrm{H}), 6.82(\mathrm{bd}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{bd}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.82\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.80-4.72(\mathrm{~m}$,
$\mathrm{CH}, 1 \mathrm{H}), 4.34\left(\mathrm{~d}, J=16.0 \mathrm{~Hz}, \mathrm{~A}\right.$ part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.20(\mathrm{~d}, J=16.0 \mathrm{~Hz}, \mathrm{~B}$ part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 3.84-3.71(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 3.17\left(\mathrm{dd}, J=15.6,9.0 \mathrm{~Hz}\right.$, A part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 2.65(\mathrm{dd}, J=$ $15.6,9.0 \mathrm{~Hz}, \mathrm{~B}$ part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 1.33\left(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $162.16(\mathrm{~d}, \mathrm{~J}=246.2 \mathrm{~Hz}), 152.4,139.2,136.1,130.09,130.08,129.43(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 128.7,127.9,127.5$, $127.2,126.8,126.7,123.79,123.71,116.00(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz}), 106.9,79.9,60.9,51.33,51.32,48.2,37.4$, 19.9. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3435,2964,2925,2840,1615,1604,1552,1495,1377,1230,1160,1100,838$, 813. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{2}$: C, 73.83; $\mathrm{H}, 5.94 ; \mathrm{N}, 7.17$; found: $\mathrm{C}, 73.74 ; \mathrm{H}, 5.87 ; \mathrm{N}, 7.25$. $\mathrm{Rf}=0.27$ (EtOAc/Hexane (1:19), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{O}_{2}$ 391.1822; Found 391.1797.
(dia)-1-Benzyl-5-(1-(4-bromophenyl)-2-nitroethyl)-2-methylindoline (12be). Compound 12be was obtained using GP3. Thin layer chromatography (EtOAc/Hexane (1:9)) gave the product as yellow oil ($961 \mathrm{mg}, 97 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.43$ ($\mathrm{m}, \mathrm{AA}^{\prime}$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $=\mathrm{CH}, 2 \mathrm{H}$), $7.34-7.23(\mathrm{~m},=\mathrm{CH}, 5 \mathrm{H}), 7.13-7.11\left(\mathrm{~m}, \mathrm{BB}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $\left.=\mathrm{CH}, 2 \mathrm{H}\right), 6.84(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 6.79$ $(\mathrm{d}, J=8.0 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=8.0 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 4.94-4.81\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.77-4.68(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H})$, $4.33\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}\right.$, A part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.16\left(\mathrm{~d}, J=16.0 \mathrm{~Hz}\right.$, B part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right)$, $3.88-3.55(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 3.12\left(\mathrm{dd}, J=15.7,9.0 \mathrm{~Hz}, \mathrm{~A}\right.$ part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 2.63(\mathrm{dd}, \mathrm{J}=15.7,9.0$ Hz, B part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 1.29(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.4,139.3$, $139.1,132.2,130.0,129.5,128.7,127.4,127.2,126.8,126.7,123.7,123.6,121.4,106.9,79.5,60.9$, 51.2, 48.3, 37.4, 19.8. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 3027, 2963, 2923, 2823, 2848, 1616, 1552, 1490, 1376, 1268, 1074, 1010, 811, 733. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}_{2}$: C, 63.87; H, 5.14; N, 6.21; found: C, 63.75; H, 5.29; $\mathrm{N}, 6.05 . \mathrm{Rf}=0.38$ (EtOAc/Hexane (1:9), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{2}$ 451.1021; Found 451.0977.
(dia)-4-(1-(1-Benzyl-2-methylindolin-5-yl)-2-nitroethyl)-N,N-dimethylaniline (12bf). Compound 12bf was obtained using GP3. Thin layer chromatography (EtOAc/Hexane (2:8)) gave the product as brown oil ($814 \mathrm{mg}, 75 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.27(\mathrm{~m},=\mathrm{CH}, 3 \mathrm{H}), 7.27-7.21(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H})$, $7.09(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz},=\mathrm{CH}, 2 \mathrm{H}), 6.88(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.69-6.67(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H})$, $6.22-6.19(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 4.87-4.85\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.67(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 4.31(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, \mathrm{~A}$ part of $A B$ system, $\left.C H_{2}, 1 \mathrm{H}\right), 4.13\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, A\right.$ part of $A B$ system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 3.72-3.67(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H})$, 3.10 (dd, $J=15.5,9.1 \mathrm{~Hz}, \mathrm{~A}$ part of AB system, $\mathrm{CH}_{2}, 1 \mathrm{H}$), $2.91\left(\mathrm{~s}, \mathrm{CH}_{3}, 6 \mathrm{H}\right.$), 2.61 (dd, J=15.5, $9.1 \mathrm{~Hz}, \mathrm{~A}$ part of $A B$ system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 1.27(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.3,129.8,128.99$, $128.96,128.6,128.4,127.5,127.1,126.6,126.5,123.8,123.7,113.1,106.8,80.2,61.0,51.4$ (2C), 48.1, 37.4, 19.8. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 3411, 2918, 2851, 1614, 1549, 1521, 1493, 1351, 1160, 1060, 733. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 75.15; H, 7.03; $\mathrm{N}, 10.11$; found: C, 75.19; H, 7.09; $\mathrm{N}, 10.20$. $\mathrm{Rf}=0.56$
(EtOAc/Hexane (2:8), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2} 416.2338$; Found 416.2309.
(dia)-1-Benzyl-5-(1-(2,5-dimethoxyphenyl)-2-nitroethyl)-2-methylindoline (12bg). Compound 12bg was obtained using GP3. Thin layer chromatography (EtOAc/Hexane (2:8)) gave the product as brown oil ($862 \mathrm{mg}, 83 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.29(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.27-7.23(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H})$, $6.95(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.76-6.67(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H})$, $6.24-6.22(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 5.17-5.05(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 5.00-4.95\left(\mathrm{~m}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.90-4.81\left(\mathrm{~m}, \mathrm{CH}_{2}, 1 \mathrm{H}\right)$, $4.32\left(\mathrm{~d}, J=16.0 \mathrm{~Hz}, C_{2}\right.$, A part of $A B$ system 1 H$), 4.16\left(\mathrm{~d}, J=16.0 \mathrm{~Hz}\right.$, B part of $A B$ system $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right)$, $3.81-3.80\left(\mathrm{~m}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 3.74-3.73\left(\mathrm{~m}, \mathrm{CH}_{3}, \mathrm{CH}, 4 \mathrm{H}\right), 3.12\left(\mathrm{dd}, \mathrm{J}=15.6,8.5 \mathrm{~Hz}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 2.64\left(\mathrm{~m}, \mathrm{CH}_{2}\right.$, $1 \mathrm{H}), 1.29$ ($\mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{3}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.7,152.3,151.3,139.4,129.8,129.7$, $128.6,127.5,127.16,127.14,127.0,124.1,124.0,115.8,115.7,112.05,112.04,111.9,106.9,78.6$, 61.1, $61.0,56.3,55.8,51.58,51.54,43.15,43.13,37.5,19.9$ IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3435,2962,2834,1619$, 1551, 1495, 1376, 1225, 1049, 802, 733. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 72.20; H, 6.53; N, 6.48; found: C, 72.11; H, 6.43; N, 6.64. Rf = 0.62 (EtOAc/Hexane (3:7), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}$ 433.2127; Found 433.2102.
(dia)-1-Benzyl-2-methyl-5-(2-nitro-1-(3,4,5-trimethoxyphenyl)ethyl)indoline (12bh). Compound 12bh was obtained using GP3. Thin layer chromatography (EtOAc/Hexane (2:8)) gave the product as green oil ($792 \mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.27(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.27-7.22(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H})$, $6.88(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.44(\mathrm{~s},=\mathrm{CH}, 2 \mathrm{H}), 6.23(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 4.98-$ $4.76\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.69(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 4.32\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.15\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$, $1 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.70(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=15.6,8.6 \mathrm{~Hz}, \mathrm{~A}$ part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 2.63\left(\mathrm{dd}, J=15.6,9.4 \mathrm{~Hz}, \mathrm{~B}\right.$ part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 1.28(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ($153.4,152.2,138.9,137.2,135.5,129.7,128.5,127.7,127.3,127.0,126.4,126.3,123.5$, $123.4,106.6,104.8,79.7,60.8,60.75,60.73,56.1,51.1,51.0,48.9,37.2,19.6$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3424$, 2963, 2838, 1590, 1551, 1494, 1454, 1237, 1127, 1005, 733. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}: \mathrm{C}, 70.11 ; \mathrm{H}$, 6.54; N, 6.06; found: C, 69.94; H, 6.43; N, 6.17. $\mathrm{Rf}=0.25$ (EtOAc /Hexane (2:8), 254 nm). HRMS (APCITOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}$ 463.2233; Found 463.2204.
(dia)-1-Benzyl-5-(1-(furan-2-yl)-2-nitroethyl)-2-methylindoline (12bi). Compound 12bi was obtained using GP3. Thin layer chromatography (EtOAc/Hexane (2:8)) gave the product as brown oil (1.19 mg , 91% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.22(\mathrm{~m},=\mathrm{CH}, 6 \mathrm{H}), 6.96(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 6.92-6.83(\mathrm{~m},=\mathrm{CH}$, $1 \mathrm{H}), 6.32-6.31(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 6.26(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.16-6.06(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 4.96(\mathrm{dd}, \mathrm{J}=12.0$, 7.6 Hz, A part of $A B$ system, $\left.C_{2}, 1 \mathrm{H}\right), 4.85-4.77(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 4.73(\mathrm{dd}, \mathrm{J}=12.0,7.6 \mathrm{~Hz}, \mathrm{~B}$ part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.36\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}\right.$, A part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.19(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, \mathrm{~B}$ part of AB
system, $\mathrm{CH}_{2}, 1 \mathrm{H}$), $3.84-3.65(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 3.16$ (ddd, $\mathrm{J}=15.6,8.5,1.5 \mathrm{~Hz}$, A part of AB system, $\mathrm{CH}_{2}, 1 \mathrm{H}$), 2.67 (dd, $J=15.6,9.4 \mathrm{~Hz}$, B part of $A B$ system, $\mathrm{CH}_{2}, 1 \mathrm{H}$), $1.31\left(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ (153.2, 152.7, 142.4, 139.2, 129.9, 128.7, 127.5, 127.29, 127.27, 127.23, 125.6, 123.85, 123.83, $110.5,107.1,106.9,78.82,78.81,60.9,51.2,43.4,37.4,19.9$. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 3027, 2964, 2925, 2840, 1616, 1553, 1495, 1376, 1274, 1238, 1161, 1146, 1013, 914, 810, 735. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 72.91; H, 6.12; N, 7.73; found: C, 72.72; H, 6.09; N, 7.60. Rf = 0.44 (EtOAc/Hexane (2:8), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} 363.1709$; Found 363.1683.
(dia)-5-(1-(1-Benzyl-2-methylindolin-5-yl)-2-nitroethyl)-1H-indole (12bj). Compound 12bj was obtained using GP3. Thin layer chromatography (Acetone/Hexane (2:8)) gave the product as yellow oil (18 mg, 86% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 7.28-7.19(\mathrm{~m}$, $=C H, 5 H), 7.18-7.07(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 7.02-6.92(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.91-6.82(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.14(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz},=\mathrm{CH}, 1 \mathrm{H}), 4.99-4.89\left(\mathrm{~m}, \mathrm{CH}_{2}, \mathrm{CH}, 2 \mathrm{H}\right), 4.77\left(\mathrm{dd}, \mathrm{J}=11.8,7.7 \mathrm{~Hz}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.23(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, \mathrm{~A}$ part of $A B$ system, $\left.C H_{2}, 1 \mathrm{H}\right), 4.06\left(\mathrm{~d}, J=16.0 \mathrm{~Hz}, \mathrm{~B}\right.$ part of $A B$ system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 3.71-3.50(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H})$, $3.05-2.97\left(m, C_{2}, 1 H\right), 2.58-2.46\left(m, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 1.28-1.06\left(\mathrm{~m}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.1,139.1,136.5,129.5,128.4,127.9,127.3,126.9,126.8,126.6,126.3,123.6,123.5,122.5,121.3$, $119.7,119.2,115.3,111.2,106.7,80.0,60.84,60.80,51.2,41.1,37.2,29.2,19.6$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$: $3435,2094,1635,1338,1223,1079,1049,882$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 75.89; H, 6.12; N, 10.21; found: C, 75.66; H, 6.15; N, 9.95. Rf = 0.20 (Acetone/Hexane (3:7), 254 nm). HRMS (APCI-TOF) m/z: [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}$ 412.2025; Found 412.1985.
(dia)-3-(1-(1-Benzyl-2-methylindolin-5-yl)-2-nitroethyl)-1H-indole (12bk). Compound 12bk was obtained using GP3. Thin layer chromatography (Acetone/Hexane (2:8)) gave the product as yellow oil ($18.20 \mathrm{mg}, 87 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{bs}, \mathrm{NH}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 7.26$ $-7.20(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.17-7.15(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 7.13-7.06(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.05-6.90(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.91$ $-6.78(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.14(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 5.02-4.83\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.79-4.74(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 4.23$ $\left(d, J=16.0 \mathrm{~Hz}, A\right.$ part of $A B$ system $\left., C_{2}, 1 \mathrm{H}\right), 4.06\left(\mathrm{~d}, J=16.0 \mathrm{~Hz}, \mathrm{~B}\right.$ part of $A B$ system, $\mathrm{CH}_{2}, 1 \mathrm{H}$), $3.65-$ $3.58(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 3.05-2.97\left(\mathrm{~m}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 2.65-2.43\left(\mathrm{~m}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 1.34-0.96\left(\mathrm{~m}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 152.4,139.3,136.7,129.7,128.9,128.6,127.5,127.1,126.9,126.8,126.2,123.8$, $123.7,122.7,121.5,120.9,119.9,119.4,119.3,118.9,115.5,111.4,109.7,106.9,100.7,80.4,80.2$, 61.0, 60.9, 51.5, 51.4, 46.8, 41.9, 41.3, 37.4, 19.9. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 3419, 2095, 1634, 1548, 1493, 1455, 1377, 1097, 741. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 75.89; H, 6.12; N, 10.21; found: C, 75.96; H, 5.95; N, 10.14. $\mathrm{Rf}=0.50$ (Acetone/Hexane (3:7), 254 nm). HRMS (APCI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2} 412.2025$; Found 412.1993.
(dia)-Ethyl 1-benzyl-5-(2-nitro-1-phenylethyl)indoline-2-carboxylate (12ca). Compound 12ca was obtained using GP3. Thin layer chromatography (EtOAc/Hexane (2:8)) gave the product as light yellow oil ($82 \mathrm{mg}, 56 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.20(\mathrm{~m},=\mathrm{CH}, 9 \mathrm{H}), 7.10-7.01(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H})$, $6.92-6.87(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.39-6.23(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 4.96-4.83\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.79(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H})$, $4.49\left(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, \mathrm{~A}\right.$ part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.29\left(\mathrm{~d}, J=15.4 \mathrm{~Hz}, \mathrm{~B}\right.$ part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right)$, $4.27-4.21(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 4.18-4.09\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.34\left(\mathrm{dd}, \mathrm{J}=16.0,10.4 \mathrm{~Hz}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 3.16\left(\mathrm{~m}, \mathrm{CH}_{2}\right.$, $1 \mathrm{H}), 1.22\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,162.0,151.1,140.1,139.9,138.9$, $138.3,137.9,132.0,129.2,129.1,128.9,128.83,128.76,128.01,127.9,127.8,127.7,127.6,127.5$, $127.44,127.39,127.2,126.5,125.6,124.0,123.8,121.4,111.8,111.1,107.3,79.8,65.8,61.4,60.9$, $52.4,49.2,48.8,48.2,33.6,29.9,14.5,14.4 . \operatorname{Rf}=0.34$ (EtOAc/Hexane (2:8), 254 nm). HRMS (APCI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}$ 431.1965; Found 431.1942.
(dia)-Ethyl 1-benzyl-5-(2-nitro-1-(4-(trifluoromethyl)phenyl)ethyl)indoline-2-carboxylate
(12cb). Compound 12cb was obtained using GP3. Thin layer chromatography (EtOAc/Hexane (2:8)) gave the product as light yellow oil ($53 \mathrm{mg}, 42 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.55(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H})$, $7.45-7.17(\mathrm{~m},=\mathrm{CH}, 7 \mathrm{H}), 6.91-6.78(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.36-6.32(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 4.99-4.88\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right)$, $4.87-4.80(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 4.49\left(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}\right.$, A part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.28(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, \mathrm{~B}$ part of $A B$ system, $C_{2}, 1 \mathrm{H}$), $4.29-4.21(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 4.17-4.02\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.34(\mathrm{dd}, \mathrm{J}=16.1,10.4 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 3.20-3.10\left(\mathrm{~m}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 1.21\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.8,161.9$, 151.4, 144.2, 137.7, 128.84, 128.78, 128.38, 128.31, 128.17, 127.9, 127.6, 127.4, 127.3, $126.30-$ 125.93 (m), 123.8, 123.7, 107.3, 79.3, 65.6, 61.4, 52.2, 48.5, 33.5, 29.9, 14.3. Rf $=0.28$ (EtOAc/Hexane (2:8), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}$ 499.1839; Found 499.1825.
(dia)-Ethyl 1-benzyl-5-(1-(4-hydroxyphenyl)-2-nitroethyl)indoline-2-carboxylate (12cc). Compound 12cc was obtained using GP3. Thin layer chromatography (EtOAc/Hexane (3:7)) gave the product as light yellow oil ($62 \mathrm{mg}, 46 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.35-7.18$ (m, $=\mathrm{CH}, 5 \mathrm{H}$), $7.12-7.00$ (m , $=\mathrm{CH}, 2 \mathrm{H}), 6.89-6.83(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.78-6.70(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.36-6.31(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 5.34(\mathrm{bs}, \mathrm{OH}$, $1 \mathrm{H}), 4.91-4.82\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.70(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 4.46\left(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, \mathrm{~A}\right.$ part AB system, CH_{2}, $1 \mathrm{H}), 4.27\left(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}\right.$, B part of $A B$ system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.28-4.18(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 4.16-4.07\left(\mathrm{~m}, \mathrm{CH}_{2}\right.$, $2 \mathrm{H}), 3.33\left(\mathrm{dd}, \mathrm{J}=16.1,10.5 \mathrm{~Hz}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 3.19-3.08\left(\mathrm{~m}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 1.21\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.2,155.2,155.1,151.0,137.8,132.3,132.1,131.8,129.3,129.1,129.0,128.82$, $128.76,128.0,127.5,127.3,127.0,126.5,124.0,123.7,115.9,107.3,80.1,65.8,61.5,61.0,52.4,48.4$, 48.0, 33.6, 14.5, 14.3. Rf = 0.02 (EtOAc/Hexane (3:7), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}$ 447.1920; Found 447.1890.
(dia)-Ethyl 1-benzyl-5-(1-(4-fluorophenyl)-2-nitroethyl)indoline-2-carboxylate (12cd). Compound 12cd was obtained using GP3. Thin layer chromatography (EtOAc/Hexane (2:8)) gave the product as light yellow oil ($74 \mathrm{mg}, 55 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.25(\mathrm{~m},=\mathrm{CH}, 5 \mathrm{H}), 7.21-7.16(\mathrm{~m},=\mathrm{CH}$, $2 H), 7.04-6.97(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.89-6.84(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.38-6.32(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 4.91-4.84\left(\mathrm{~m}, \mathrm{CH}_{2}\right.$, $2 \mathrm{H}), 4.82-4.73(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, A part of AB system, CH2, 1H), $4.29(\mathrm{~d}, J=15.4 \mathrm{~Hz}, \mathrm{~B}$ part of $A B$ system, $\left.C H_{2}, 1 \mathrm{H}\right), 4.29-4.20(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 4.18-4.08\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.34(\mathrm{dd}, \mathrm{J}=15.9,10.4$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 3.23-3.04\left(\mathrm{~m}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 1.22\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.8$, $162.15(\mathrm{~d}, \mathrm{~J}=246.2 \mathrm{~Hz}), 151.2,137.9,135.91(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 129.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 128.8,128.7,128.25$, $128.23,128.0,127.5,127.3,127.1,123.9,123.7,116.02(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 107.3,79.8,65.7,61.4,52.3$, $48.0,33.5,14.4$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3452,3057,2983,2925,2854,1890,1737,1616,1606,1554,1509$, 1497, 1376, 1353, 1265, 1226, 1195, 1161, 1099, 1028, 839, 813, 736. Rf = 0.24 (EtOAc/Hexane (2:8), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{FN}_{2} \mathrm{O}_{4} 449.1877$; Found 449.1853.
(dia)-Ethyl 1-benzyl-5-(1-(4-bromophenyl)-2-nitroethyl)indoline-2-carboxylate (12ce). Compound 12ce was obtained using GP3. Thin layer chromatography (EtOAc/Hexane (2:8)) gave the product as light yellow oil ($58 \mathrm{mg}, 52 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.40(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 7.34-7.19(\mathrm{~m},=\mathrm{CH}$, $5 \mathrm{H}), 7.17-7.00(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.87-6.81(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.35-6.31(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 4.91-4.80\left(\mathrm{~m}, \mathrm{CH}_{2}\right.$, $2 \mathrm{H}), 4.76-4.67(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 4.48\left(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}\right.$, A part of AB system $\left., \mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.27(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, \mathrm{~B}$ part of $A B$ system, $\left.C_{2}, 1 \mathrm{H}\right), 4.26-4.24(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 4.16-4.08\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.33(\mathrm{dd}, \mathrm{J}=16.1,10.4$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 3.19-3.10\left(\mathrm{~m}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 1.21\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.8$, $161.9,151.3,139.2,138.9,138.1,137.8,132.3,132.2,131.3,129.6,129.5,128.83,128.78,128.3$, $128.25,128.21,127.9,127.54,127.50,127.3,127.1,126.5,125.3,123.8,123.7,121.7,121.5,121.3$, $112.0,111.0,107.3,79.5,65.7,61.4,61.0,52.3,48.6,48.3,48.2,33.5,14.5,14.4 . \mathrm{Rf}=0.28$ (EtOAc/Hexane (2:8), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrN}_{2} \mathrm{O}_{4}$ 509.1070; Found 509.1081.

General Procedure 4 (GP4): Preparation of C5-Alkylated Indoles (14aa-ak)

To a solution of N -benzyl indoline derivatives (1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$, DEAD (1.1 equiv.) was added. The mixture was stirred at the room temperature for 2 h , then concentrated and purified by silica gel chromatography to afford desired C5-alkylated indoles.
(\pm)-1-Benzyl-5-(2-nitro-1-phenylethyl)-1H-indole (14aa). Compound 14aa was obtained using GP4. Column chromatography (EtOAc/Hexane (2:8)) gave the product as light green oil ($195 \mathrm{mg}, 55 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.49(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.34-7.19(\mathrm{~m},=\mathrm{CH}, 9 \mathrm{H}), 7.14-7.07(\mathrm{~m},=\mathrm{CH}$, $3 \mathrm{H}), 7.03-6.99(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 6.49(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 5.27\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 5.10-4.96\left(\mathrm{~m}, \mathrm{CH}, \mathrm{CH}_{2}\right.$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.1,137.2,135.6,130.4,129.03,129.0,128.9,128.8,127.72,127.7$,
127.3, 126.8, 121.7, 119.8, 110.3, 101.8, 79.8, 50.2, 49.1. IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3445,3029,2917,1953$, 1603, 1551, 1485, 1453, 1377, 1263, 1183, 1078, 884, 804, 760. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 77.51; H, 5.66; N, 7.86; found: C, 77.47; H, 5.77; N, 7.63. Rf = 0.70 (EtOAc/Hexane (4:6), 254 nm). HRMS (APCITOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$ 357.1603; Found 357.1581.
(\pm)-1-Benzyl-5-(2-nitro-1-(4-(trifluoromethyl)phenyl)ethyl)-1H-indole (14ab). Compound 14ab was obtained using GP4. Column chromatography (EtOAc/Hexane (2:8)) gave the product as light green oil ($187 \mathrm{mg}, 89 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz},=\mathrm{CH}, 2 \mathrm{H}$), $7.50(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.42$ ($\mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz},=\mathrm{CH}, 2 \mathrm{H}$), $7.33-7.27(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H})$, $7.12-7.11(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.99(\mathrm{dd}, \mathrm{J}=8.5,1.6 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.53(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 5.29\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$, $2 \mathrm{H}), 5.11$ - $4.99\left(\mathrm{~m}, \mathrm{CH}, \mathrm{CH}_{2}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.4,137.3,135.9,129.7,129.5,129.3$, 129.0, 128.3 (2C), 128.0, 127.08, 127.04, 126.1 - 126.0 (m, 1C), 121.7, 120.0, 110.7, 102.0, 79.5, 50.4, 49.0. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3434,2920,1619,1553,1483,1376,1326,1261,1165,1116,1069,1017,858$, 840, 799. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 67.92; $\mathrm{H}, 4.51 ; \mathrm{N}, 6.60$; found: $\mathrm{C}, 68.03 ; \mathrm{H}, 4.46 ; \mathrm{N}, 6.50 . \mathrm{Rf}=$ 0.70 (EtOAc/Hexane (4:6), 254 nm). HRMS (APCI-TOF) m/z: [M + H $]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$ 425.1477; Found 425.1454.
(\pm)-4-(1-(1-Benzyl-1H-indol-5-yl)-2-nitroethyl)phenol (14ac). Compound 14ac was obtained using GP4. Column chromatography (EtOAc/Hexane (3:7)) gave the product as yellow oil ($201 \mathrm{mg}, 77 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $)^{2}$) $7.50-7.49(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.32-7.25(\mathrm{~m},=\mathrm{CH}, 3 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz},=\mathrm{CH}$, $1 \mathrm{H}), 7.16-7.08(\mathrm{~m},=\mathrm{CH}, 5 \mathrm{H}), 7.01(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.76-6.68(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.52(\mathrm{~d}, \mathrm{~J}=$ $3.1 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}$), 5.38 (bs, OH, 1H), $5.26\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 5.06-4.85\left(\mathrm{~m}, \mathrm{CH}, \mathrm{CH}_{2}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (155.0, 137.5, 135.8, 132.4, 130.9, 129.3, 129.1(2C), 129.0, 127.9, 127.0, 121.9, 119.8, 115.9, $110.5,101.9,80.2,50.4,48.6$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3391,3028,2919,1884,1703,1613,1550,1514,1377$, 1264, 1178, 1045, 885, 814, 732. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 74.18; $\mathrm{H}, 5.41 ; \mathrm{N}, 7.52$; found: C, 74.29; H, 5.23; $\mathrm{N}, 7.47 . \mathrm{Rf}=0.23$ (EtOAc/Hexane (4:6), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} 373.1552$; Found 373.1528.
(\pm)-1-Benzyl-5-(1-(4-fluorophenyl)-2-nitroethyl)-1H-indole (14ad). Compound 14ad was obtained using GP4. Column chromatography (EtOAc/Hexane (2:8)) gave the product as light green oil ($721 \mathrm{mg}, 88 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.37-7.23(\mathrm{~m},=\mathrm{CH}, 6 \mathrm{H}), 7.21-7.10(\mathrm{~m},=\mathrm{CH}, 3 \mathrm{H})$, $7.09-6.97(\mathrm{~m},=\mathrm{CH}, 3 \mathrm{H}), 6.60-6.52(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 5.29\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 5.09-4.91\left(\mathrm{~m}, \mathrm{CH}, \mathrm{CH}_{2}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl $)^{\text {}}$) 162.19 ($\mathrm{d}, \mathrm{J}=245.9 \mathrm{~Hz}$), 137.5, $136.23(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}), 135.8,130.5,129.57$ (d , $J=8.2 \mathrm{~Hz}), 129.51,129.3,129.0,128.0,127.1,121.8,119.9,116.03(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz}), 110.7,102.0,80.0$, 50.4, 48.6. IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3674,3063,3031,2922,2855,1954,1889,1721,1603,1551,1485,1453$, 1376, 1303, 1227, 1201, 1161, 1102, 1077, 1029, 1015, 960, 911, 886, 854, 837, 808. Anal. Calcd for
$\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}_{2}$: C, 73.78; H, 5.12; N, 7.48; found: C, 73.72; H, 5.05; N, 7.37. Rf = 0.52 (EtOAc/Hexane (4:6), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{FN}_{2} \mathrm{O}_{2}$ 375.1509; Found 375.1484.
(\pm)-1-Benzyl-5-(1-(4-bromophenyl)-2-nitroethyl)-1H-indole (14ae). Compound 14ae was obtained using GP4. Column chromatography (EtOAc/Hexane (2:8)) gave the product as brown oil ($320 \mathrm{mg}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.39(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 7.33-7.06(\mathrm{~m},=\mathrm{CH}, 9 \mathrm{H}), 6.98-6.93(\mathrm{~m},=\mathrm{CH}$, $1 \mathrm{H}), 6.49(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 5.26\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 5.03-4.91\left(\mathrm{~m}, \mathrm{CH}, \mathrm{CH}_{2}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ ($139.2,137.2,135.6,132.0,129.8,129.4,129.3,129.0,128.8,127.8,126.8,121.5,121.3,119.7$, $110.5,101.8,79.5,50.3,48.5$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3434,2917,1642,1551,1486,1375,1262,1182,1074$, 1010, 729, 701. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{2}$: C, 63.46; H, 4.40; N, 6.44; found: C, 63.32; H, 4.29; N, 6.52 $R f=0.76$ (EtOAc/Hexane (4:6), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrN}_{2} \mathrm{O}_{2}$ 435.0708; Found 435.0678.
(\pm)-4-(1-(1-Benzyl-1H-indol-5-yl)-2-nitroethyl)-N, N-dimethylaniline (14af). Compound 14af was obtained using GP4. Column chromatography (EtOAc/Hexane (3:7)) gave the product as light green oil (163 mg, 78\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.32-7.24(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}$ $=8.6 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 7.17-7.07(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz},=\mathrm{CH}, 2 \mathrm{H})$, $6.49-6.47(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 5.27\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.98\left(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.94-4.85(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 2.90(\mathrm{~s}$, $\left.\mathrm{CH}_{3}, 6 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.5,131.4,129.04,129.0,128.6,127.9,127.8,127.0,121.9$, 119.7, 117.9, 115.9, 112.9, 110.3, 101.9, 80.4, 50.4, 48.5, 29.9. IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3473,2919,2845$, 1733, 1337, 1220, 1079, 1042, 970, 884. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 75.16; H, 6.31; N, 10.52; found: C, 75.03; H, 6.21; N, 10.59. Rf = 0.54 (EtOAc/Hexane (4:6), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}$ 400.2025; Found 400.2001.
(\pm)-1-Benzyl-5-(1-(2,5-dimethoxyphenyl)-2-nitroethyl)-1H-indole (14ag). Compound 14ag was obtained using GP4. Column chromatography (EtOAc/Hexane (3:7)) gave the product as light green oil (195 mg, 70\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.60(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.35-7.20(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H})$, $7.15-7.13(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.79-6.76(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.46-5.37(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 5.27\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 5.11\left(\mathrm{dd}, \mathrm{J}=12.9,8.2 \mathrm{~Hz}\right.$, A part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 5.02$ (dd, J = 12.9, 8.2 Hz, B part of AB system, $\mathrm{CH}_{2}, 1 \mathrm{H}$), $3.81\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 3.73\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 153.9,151.4,137.6,135.9,130.0,129.9,129.2,129.08,129.03,127.9,127.1,122.3$, $120.3,115.9,112.2,112.1,110.3,102.0,78.8,56.3,55.9,50.4,43.6$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3029,3002$, $2938,2912,2835,2538,1956,1708,1550,1497,1453,1377,1240,1225,1181,1047,1026,880,804$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 72.10; H, 5.81; $\mathrm{N}, 6.73$; found: $\mathrm{C}, 72.36 ; \mathrm{H}, 5.90 ; \mathrm{N}, 6.61$. $\mathrm{Rf}=0.60$ (EtOAc/Hexane (4:6), 254 nm). HRMS (APCI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}$ 417.1814; Found 417.1789.
(\pm)-1-Benzyl-5-(2-nitro-1-(3,4,5-trimethoxyphenyl)ethyl)-1H-indole (14ah). Compound 14ah was obtained using GP4. Column chromatography (EtOAc/Hexane (3:7)) gave the product as light green oil ($556 \mathrm{mg}, 86 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.15-7.14$ $(\mathrm{m},=\mathrm{CH}, 1 \mathrm{H}), 7.12-7.10(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 7.07-7.05(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 6.53(\mathrm{~s},=\mathrm{CH}, 3 \mathrm{H}), 5.27\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right)$, 5.04-4.97(m,CH,CH2,3H), $3.84\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 3.82\left(\mathrm{~s}, \mathrm{CH}_{3}, 6 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.7$, $137.50,137.48,135.93,135.90,130.5,129.4,129.2,129.0,127.9,127.0,121.7,119.9,110.5,105.1$, $102.0,80.0,61.0,56.4,50.4,49.5$ I $\mathrm{IR}^{(}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3060,2935,2839,1954,1727,1590,1551,1508$, $1485,1422,1332,1238,1184,1127,1004,910,805,732$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}: \mathrm{C}, 69.94 ; \mathrm{H}, 5.87$; N, 6.27; found: C, 70.16; H, 6.02; N, 6.09. Rf $=0.47$ (EtOAc/Hexane (4:6), 254 nm). HRMS (APCI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}$ 447.1920; Found 447.1890.
(\pm)-5-(1-(1H-indol-5-yl)-2-nitroethyl)-1-benzyl-1H-indole (14aj). Compound 14aj was obtained using GP4. Column chromatography (EtOAc/Hexane (4:6)) gave the product as green oil ($74 \mathrm{mg}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08$ (bs, NH, 1H), $7.56(\mathrm{~s},=\mathrm{CH}, 2 \mathrm{H}), 7.34-7.24(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=$ $8.6 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.14-7.05(\mathrm{~m},=\mathrm{CH}, 5 \mathrm{H}), 6.51-6.50(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 5.26(\mathrm{~s}$, $\left.\mathrm{CH}_{2}, 2 \mathrm{H}\right), 5.20-4.95\left(\mathrm{~m}, \mathrm{CH}, \mathrm{CH}_{2}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.6,135.7,135.1,131.8,131.6$, $129.13,129.10,129.0,128.3,127.9,127.0,125.0,122.4,122.1,119.9,119.6,111.7,110.4,102.9$, 102.0, 80.6, 50.4, 49.4. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 3426, 2921, 1633, 1549, 1484, 1377, 1344, 1263, 1183, 1092, 883, 803, 764, 730. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 75.93; H, 5.35; N, 10.63; found: C, 75.84; H, 5.22; N, 10.47. Rf $=0.32$ (EtOAc/Hexane (4:6), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}$ 396.1712; Found 396.1683.
(\pm)-5-(1-(1H-indol-3-yl)-2-nitroethyl)-1-benzyl-1H-indole (14ak). Compound 14ak was obtained using GP4. Column chromatography (EtOAc/Hexane (4:6)) gave the product as light green oil (195 mg, 55\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{bs}, \mathrm{NH}, 1 \mathrm{H}), 7.62(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H})$, $7.34-7.24(\mathrm{~m},=\mathrm{CH}, 5 \mathrm{H}), 7.23-7.18(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 7.16-6.99(\mathrm{~m},=\mathrm{CH}, 5 \mathrm{H}), 6.50-6.49(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H})$, $5.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 5.26\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 5.09\left(\mathrm{dd}, J=12.4,8.0 \mathrm{~Hz}\right.$, A part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right)$, 4.97 (dd, $J=12.4,8.0 \mathrm{~Hz}$, A part of AB system, $\mathrm{CH}_{2}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.3,136.5$, $135.8,130.4,129.0,128.9,128.8,127.7,126.9,126.4,122.5,121.8,121.5,120.0,119.8,119.2,115.4$, 111.3, 110.1, 101.8, 80.2, 50.2, 41.7. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3417,2919,1698,1620,1549,1485,1455,1378$, 1263, 1183, 1094, 910, 803, 734. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 75.93; H, 5.35; N, 10.63; found: C, 75.90; H, 5.46; N, 10.58. Rf = 0.22 (EtOAc/Hexane (4:6), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}$ 396.1712; Found 396.1683.
(\pm)-Ethyl 1-benzyl-5-(2-nitro-1-phenylethyl)-1H-indole-2-carboxylate (14ca). Compound 14ca was obtained using GP4. Thin layer chromatography (EtOAc/Hexane (2:8)) gave the product as light yellow
oil (41 mg, 82\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.30-$ 7.18 (m, =CH, 6H), $7.17-7.13(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz},=\mathrm{CH}, 2 \mathrm{H}), 5.81-5.79\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 5.05$ $-5.00\left(\mathrm{~m}, \mathrm{CH}, \mathrm{CH}_{2}, 3 \mathrm{H}\right), 4.33\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 1.36\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (162.0, 139.9, 138.9, 138.3, 132.0, 129.2, 128.8, 128.7, 127.9, 127.7, 127.4, 126.54, 126.50, $125.6,121.4,111.8,111.1,79.8,60.9,49.2,48.2,14.5$. $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3565,2917,2357,1705,1552$, 1260, 1193, 1096, 730. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 72.88; H, 5.65; N, 6.54; found: C, 72.77; H, 5.73; N, 6.43. $\mathrm{Rf}=0.02$ (EtOAc/Hexane (2:8), 254 nm). HRMS (APCI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}$ 429.1814; Found 429.1786.
(\pm)-Ethyl 1-benzyl-5-(2-nitro-1-(4-(trifluoromethyl)phenyl)ethyl)-1H-indole-2-carboxylate
(14cb). Compound 14cb was obtained using GP4. Thin layer chromatography (EtOAc/Hexane (2:8)) gave the product as light yellow oil ($35 \mathrm{mg}, 75 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.52$ (m, AA' part of $A A^{\prime} B^{\prime}$ system, $\left.=C H, 2 H\right), 7.54(\mathrm{~s},=C H, 1 H), 7.42-7.37\left(\mathrm{~m}, \mathrm{BB}^{\prime}\right.$ part of $A A^{\prime} \mathrm{BB}^{\prime}$ system, $\left.=\mathrm{CH}, 2 \mathrm{H}\right), 7.35-$ $7.28(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 7.27-7.16(\mathrm{~m},=\mathrm{CH}, 3 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 7.05-7.00(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 5.80$ ($\mathrm{s}, \mathrm{CH}_{2}, 2 \mathrm{H}$) , $5.10-4.91\left(\mathrm{~m}, \mathrm{CH}, \mathrm{CH}_{2}, 3 \mathrm{H}\right), 4.44-4.26\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 1.35\left(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.7,143.7,138.8,137.9,130.8,128.8(2 \mathrm{C}), 128.6,128.1,127.3,126.4(2 \mathrm{C}), 126.3$, $125.98(\mathrm{q}, \mathrm{J}=3.7 \mathrm{~Hz}), 125.0,121.2,111.9,110.8,79.0,60.8,48.7,48.0,14.2$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3328$, 2982, 2960, 2727, 2855, 1799, 1711, 1619, 1556, 1524, 1454, 1413, 1376, 1326, 1254, 1191, 1124, 1070, 1018, 752, 703. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 65.32; H, 4.67; N, 5.64; found: C, 65.00; H, 4.96; $\mathrm{N}, 5.56 . \mathrm{Rf}=0.41$ (EtOAc/Hexane (2:8), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}$ 497.1688; Found 497.1656.
(\pm)-Ethyl 1-benzyl-5-(1-(4-hydroxyphenyl)-2-nitroethyl)-1H-indole-2-carboxylate (14cc). Compound 14cc was obtained using GP4. Thin layer chromatography (EtOAc/Hexane (3:7)) gave the product as light yellow oil ($53 \mathrm{mg}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone-d6) $\delta 8.34(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}$), 7.74 ($\mathrm{s},=\mathrm{CH}$, $1 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 7.37-7.30(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 7.27-7.16(\mathrm{~m},=\mathrm{CH}, 5 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}$, $=\mathrm{CH}, 2 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz},=\mathrm{CH}, 2 \mathrm{H}), 5.88\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 5.23\left(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.94(\mathrm{t}, \mathrm{J}=$ $8.3 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 4.31\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 1.32\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Acetoned6) $\delta 161.7,156.7,138.9,138.8,133.6,131.6,129.1,128.7,128.5,127.3,126.7,126.5,125.7,121.2$, 115.7, 111.8, 110.7, 79.5, 60.6, 48.6, 47.7, 13.9. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 2917, 1706, 1360, 1190. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 70.26; H, 5.44; N, 6.30; Found: C, 70.32; H, 5.31; N, 6.23. Rf = 0.12 (EtOAc/Hexane (3:7), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}$ 445.1763; Found 445.1732.
(\pm)-Ethyl 1-benzyl-5-(1-(4-fluorophenyl)-2-nitroethyl)-1H-indole-2-carboxylate (14cd). Compound 14cd was obtained using GP4. Thin layer chromatography (EtOAc/Hexane (2:8)) gave the product as light yellow oil ($34 \mathrm{mg}, 72 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}$), $7.33(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.29-$
$7.17(\mathrm{~m},=\mathrm{CH}, 6 \mathrm{H}), 7.12-7.05(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.05-6.93(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 5.78\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.97\left(\mathrm{~s}, \mathrm{CH}, \mathrm{CH}_{2}\right.$, $3 H), 4.31\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 1.33\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.5(\mathrm{~d}, \mathrm{~J}=$ 246.6 Hz), $160.8,138.7,138.0(2 \mathrm{C}), 135.44(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 131.6(2 \mathrm{C}), 129.3(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}), 128.6,127.3$, $126.3,125.2,121.0,115.9(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz}), 111.7,110.8,79.5,60.8,48.2,48.0,14.3$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$: $3338,3030,2982,2929,2872,2255,1884,1499,1709,1604,1554,1523,1509,1468,1453,1411$, 1376, 1254, 1192, 1097, 1026, 910, 810, 729. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{4}$: C, 69.94; H, 5.19; N, 6.27; found: C, 69.75; H, 5.11; N, 6.34. Rf = 0.25 (EtOAc/Hexane (2:8), 254 nm). HRMS (APCI-TOF) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{O}_{4}$ 447.1720; Found 447.1694.
(\pm)-Ethyl 1-benzyl-5-(1-(4-bromophenyl)-2-nitroethyl)-1H-indole-2-carboxylate (14ce). Compound 14ce was obtained using GP4. Thin layer chromatography (EtOAc/Hexane (2:8)) gave the product as light yellow oil ($35 \mathrm{mg}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52$ ($\mathrm{s},=\mathrm{CH}, 1 \mathrm{H}$), $7.46-7.40\left(\mathrm{~m}, ~ \mathrm{AA}^{\prime}\right.$ part of $A^{\prime} A^{\prime} B^{\prime}$ system, $\left.=C H, 2 H\right), 7.33(\mathrm{~s},=C H, 1 H), 7.30-7.16(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.15-7.05(\mathrm{~m},=\mathrm{CH}, 3 \mathrm{H}), 7.05-$ $7.00(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 5.79\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 5.07-4.85\left(\mathrm{~m}, \mathrm{CH}, \mathrm{CH}_{2}, 3 \mathrm{H}\right), 4.32\left(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 1.34(\mathrm{t}, \mathrm{J}$ $\left.=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.7,138.74,138.70,137.9,132.1$ (2C), 131.2, 129.4, $128.7,128.6,127.3,126.3,125.1,121.5,121.1,111.8,110.8,79.2,60.8,48.4,48.0,14.3$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cm^{-1}): 3386, 2982, 2927, 2254, 1895, 1799, 1708, 1554, 1524, 1489, 1453, 1376, 1254, 1191, 1096, 1011, 909, 731. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}_{4}$: C, 61.55; H, 4.57; N, 5.52; found: C, 61.39; H, 4.50; N, 5.58. Rf $=0.46$ (EtOAc/Hexane (2:8), 254 nm). HRMS (APCI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{4}$ 507.0919; Found 507.0894.

Catalytic hydrogenation of 12aa: (\pm)-1-Benzyl-5-(2-nitro-1-phenylethyl)indoline (12aa) (50 mg, 0.14 $\mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ and $10 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$ was added. The mixture was stirred in H_{2} atmosphere for 14 h . The Pd / C was removed by filtration and the solvent was evaporated, and the product mixture was not separated by silica gel column chromatography.

General Procedure 5 (GP5): N-Debenzylation with t-BuOK/DMSO and Oxygen

DMSO ($5 \mathrm{~mL}, 24 \mathrm{mmol}$) was added to a flame dried flask followed by (\pm)-1-benzyl-5-(2-nitro-1phenylethyl)indoline ($428 \mathrm{mg}, 1.39 \mathrm{mmol}$). Then t-BuOK ($1.10 \mathrm{~g}, 9.76 \mathrm{mmol}$) was added to the mixture and oxygen was bubbled into the solution, via a gas dispersion tube, for 10 min . Upon completion (determined by TLC) the reaction was quenched with saturated ammonium chloride solution. The product was extracted three times with EtOAc. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Products were purified by thin layer chromatography.
(1H-Indol-5-yl)(phenyl)methanone (18). ${ }^{47}$ Compound 18 was obtained using GP5. Thin layer chromatography (EtOAc/Hexane (2:8)) gave 18 as first fraction ($120 \mathrm{mg}, 39 \%$ yield; brown crystals, mp
$146-147{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Hexane)). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.85(\mathrm{bs}, \mathrm{NH}, 1 \mathrm{H}), 8.14(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.86-$ 7.77 (m, =CH, 3H), $7.61-7.55(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.52-7.42(\mathrm{~m},=\mathrm{CH}, 3 \mathrm{H}), 7.31-7.29(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 6.69-$ 6.60 ($\mathrm{m},=\mathrm{CH}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.7, 139.0, 138.4, 131.7, 130.0, 129.6, 128.2, 127.2, 125.9, 125.4, 124.2, 111.2, 104.2. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 3429, 2916, 2851, 2088, 1637, 1608, 1573, 1445, 1422, 1350, 1326, 1115, 1097, 881, 768. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11}$ NO: $\mathrm{C}, 81.43 ; \mathrm{H}, 5.01 ; \mathrm{N}, 6.33$; found: C , 81.38; H, 5.08; N, 6.18. Rf = 0.35 (EtOAc/Hexane (3:7), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NO}$ 222.0919; Found 222.0896.
(1-Benzylindoline-5-yl)(phenyl)methanone (19). Compound 19 was obtained using GP5. Thin layer chromatography (EtOAc/Hexane (2:8)) gave 19 as second fraction (yellow oil, $55 \mathrm{mg}, 42 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $)^{2}$) $7.74-7.68(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 7.68-7.66(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.63-7.59(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H})$, $7.53-7.48(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 7.38-7.24(\mathrm{~m},=\mathrm{CH}, 5 \mathrm{H}), 6.43(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.40\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.54\left(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.07\left(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $195.3,156.3,139.7,137.3,133.6,131.2,129.8,129.6,128.9,128.2,127.8,127.7,127.0,126.6,104.4$, 52.7, 51.7, 27.8. IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$: 3440, 2917, 2845, 2089, 1634, 1602, 1443, 1265, 1093, 739. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 84.31 ; \mathrm{H}, 6.11$; N, 4.47; found: C, 84.22; H, 6.09; N, 4.32. Rf $=0.60$ (EtOAc/Hexane (3:7), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO} 314.1545$; Found 314.1524.
(1-Benzyl-1H-indol-5-yl)(phenyl)methanone (20). Compound 20 was obtained using GP5. Thin layer chromatography (EtOAc/Hexane (2:8)) gave the product 20 as brown crystals ($42 \mathrm{mg}, 48 \%$ yield; mp $98-99^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexane}^{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 7.78$ (ddd, J=10.7, $7.8,3.4 \mathrm{~Hz},=\mathrm{CH}, 3 \mathrm{H}), 7.59-7.52(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 7.37-7.23(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.19$ ($\mathrm{d}, \mathrm{J}=3.0 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}$), $7.11(\mathrm{~d}, J=6.5 \mathrm{~Hz},=\mathrm{CH}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=3.0 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 5.35\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 197.2,139.0,138.6,136.9,131.6,129.91,129.86,129.5,128.9,128.1,127.95$, $127.91,126.8,125.5,124.0,109.6,103.6,50.3$ IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3429,2916,2851,2088,1637,1608$, 1573, 1445, 1422, 1350, 1326, 1115, 1097, 881, 768. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 84.86 ; \mathrm{H}, 5.50$; N, 4.50; found: C, 84.58; H, 5.68; N, 4.40. Rf = 0.36 (EtOAc/Hexane (3:7), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NO}$ 312.1388; Found 312.1381.

General Procedure 6 (GP6): Debenzylation of C5-alkylated \boldsymbol{N}-benzyl indolines (22aa-ai)

To a stirred solution of N-benzyl indoline derivative (1 equiv.) in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1 ; 6 \mathrm{~mL}), \mathrm{Boc}_{2} \mathrm{O}(1.5$ equiv.) and $10 \% \mathrm{Pd} / \mathrm{C}$ (0.4 equiv.) was added. The mixture was stirred on H_{2} atmosphere for 15 h . After the reaction is over, the mixture was filtered and evaporated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\mathrm{mL})$ and then was added TFA (1 mL). The reaction mixture was stirred for 2 h at ambient temperature, solvent was removed under reduced pressure. The residue was dissolved in EtOAc (40 mL) and washed
with saturated NaHCO_{3} and brine. The combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated to afford debenzylation products.
(\pm)-5-(2-Nitro-1-phenylethyl)indoline (22aa). Compound 22aa was obtained using GP6. Column chromatography (EtOAc/Hexane (1:9)) gave the product as light yellow oil ($230 \mathrm{mg}, 93 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.28(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 7.28-7.19(\mathrm{~m},=\mathrm{CH}, 3 \mathrm{H}), 6.97(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.56(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 5.01-4.86\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.80(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 3.70(\mathrm{bs}$, $\mathrm{NH}, 1 \mathrm{H}), 3.53\left(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.98\left(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.4$, $140.3,130.5,129.4,129.1,127.8,127.5,126.8,124.3,109.6,79.9,48.9,47.67,30.0$ IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$: $3390,3059,3028,2957,2923,2851,1616,1549,1495,1476,1433,1377,1321,1254,1184,1104$, 1055, 1028, 888, 813, 735. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 71.62; H, 6.01; N, 10.44; found: C, 71.81; H, 6.15; N, 10.31. $\mathrm{Rf}=0.28$ (EtOAc/Hexane (3:7), 254 nm). HRMS (APCI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} 269.1290 ;$ Found 269.1270 .
(\pm)-5-(2-Nitro-1-(4-(trifluoromethyl)phenyl)ethyl)indoline (22ab). Compound 22ab was obtained using GP6. Column chromatography (EtOAc/Hexane (1:9)) gave the product as light green oil (245 mg , 93\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.54\left(\mathrm{~m}, \mathrm{AA}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $=\mathrm{CH}, 2 \mathrm{H}$), $7.38-7.34(\mathrm{~m}$, $B B^{\prime}$ part of $A A^{\prime} B^{\prime}$ system, $\left.=C H, 2 H\right), 6.91(\mathrm{~s},=C H, 1 H), 6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $=\mathrm{CH}, 1 \mathrm{H}), 4.99-4.89\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.88-4.80(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 3.74(\mathrm{bs}, \mathrm{NH}, 1 \mathrm{H}), 3.52\left(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$, $2 \mathrm{H}), 2.96\left(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.5,144.2,130.5,128.1,128.0$ (2C), 126.6, $125.9(q, J=3.7 \mathrm{~Hz}), 125.4,124.0,109.4,79.2,48.4,47.4,29.7 . \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3646,3393$, 2922, 2851, 1725, 1618, 1554, 1497, 1165, 1116, 1018, 889. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$: $\mathrm{C}, 60.71 ; \mathrm{H}$, 4.50; N, 8.33; found: C, 60.94; H, 4.54; N, 8.40. Rf = 0.14 (EtOAc/Hexane (3:7), 254 nm). HRMS (APCITOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$ 337.1164; Found 337.1144.
(\pm)-4-(1-(Indolin-5-yl)-2-nitroethyl)phenol (22ac). Compound 22ac was obtained using GP6. Column chromatography (EtOAc/Hexane (2:8)) gave the product as brown crystals ($198 \mathrm{mg}, 87 \%$ yield; $\mathrm{mp} 133-$ $134{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Hexane $)$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.96-6.92(\mathrm{~m},=\mathrm{CH}, 3 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz},=\mathrm{CH}$, $1 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.3 \mathrm{~Hz},=\mathrm{CH}, 2 \mathrm{H}), 5.54(\mathrm{bs}, \mathrm{NH}, \mathrm{OH}, 2 \mathrm{H}), 4.82(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.68(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 3.45-3.43\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.90\left(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.3,149.8,131.5,131.1,130.1,128.8,126.7,124.3,115.8,110.8,79.9,47.9,47.4$, 29.8. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 3348, 3021, 2958, 2918, 2850, 2687, 2611, 1886, 1613, 1550, 1514, 1445, 1438, 1378, 1322, 1250, 1176, 1105, 1056, 834. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 67.59; H, 5.67; N, 9.85; found: C, 67.52; H, 5.59; N, 9.88. Rf = 0.11 (EtOAc/Hexane (3:7), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}$ 285.1239; Found 285.1217.
(\pm)-5-(1-(4-Fluorophenyl)-2-nitroethyl)indoline (22ad). Compound 22ad was obtained using GP6. Column chromatography (EtOAc/Hexane (1:9)) gave the product as yellow oil ($207 \mathrm{mg}, 83 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $)^{2}$) $7.22-7.15(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 7.02-6.93(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.92-6.87(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H})$, $6.85-6.77(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 6.59-6.46(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 4.93-4.80\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.76(\mathrm{dd}, \mathrm{J}=13.9,7.5 \mathrm{~Hz}$, $\mathrm{CH}, 1 \mathrm{H}), 3.56(\mathrm{bs}, \mathrm{NH}, 1 \mathrm{H}), 3.51\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.95\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.9$ (d, $J=246.3 \mathrm{~Hz}), 151.2,135.8(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 130.3,129.2(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 128.9,126.5,124.0,115.8(\mathrm{~d}, J=$ $21.4 \mathrm{~Hz}), 109.4,79.7,47.9,47.4,29.7$. $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3392,3048,3018,2958,2921,2853,2741$, 2853, 2741, 1890, 1724, 1615, 1604, 1547, 1508, 1477, 1435, 1377, 1321, 1253, 1226, 1161, 1101, 1056, 1025, 890, 835. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}_{2}$: C, 67.12; H, 5.28; N, 9.78; found: C, 67.09; H, 5.12; $\mathrm{N}, 9.66 . \mathrm{Rf}=0.14$ (EtOAc/Hexane (3:7), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FN}_{2} \mathrm{O}_{2}$ 287.1196; Found 287.1175.
(\pm)-4-(1-(Indoline-5-yl)-2-nitroethyl)-N,N-dimethylaniline (22af). Compound 22af was obtained using GP6. Column chromatography (EtOAc/Hexane (2:8)) gave the product as brown crystals ($350 \mathrm{mg}, 80 \%$ yield; mp 89-90 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexane}\right)$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.09-7.03$ ($\mathrm{m}, \mathrm{AA}^{\prime}$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $=C H, 2 H), 6.92(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.66-6.61\left(\mathrm{~m}, ~ A A^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $=\mathrm{CH}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=7.9 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 4.83\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.66(\mathrm{t}, J=8.1 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H})$, 3.62 (bs, NH, 1H), $3.44\left(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.90\left(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.87\left(\mathrm{~s}, \mathrm{CH}_{3}, 6 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.9,149.7,130.2,130.1,128.3,127.7,126.5,124.1,112.8,109.4,80.1,47.9,47.5$, 40.6, 29.8. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3389,2918,2851,1773,1729,1614,1549,1521,1496,1444,1377,1254$, 1165, 1057, 946, 817. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 69.43; H, 6.80; N, 13.49; found: C, 69.38; H, 6.70; $\mathrm{N}, 13.34 . \mathrm{Rf}=0.17$ (EtOAc/Hexane (3:7), 254 nm). HRMS (APCI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}$ 312.1712; Found 312.1691.
(\pm)-5-(1-(2,5-Dimethoxyphenyl)-2-nitroethyl)indoline (22ag). Compound 22ag was obtained using GP6. Column chromatography (EtOAc/Hexane (2:8)) gave the product as light brown oil ($221 \mathrm{mg}, 87 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.98(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.8 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H})$, $6.73-6.69(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 6.68-6.65(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 6.52(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 5.16-5.04(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H})$, 4.95 (dd, $J=12.7,7.1 \mathrm{~Hz}$, A part of $A B$ system $, C H_{2}, 1 \mathrm{H}$), $4.84(\mathrm{dd}, J=12.7,9.2 \mathrm{~Hz}, \mathrm{~B}$ part of AB system, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 3.76\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 3.69\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 3.62(\mathrm{bs}, \mathrm{NH}, 1 \mathrm{H}), 3.47\left(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.94(\mathrm{t}, \mathrm{J}=$ $\left.8.4 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.6,151.1,151.0,130.0,129.6,128.5,126.9,124.4$, $115.5,111.93,111.87,109.3,78.4,56.1,55.6,47.5,42.9,29.8$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3388,2935,2837$, 2047, 1616, 1588, 1551, 1997, 1446, 1377, 1239, 1228, 1082, 1024, 807. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 65.84; H, 6.14; N, 8.53; found: C, 65.72; H, 6.10; N, 8.40. Rf = 0.15 (EtOAc/Hexane (4:6), 254 nm). HRMS (APCI-TOF) m/z: [M + H $]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}$ 329.1501; Found 329.1478.
(\pm)-5-(2-Nitro-1-(3,4,5-trimethoxyphenyl)ethyl)indoline (22ah). Compound 22ah was obtained using GP6. Column chromatography (EtOAc/Hexane (2:8)) gave the product as light green oil ($260 \mathrm{mg}, 85 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.95(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.54(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $=\mathrm{CH}, 1 \mathrm{H}), 6.44(\mathrm{~s},=\mathrm{CH}, 2 \mathrm{H}), 4.96-4.78\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.72(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 3.80\left(\mathrm{~s}, \mathrm{CH}_{3}, 9 \mathrm{H}\right), 3.69$ (bs, NH, 1H), $3.51\left(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.96\left(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.4$, 151.2, 137.2, 135.6, 130.3, 128.9, 126.4, 124.0, 109.3, 104.8, 79.7, 60.8, 56.2, 48.9, 47.4, 29.7. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3442,2924,2840,1620,1551,1497,1462,1328,1247,1126,1005,739$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 63.68; H, 6.19; N, 7.82; found: C, 63.75; H, 6.10; N, 7.71. Rf = 0.12 (EtOAc/Hexane (4:6), 254 nm). HRMS (APCI-TOF) m/z: [M + H $]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}$ 359.1607; Found 359.1583.
(\pm)-5-(1-(Furan-2-yl)-2-nitroethyl)indoline (22ai). Compound 22ai was obtained using GP6. Column chromatography (EtOAc/Hexane (2:8)) gave the product as dark yellow oil ($175 \mathrm{mg}, 87 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.31(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.00-6.96(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 6.90-6.85(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 6.59-$ $6.42(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 6.34-6.24(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 6.10-6.05(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 4.97-4.89(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 4.81-$ $4.75\left(\mathrm{~m}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.74-4.65\left(\mathrm{~m}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 3.73(\mathrm{bs}, \mathrm{NH}, 1 \mathrm{H}), 3.57-3.41\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.00-2.92(\mathrm{~m}$, $\left.\mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 153.0,151.6,142.3,130.2,127.0,126.7,124.1,110.4,109.4$, 107.0, 78.6, 47.5, 43.2, 29.7. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 3441, 2089, 1633, 1552, 1497, 1377, 1260, 739. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 65.11; H, 5.46; N, 10.85; found: C, 65.02; H, 5.38; N, 10.81. Rf $=0.28$ (EtOAc/Hexane (3:7), 254 nm). HRMS (APCI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}$ 259.1083; Found 259.1062.

General Procedure 7 (GP7): Preparation of Unprotected Indoles (23aa-ai)

The C5-substitued indoline derivatives (22aa-ai) (1equiv.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and then DEAD (1.1 mmol) was added to the solution. The reaction mixture was stirred for 2 h at room temperature. After the reaction is over (monitored by TLC), the solution was concentrated on a rotary evaporator. The residue was purified by silica gel column chromatography to obtain the C5-substitued $1 H$-indole derivatives.
(\pm)-5-(2-Nitro-1-phenylethyl)-1H-indole (23aa). Compound 23aa was obtained using GP7. Column chromatography (EtOAc/Hexane (2:8)) gave the product as dark yellow oil ($100 \mathrm{mg}, 48 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}), 7.52(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.35-7.26(\mathrm{~m},=\mathrm{CH}, 5 \mathrm{H}), 7.25-7.20(\mathrm{~m},=\mathrm{CH}$, 2 H), 7.05 (dd, $J=8.4 \mathrm{~Hz}, 1.4 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.53-6.50(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 5.05\left(\mathrm{~s}, \mathrm{CH}, \mathrm{CH}_{2}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.3,135.2,130.8,129.1,128.3,127.9,127.5,125.3,122.2,119.7,111.9,102.8,80.0$, 49.3. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3368,1794,1735,1552,1378,1265,1097,894,765$. $\mathrm{Rf}=0.26$ ($\mathrm{EtOAc} / \mathrm{Hexane}$ (2:8), 254 nm). HRMS (APCI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$ 267.1134; Found 267.1124.
(\pm)-5-(2-Nitro-1-(4-(trifluoromethyl)phenyl)ethyl)-1H-indole (23ab). Compound 23ab was obtained using GP7. Column chromatography (EtOAc/Hexane (2:8)) gave the product as dark yellow crystals (456 mg, 46\% yield; mp 92-93 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Hexane)). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}), 7.59$ (d, J = 8.2 Hz, $=\mathrm{CH}, 2 \mathrm{H}$), $7.52(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz},=\mathrm{CH}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H})$, $7.23-7.15(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}) 7.03(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=2.6,1.7 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 5.18-$ 4.93 (m, CH, CH2, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.5,135.4,130.0,129.6,128.5,128.3,126.2-$ $126.0(\mathrm{~m}, 1 \mathrm{C}), 125.6,122.0,119.8-119.7(\mathrm{~m}, 1 \mathrm{C}), 112.2,102.8,79.5,49.1$. $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3426$, 1554, 1326, 1165, 1115, 1018, 865, 732. Rf=0.13 (EtOAc/Hexane (2:8), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$ 335.1007; Found 335.0995.
(\pm)-4-(1-(1H-indole-5-yl)-2-nitroethyl)phenol (23ac). Compound 23ac was obtained using GP7. Column chromatography (EtOAc/Hexane (3:7)) gave the product as dark yellow oil ($384 \mathrm{mg}, 54 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}), 7.48(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m},=\mathrm{CH}$, $1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.6 \mathrm{~Hz},=\mathrm{CH}, 2 \mathrm{H}), 7.01(\mathrm{dd}, J=8.5,1.6 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.6 \mathrm{~Hz},=\mathrm{CH}, 2 \mathrm{H}), 6.50$ $(\mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 5.04-4.88\left(\mathrm{~m}, \mathrm{CH}, \mathrm{OH}, \mathrm{CH}_{2}, 4 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.9,135.1$, $132.5,131.1,129.1,128.3,125.2,122.1,119.5,115.9,111.8,102.8,80.2,48.6$ IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3420$, 1613, 1548, 1378, 1261, 1177, 814, 733. Rf=0.10 (EtOAc/Hexane (2:8), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}$ 283.1083; Found 283.1083.
(\pm)-5-(1-(4-Fluorophenyl)-2-nitroethyl)-1H-indole (23ad). Compound 23ad was obtained using GP7. Column chromatography (EtOAc/Hexane (2:8)) gave the product as dark yellow crystals ($285 \mathrm{mg}, 46 \%$ yield; mp 114-115 $\left.{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexane}\right)\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}), 7.49(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H})$, $7.35-7.16(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.04-6.98(\mathrm{~m},=\mathrm{CH}, 3 \mathrm{H}), 6.54-6.51(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 5.01\left(\mathrm{~s}, \mathrm{CH}, \mathrm{CH}_{2}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl 3) $\delta 162.2(d, J=246.2 \mathrm{~Hz}), 136.2(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}), 135.3,130.7,129.5(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz})$, $128.4,125.5,122.0,119.6,116.0(\mathrm{~d}, \mathrm{~J}=21.4 \mathrm{~Hz}), 112.0,102.8,80.0,48.6 . \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3426,1557$, 1377, 1224, 1160, 1015, 811, 731. Rf=0.12 (EtOAc/Hexane (2:8), 254 nm). HRMS (APCI-TOF) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{FN}_{2} \mathrm{O}_{2}$ 285.1039; Found 285.1028.
(\pm)-4-(1-(1H-indole-5-yl)-2-nitroethyl)-N,N-dimethylaniline (23af). Compound 23af was obtained using GP7. Column chromatography (EtOAc/Hexane (3:7)) gave the product as dark yellow oil ($374 \mathrm{mg}, 40 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}), 7.58(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.06(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz},=\mathrm{CH}, 2 \mathrm{H}), 6.55(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 5.13-4.93(\mathrm{~m}$, $\left.\mathrm{CH}, \mathrm{CH}_{2}, 3 \mathrm{H}\right), 2.96\left(\mathrm{~s}, \mathrm{CH}_{3}, 6 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.2,135.2,131.6,128.7,128.4,128.3$, $125.5,122.2,119.5,113.2,112.0,102.6,80.5,48.8,40.9$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3420,2914,1613,1549$, 1347, 1065, 816, 733. Rf=0.15 (EtOAc/Hexane (2:8), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}$ 310.1556; Found 310.1549.
(\pm)-5-(1-(2,5-Dimethoxyphenyl)-2-nitroethyl)-1H-indole (23ag). Compound 23ag was obtained using GP7. Column chromatography (EtOAc/Hexane (3:7)) gave the product as light brown crystals (442 mg , 52% yield; mp $158-159{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Hexane)). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16$ (bs, NH, 1H), $7.54(\mathrm{~s},=\mathrm{CH}$, $1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 7.20-7.13(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.4,1.7 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.83-$ $6.77(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 6.75-6.70(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.51-6.48(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 5.42-5.31(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 5.08(\mathrm{dd}$, $\left.J=12.9,8.0 \mathrm{~Hz}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 4.99\left(\mathrm{dd}, J=12.9,8.0 \mathrm{~Hz}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 3.79\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 3.70\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.8,151.3,135.3,130.2,129.9,129.3,124.9,122.6,120.0,115.8,112.13$, 112.10, 111.6, 102.9, 78.7, 56.3, 55.8, 43.6. IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3426,2835,1549,1223,1047,1024,894$, 732. $\mathrm{Rf}=0.13$ (EtOAc/Hexane (3:7), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}$ 327.1345; Found 327.1338.
(\pm)-5-(2-Nitro-1-(3,4,5-trimethoxyphenyl)ethyl)-1H-indole (23ah). Compound 23ah was obtained using GP7. Column chromatography (EtOAc/Hexane (3:7)) gave the product as white crystals ($280 \mathrm{mg}, 50 \%$ yield; mp $\left.152-153^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexane}\right)\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}), 7.50(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H})$, $7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=2.8 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.54-6.51$ $(\mathrm{m},=\mathrm{CH}, 3 \mathrm{H}), 5.06-4.99\left(\mathrm{~m}, \mathrm{CH}, \mathrm{CH}_{2}, 3 \mathrm{H}\right), 3.81\left(\mathrm{~s}, \mathrm{CH}_{3}, 9 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.6,137.4$, $135.9,135.3,130.7,128.4,125.3,122.0,119.6,111.9,105.1,102.9,80.0,61.0,56.4,49.5$. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$, cm^{-1}): 3368, 2938, 2839, 1591, 1551, 1461, 1126, 733. Rf = 0.11 (EtOAc/Hexane (3:7), 254 nm). HRMS (APCI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}$ 357.1450; Found 357.1437.
(\pm)-5-(1-(Furan-2-yl)-2-nitroethyl)-1H-indole (23ai). Compound 23ai was obtained using GP7. Column chromatography (EtOAc/Hexane (3:7)) gave the product as dark yellow oil ($532 \mathrm{mg}, 58 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $)^{2} \delta 8.20(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}), 7.55(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.41-7.32(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 7.24-7.17(\mathrm{~m}$, $=\mathrm{CH}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.4,1.7 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.56-6.48(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=3.2,1.9 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H})$, $6.13(\mathrm{~d}, J=3.3 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 5.15-4.97\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.85(\mathrm{dd}, J=11.3,6.3 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.3,135.6,128.5,128.4,125.3,122.0,120.3,111.8,110.6,107.3,104.8,103.0,44.0$, 29.9. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3427,1633,1552,1376,1260,1013,805,734$. $\mathrm{Rf}=0.25$ (EtOAc/Hexane (2:8), 254 nm). HRMS (APCI-TOF) m/z: [M + H $]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}$ 257.0926; Found 257.0912.

General Procedure 8 (GP8): Reduction of Nitro Groups in N-Benzylindolines (25aa-ak)

NaBH_{4} ($102.2 \mathrm{mg}, 2.70 \mathrm{mmol}, 5$ equiv.) was added to a suspension of C5-substitued N -benzylindoline derivatives (1 equiv.) and $\mathrm{NiCl}_{2}{ }^{\prime} 6 \mathrm{H}_{2} \mathrm{O}$ (1 equiv.) in methanol (4 mL) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution at $0^{\circ} \mathrm{C}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration of the drying agent, the filtrate was concentrated to dryness in
vacuo. The residue was dissolved in 0.5 mL methanol, then $\mathrm{HCl}(12 \mathrm{M}, 1.2$ equiv.) was added dropwise to the solution and purified by recrystallization (diethyl ether at $2^{\circ} \mathrm{C}$) to give analytically pure products.
(\pm)-2-(1-Benzylindoline-5-yl)-2-phenylethane-1-amine hydrochloride (25aa). Compound 25aa was obtained using GP8 and recovered as purple crystals ($178 \mathrm{mg}, 97 \%$ yield; $\mathrm{mp} 196.6-197.6^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 7.55(\mathrm{~s},=\mathrm{CH}, 2 \mathrm{H}), 7.54-7.36(\mathrm{~m},=\mathrm{CH}, 10 \mathrm{H}), 7.37-7.23(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 4.74\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$, $2 \mathrm{H}), 4.48(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 3.91\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.73\left(\mathrm{dd}, J=8.0,2.7 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.20(\mathrm{t}, \mathrm{J}$ $\left.=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 143.9,139.9,139.0,137.1,131.3,130.1,129.7,129.2$, 129.1, 128.4, 127.9, 127.7, 126.0, 120.4, 60.3, 53.9, 48.8, 43.2, 27.8. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{ClN}_{2}$: C, 75.70; $\mathrm{H}, 6.91 ; \mathrm{N}, 7.68$; found: $\mathrm{C}, 75.63 ; \mathrm{H}, 7.00 ; \mathrm{N}, 7.53$. $\mathrm{Rf}=0.76\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 19), 254 \mathrm{~nm}\right) . \mathrm{HRMS}$ (APClTOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2}$ 329.2012; Found 329.2002.
(\pm)-2-(1-Benzylindoline-5-yl)-2-(4-(trifluoromethyl)phenyl)ethane-1-amine hydrochloride (25ab). Compound 25ab was obtained using GP8 and recovered as purple crystals ($192 \mathrm{mg}, 86 \%$ yield; mp $\left.158.2-159.2^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.72-7.63(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.60(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.55-7.38$ $(\mathrm{m},=\mathrm{CH}, 7 \mathrm{H}), 4.74\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.69(\mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 3.89\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.79(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}$), $3.20\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CD 3 OD$) \delta 144.4,142.8,139.6,137.2$ (2C), 131.1 (2C), 130.0, 129.9, 129.1, 128.7 (2C), 128.4, 126.0 (m, 1C), 120.2, 60.2, 54.0, 48.6, 42.8, 27.8. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{ClF}_{3} \mathrm{~N}_{2}$: C, 66.59; H, 5.59; N, 6.47; found: C, 66.70; H,5.68; N, 6.29. $\mathrm{Rf}=0.20$ (MeOH/CH2Cl 2 (1:19), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2}$ 397.1892; Found 397.1868.
(\pm)-2-(1-Benzylindoline-5-yl)-2-(4-fluorophenyl)ethane-1-amine hydrochloride (25ad). Compound 25ad was obtained using GP8 and recovered as pink crystals (182 mg , 94% yield; $\mathrm{mp} 72.1-73.1^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.63-7.33(\mathrm{~m},=\mathrm{CH}, 10 \mathrm{H}), 7.14-7.08(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 4.71\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.50(\mathrm{t}, \mathrm{J}=$ $8.1 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 3.87\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.69\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.17\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CD ${ }_{3}$ OD) $\delta 162.3(d, J=245.2 \mathrm{~Hz}$), 143.2, 139.7, 136.9, 135.8 ($\mathrm{d}, \mathrm{J}=3.2 \mathrm{~Hz}$), 131.0, $130.04,129.98,129.8(d, J=8.2 \mathrm{~Hz}), 129.1,128.2,125.7,119.7,115.8(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 60.0,54.0,48.2$, 43.1, 27.7. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClFN}_{2}$: C, 72.15; H, 6.32; N, 7.32; found: C, 72.01; H, 6.42; N, 7.45. Rf = $0.63\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 19), 254 \mathrm{~nm}\right)$. HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{FN}_{2}$ 347.1924; Found 347.1903.
(\pm)-2-(1-Benzylindoline-5-yl)-2-(4-bromophenyl)ethane-1-amine hydrochloride (25ae). Compound 25ae was obtained using GP8 and recovered as pink crystals ($171 \mathrm{mg}, 87 \%$ yield; $\mathrm{mp} 115.6-116.6^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.70-7.19(\mathrm{~m},=\mathrm{CH}, 12 \mathrm{H}), 4.65\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.47(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H})$, $3.79\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.69\left(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.14\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 139.3,136.5,136.4,132.2,132.1,130.8,130.7,129.8,129.2,129.0,127.8,125.6,121.4$,
118.5, 59.6, 53.9, 48.3, 42.9, 27.8. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrClN}_{2}$: C, 62.25; H, 5.45; N, 6.31; found: C, 62.03; H, 5.13; N, 6.50. $\mathrm{Rf}=0.63\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 19), 254 \mathrm{~nm}\right) . \mathrm{HRMS}(\mathrm{APCl}-\mathrm{TOF}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrN}_{2}$ 407.1123; Found 407.1088.
(\pm)-4-(2-Amino-1-(1-benzylindoline-5-yl)ethyl)- N, N-dimethylaniline hydrochloride (25af). Compound 25af was obtained using GP8 and recovered as yellow crystals ($169 \mathrm{mg}, 91 \%$ yield; mp 178.6-179.6 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.67-7.54(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.37-7.24(\mathrm{~m},=\mathrm{CH}, 5 \mathrm{H}), 7.20-7.01(\mathrm{~m},=\mathrm{CH}$, $2 \mathrm{H}), 6.66(\mathrm{~d}, J=8.1 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=8.1 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 4.28\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.64\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$, $2 \mathrm{H}), 3.35\left(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.22\left(\mathrm{~s}, \mathrm{CH}_{3}, 6 \mathrm{H}\right), 2.93\left(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 142.88,142.85,142.4(2 \mathrm{C}), 136.8,132.6,129.8,128.5$ (2C), 127.6, 127.2, 124.2, 120.7, 109.7, 54.5, 53.5, 48.3, 45.6, 43.2, 28.1. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{ClN}_{3}$: C, 73.60; H, 7.41; N, 10.30; found: C, 73.66; H, 7.32; $\mathrm{N}, 10.46$. $\mathrm{Rf}=0.80\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 19), 254 \mathrm{~nm}\right) . \mathrm{HRMS}(\mathrm{APCl}-\mathrm{TOF}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{3}$ 372.2440; Found 372.2425.
(\pm)-2-(1-Benzylindoline-5-yl)-2-(2,5-dimethoxyphenyl)ethane-1-amine hydrochloride (25ag). Compound 25ag was obtained using GP8 and recovered as purple crystals (175 mg , 94% yield; mp $\left.217.8-218.8^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.52-7.34(\mathrm{~m},=\mathrm{CH}, 8 \mathrm{H}), 6.96-6.93(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 6.86$ $(\mathrm{m}, \mathrm{CH}, 2 \mathrm{H}), 4.76(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 4.70\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.87\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.78\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right)$, $3.75\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 3.32-3.28\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .3 .15\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $154.3,151.4,143.1,139.2,136.5,131.0,130.0,129.9,129.1,128.5,128.4,125.9,119.4,114.8,112.7$, 112.2, 60.1, 55.2, 55.0, 54.0, 42.8, 42.2, 27.7. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{O}_{2}$: $\mathrm{C}, 70.66 ; \mathrm{H}, 6.88 ; \mathrm{N}, 6.59$; found: $\mathrm{C}, 70.51 ; \mathrm{H}, 6.75 ; \mathrm{N}, 6.57 . \mathrm{Rf}=0.79\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 19), 254 \mathrm{~nm}\right)$. HRMS (APCI-TOF) m/z: $[\mathrm{M}+$ $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}$ 389.2229; Found 389.2205.
(\pm)-2-(1-Benzylindoline-5-yl)-2-(3,4,5-trimethoxyphenyl)ethane-1-amine hydrochloride (25ah). Compound 25ah was obtained using GP8 and recovered as light brown crystals ($168 \mathrm{mg}, 90 \%$ yield; $\left.\mathrm{mp} 162-163^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.53(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.51-7.35(\mathrm{~m},=\mathrm{CH}, 7 \mathrm{H}), 6.71(\mathrm{~s},=\mathrm{CH}$, 2H), $4.68\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.46-4.35(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 3.86-3.82\left(\mathrm{~m}, \mathrm{CH}_{3}, \mathrm{CH}_{2}, 8 \mathrm{H}\right), 3.73-3.65\left(\mathrm{~m}, \mathrm{CH}_{3}, \mathrm{CH}_{2}\right.$, $5 \mathrm{H}), 3.17\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 153.9,143.1,139.9,137.5,136.6,135.6$, 130.9, 130.3, 129.90, 129.04, 127.9, 125.6, 119.2, 105.3, 59.8, 55.7, 54.0, 49.2 (2C), 42.9, 27.7. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{3}$: C, 68.64; $\mathrm{H}, 6.87$; $\mathrm{N}, 6.16$; found: $\mathrm{C}, 68.44 ; \mathrm{H}, 6.78 ; \mathrm{N}, 6.37$. $\mathrm{Rf}=0.47$ (MeOH/CH2Cl $\mathrm{Cl}_{2}(1: 19), 254 \mathrm{~nm}$). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3} 419.2335$; Found 419.2309.
(\pm)-2-(1-Benzylindoline-5-yl)-2-(furan-2-yl)ethane-1-amine hydrochloride (25ai). Compound 25ai was obtained using GP8 and recovered as brown crystals (193 mg, 88% yield; mp 110-111 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.60-7.38(\mathrm{~m},=\mathrm{CH}, 9 \mathrm{H}), 6.44-6.36(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 4.76\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.68-4.59(\mathrm{~m}, \mathrm{CH}$,

1H), 3.94-3.84 (m, CH2, 2H), $3.73-3.63\left(m, C H_{2}, 1 \mathrm{H}\right), 3.56-3.45\left(\mathrm{~m}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 3.24-3.13\left(\mathrm{~m}, \mathrm{CH}_{2}\right.$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 152.2,141.4,139.5,137.1,131.2,130.1,129.8,129.1,128.5,126.1$, 120.3, 110.63, 110.60, 107.9, 60.3, 54.0, 42.9, 42.5, 27.7. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}: \mathrm{C}, 71.08 ; \mathrm{H}, 6.53$; N, 7.89; found: C, $71.00 ; \mathrm{H}, 6.58 \mathrm{~N}, 7.69 . \mathrm{Rf}=0.77\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 19), 254 \mathrm{~nm}\right)$. HRMS (APCI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}$ 319.1810; Found 319.1788.
(\pm)-2-(1-Benzylindoline-5-yl)-2-(1H-indole-3-yl)ethane-1-amine hydrochloride (25ak). Compound 25ak was obtained using GP8 and recovered as purple crystals ($157 \mathrm{mg}, 84 \%$ yield; $\mathrm{mp} 140-141{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CD 3 OD) $\delta 7.52-7.47(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 7.46-7.34(\mathrm{~m},=\mathrm{CH}, 9 \mathrm{H}), 7.11(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H})$, $6.97(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 4.70(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 4.65\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.83(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}, 2 \mathrm{H})$, $3.35(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}), 3.33-3.27\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.11-3.04\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 144.0$, $139.4,137.4,136.5$ (2C), 130.9, 130.0, 129.0, 128.3, 126.3, 125.8, 122.4, 121.9, 119.2, 119.0, 118.2, 112.8, 111.5, 60.0, 53.9, 43.4, 41.1, 27.6. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{ClN}_{3}$: C, $74.33 ; \mathrm{H}, 6.49 ; \mathrm{N}, 10.40$; found: C, 74.48; $\mathrm{H}, 6.76 ; \mathrm{N}, 10.55 . \mathrm{Rf}=0.22\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 19), 254 \mathrm{~nm}\right) . \mathrm{HRMS}(\mathrm{APCl}-\mathrm{TOF}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{3}$ 368.2127; Found 368.2114.

General Procedure 9 (GP9): Reduction of Nitro Groups in N-Benzylindoles (14aa-ak)

NaBH_{4} ($102.2 \mathrm{mg}, 2.70 \mathrm{mmol}, 5$ equiv) was added to a suspension of C 5 -substitued N -benzylindole derivatives (1 equiv.) and $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (1 equiv.) in methanol (4 mL) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution at $0^{\circ} \mathrm{C}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration of the drying agent, the filtrate was concentrated to dryness in vacuo. The residue was purified by silica gel column chromatography to obtain the 26aa-26ak.
(\pm)-2-(1-Benzyl-1H-indol-5-yl)-2-phenylethan-1-amine (26aa). Compound 26aa was obtained using GP9. Column chromatography (EtOAc/Hexane (3:7)) gave the product as dark yellow oil (58 mg , 93\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.33-7.25(\mathrm{~m},=\mathrm{CH}, 7 \mathrm{H}), 7.24-7.15(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H})$, $7.14-7.09(\mathrm{~m},=\mathrm{CH}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=8.5 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=3.1 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 5.28\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right)$, $4.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 3.38\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.31\left(\mathrm{bs}, \mathrm{NH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $143.8,137.7,135.5,133.8,129.1,129.0,128.9,128.8,128.3,127.9,127.1,126.5,122.6,120.2,110.2$, 101.8, 55.0, 50.4, 47.3. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 3363, 3059, 3027, 2923, 2853, 1950, 1874, 1646, 1601, 1484, 1452, 1355, 1311, 1263, 1182, 1029, 801. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2}$: C, 84.63; H, 6.79; N, 8.58; found: C, 84.55; H, 6.73; N, 8.68. $\mathrm{Rf}=0.28\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 19), 254 \mathrm{~nm}\right) . \mathrm{HRMS}(\mathrm{APCI}-\mathrm{TOF}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} 327.1861$; Found 327.1840.
(\pm)-2-(1-Benzyl-1H-indol-5-yl)-2-(4-(trifluoromethyl)phenyl)ethan-1-amine (26ab). Compound 26ab was obtained using GP9. Column chromatography (EtOAc/Hexane (3:7)) gave the product as light brown oil ($66 \mathrm{mg}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.49(\mathrm{~m},=\mathrm{CH}, 3 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$, $=C H, 2 H), 7.33-7.22(\mathrm{~m},=\mathrm{CH}, 3 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 7.16-7.04(\mathrm{~m},=\mathrm{CH}, 3 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.50(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 5.25\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.31-4.24(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 4.25-4.10(\mathrm{~m}$, $\left.\mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.37\left(\mathrm{bs}, \mathrm{NH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.3,137.5,135.7,132.0,129.3,129.1,129.0$, 128.97 ($q, J=32.2 \mathrm{~Hz}$), 128.6, 127.9, 127.0, 125.7 ($q, J=3.7 \mathrm{~Hz}$), 123.1, 122.3, 120.4, 110.6, 101.9, 52.8, 50.4, 46.0. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3435,2925,2089,1637,1511,1484,1453,1326,1264,1164,1121,1068$, 1017, 834. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2}$: C, 73.08; H, 5.37; N, 7.10; found: C, 73.20; H, 5.45; N, 7.18. Rf = $0.30\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 19), 254 \mathrm{~nm}\right)$. HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} 395.1735$; Found 395.1711.
(\pm)-4-(2-Amino-1-(1-benzyl-1H-indol-5-yl)ethyl)phenol (26ac). Compound 26ac was obtained using GP9. Column chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 8)$) gave the product as dirty white crystals (161 mg, 92% yield; $\mathrm{mp} 96.2-97.2^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Hexane $)$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 7.44(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.22-$ $6.87(\mathrm{~m},=\mathrm{CH}, 10 \mathrm{H}), 6.73-6.67(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.41(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 5.19\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.98(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}$), $3.25-3.15\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CD ${ }_{3} \mathrm{OD}$) δ 155.9, 138.3, 135.4, 134.1, 133.5, 129.3, 128.9, 128.8, 128.4, 127.2, 126.7, 121.7, 119.5, 115.2, 110.0, 101.1, 52.4, 49.6, 46.0. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3347,2925,1707,1611,1514,1484,1355,1264,1176,1029,959,833,732$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 80.67$; $\mathrm{H}, 6.48$; $\mathrm{N}, 8.18$; found: C, $80.88 ; \mathrm{H}, 6.30 ; \mathrm{N}, 8.02$. $\mathrm{Rf}=0.20\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ (1:19), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}$ 343.1810; Found 343.1787.
(\pm)-2-(1-Benzyl-1H-indol-5-yl)-2-(4-fluorophenyl)ethan-1-amine (26ad). Compound 26ad was obtained using GP9. Column chromatography (EtOAc/Hexane (3:7)) gave the product as dark yellow oil (178 mg, 92% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.35-7.19(\mathrm{~m},=\mathrm{CH}, 6 \mathrm{H}), 7.15-7.09(\mathrm{~m},=\mathrm{CH}$, $3 \mathrm{H}), 7.04-6.93(\mathrm{~m},=\mathrm{CH}, 3 \mathrm{H}), 6.51(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.28\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.11-4.03(\mathrm{~s}, \mathrm{CH}, 1 \mathrm{H}), 3.47-$ $3.23\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.6(\mathrm{~d}, \mathrm{~J}=244.3 \mathrm{~Hz}), 138.7,137.4,135.5,132.6,129.6$ ($d, J=7.8 \mathrm{~Hz}$), 129.1, 129.0, 128.9, 127.8, 126.9, 122.2, 120.1, $115.5(\mathrm{~d}, J=21.1 \mathrm{~Hz}$), 110.3, 101.7, 50.2, 30.4, 29.8. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 3641, 3371, 3300, 3032, 2924, 2855, 1887, 1727, 1602, 1507, 1484, 1355, 1222, 1159, 1093, 960, 851, 806. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{FN}_{2}$: C, 80.21; H, 6.15; N, 8.13; found: C, 80.09; H, 6.02; $\mathrm{N}, 8.19$. $\mathrm{Rf}=0.28\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 19), 254 \mathrm{~nm}\right)$. HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{FN}_{2}$ 345.1767; Found 345.1741.
(\pm)-2-(1-Benzyl-1H-indol-5-yl)-2-(4-bromophenyl)ethan-1-amine (26ae). Compound 26ae was obtained using GP9. Column chromatography (EtOAc/Hexane (3:7)) gave the product as light yellow oil (53 mg , 81% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.2,=\mathrm{CH}, 2 \mathrm{H}), 7.31-7.24(\mathrm{~m},=\mathrm{CH}$,
$4 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 7.12(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $=\mathrm{CH}, 1 \mathrm{H}), 5.26\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.09(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 3.40-3.20\left(\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.30-3.10\left(\mathrm{~m}, \mathrm{NH}_{2}\right.$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.6,137.6,135.6,132.9,131.8,130.0,129.2,129.1,129.0,127.9$, 127.1, 122.4, 120.4, 120.2, 110.4, 101.8, 53.6, 50.4, 46.7. IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3025,2918,2852,2358$, 1686, 1552, 1486, 1453, 1355, 1260, 1182, 1073, 1009, 726. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{BrN}_{2}$: C, 68.15; H, 5.22; N, 6.91; found: C, 67.98; H, 5.07; N, $6.82 \mathrm{Rf}=0.17$ ($\left.\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 19), 254 \mathrm{~nm}\right)$. HRMS (APCITOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrN}_{2}$ 405.0966; Found 405.0954.
(\pm)-4-(2-Amino-1-(1-benzyl-1H-indol-5-yl)ethyl)- N, N-dimethylaniline (26af). Compound 26af was obtained using GP9. Column chromatography (EtOAc/Hexane (4:6)) gave the product as light brown oil (178 mg, 92\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~s}, \mathrm{CH}, 1 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.21$ - 6.95 $(\mathrm{m}, 7 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.25\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 3.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H})$, $3.31\left(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 2.88\left(\mathrm{~s}, \mathrm{CH}_{3}, 6 \mathrm{H}\right), 1.83\left(\mathrm{bs}, \mathrm{NH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.5$, $137.8,135.4,134.6,131.7,129.1,129.0,128.9,128.7,127.8,127.1,122.6,120.0,113.2,110.1,101.8$, 53.9, 50.4, 47.5, 41.0. IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$: $3625,3365,3030,2923,2802,1873,1704,1613,1519,1483$, 1352, 1264, 1183, 1132, 1029, 947, 816, 733. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3}$: C, 81.26; H, 7.37; N, 11.37; found: C, 81.16; $\mathrm{H}, 7.30 ; \mathrm{N}, 11.24$. $\mathrm{Rf}=0.12\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 19), 254 \mathrm{~nm}\right)$. HRMS (APCI-TOF) m/z: [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3}$ 370.2283; Found 370.2262.
(\pm)-2-(1-Benzyl-1H-indol-5-yl)-2-(2,5-dimethoxyphenyl)ethan-1-amine (26ag). Compound 26ag was obtained using GP9. Column chromatography (EtOAc/Hexane (4:69) gave the product as dark brown oil (178 mg, 92\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.37-7.19(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.17-$ $7.07(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 6.87(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.73-6.67(\mathrm{~m},=\mathrm{CH}, 1 \mathrm{H}), 6.52(\mathrm{~d}, \mathrm{~J}$ $=2.7 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 5.25\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.58(\mathrm{~s}, \mathrm{CH}, 1 \mathrm{H}), 3.76\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 3.74\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 3.33\left(\mathrm{bs}, \mathrm{CH}_{2}\right.$, , 2H), 2.03 (bs, $\left.\mathrm{NH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.9,151.9,137.8,135.5,133.7,133.4,129.1$, $129.0,128.7,127.8,127.1,123.0120 .5,115.2,112.0,110.8,110.0,101.8,56.4$ (2C), 55.9, 50.4, 46.7. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 3366, 2932, 1705, 1587, 1496, 1280, 1049, 877, 800, 732. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 77.69; H, 6.78; N, 7.25; found: C, 77.58; H, 6.71; N, 7.13. $\mathrm{Rf}=0.24$ ($\left.\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 19), 254 \mathrm{~nm}\right)$. HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}$ 387.2073; Found 387.2049.
(\pm)-2-(1-Benzyl-1H-indol-5-yl)-2-(3,4,5-trimethoxyphenyl)ethan-1-amine (26ah). Compound 26ah was obtained using GP9. Column chromatography (EtOAc/Hexane (4:6)) gave the product as dirty white crystals ($88 \mathrm{mg}, 86 \%$ yield; mp $212-213{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Hexane $)$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~s},=\mathrm{CH}$, $1 \mathrm{H}), 7.30-7.19(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.00-7.07(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 6.50-6.54(\mathrm{~m},=\mathrm{CH}, 2 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}$, $=\mathrm{CH}, 1 \mathrm{H}), 5.20\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.50-4.40(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 3.74\left(\mathrm{~s}, \mathrm{CH}_{3}, 6 \mathrm{H}\right), 3.70\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right), 3.65-3.50(\mathrm{~m}$, $\left.\mathrm{CH}_{2}, \mathrm{NH}_{2}, 4 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 153.6,137.5,137.0,136.5,135.8,130.9,129.22,129.20$,
129.0, 127.9, 127.0, 121.9, 120.0, 110.6, 105.3, 101.9, 60.9, 56.4, 50.4, 49.3, 44.6. IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$: 3435, 2090, 1636, 1509, 1454, 1424, 1353, 1236, 1125, 726. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 74.97$; H , 6.78; N, 6.73; found: C, 74.90; H, 6.71; N, 6.85. $\mathrm{Rf}=0.13$ ($\left.\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 19), 254 \mathrm{~nm}\right)$. HRMS (APCITOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}$ 417.2178; Found 417.2151.
(\pm)-2-(1-Benzyl-1H-indol-5-yl)-2-(1H-indol-5-yl)ethan-1-amine (26aj). Compound 26aj was obtained using GP9. Column chromatography (EtOAc/Hexane (4:6)) gave the product as yellow oil (178 mg, 92\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71$ (bs, NH, 1H), 7.55-7.54 (m, =CH, 2H), 7.36-6.99 (m, =CH, $11 \mathrm{H}), 6.48$ (dd, $J=7.5,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.25\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.18(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}, 1 \mathrm{H}), 3.44-3.36\left(\mathrm{~m}, \mathrm{CH}_{2}\right.$, 2H), 2.05 (bs, $\mathrm{NH}_{2}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.8,135.4,135.0,134.9,134.8,129.1,129.0$, $128.8,128.3,127.8,127.0,124.9,122.80,122.78,120.0,119.7,111.6,110.1,102.3,101.8,53.8,50.3$, 30.0. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3}$: C, 82.16; H, 6.34; N, 11.50; found: C, 82.02; H, 6.27; N, 11.40. IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\left.\mathrm{cm}^{-1}\right): 3413,2923,2851,1641,1483,1454,1343,1123,1090,803,727 . \mathrm{I} . \mathrm{Rf}=0.12\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ (1:19), 254 nm). HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3}$ 366.1970; Found 366.1947.
(\pm)-2-(1-Benzyl-1H-indol-5-yl)-2-(1H-indol-3-yl)ethan-1-amine (26ak). Compound 26ak was obtained using GP9. Column chromatography (EtOAc/Hexane (4:6)) gave the product as dirty white crystals (88 $\mathrm{mg}, 86 \%$ yield; mp $212-213^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Hexane $)$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{bs}, \mathrm{NH}, 1 \mathrm{H}), 7.60(\mathrm{~s}$, $=C H, 1 H), 7.51(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 7.36-7.21(\mathrm{~m},=\mathrm{CH}, 4 \mathrm{H}), 7.21-7.07(\mathrm{~m},=\mathrm{CH}, 5 \mathrm{H}), 7.07-6.94$ $(\mathrm{m},=\mathrm{CH}, 3 \mathrm{H}), 6.48(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 5.24\left(\mathrm{~s}, \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.35-4.26(\mathrm{~m}, \mathrm{CH}, 1 \mathrm{H}), 3.52-3.40(\mathrm{~m}$, $\left.\mathrm{CH}_{2}, 1 \mathrm{H}\right), 3.37-3.24\left(\mathrm{~m}, \mathrm{CH}_{2}, 1 \mathrm{H}\right), 1.73\left(\mathrm{bs}, \mathrm{NH}_{2}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl ${ }_{3}$) $\delta 137.7,136.7,135.6$, 134.19, 134.17, 129.0, 128.9, 128.6, 127.8, 127.4, 127.1, 122.5, 122.2, 121.4, 120.4, 119.8, 119.5, 111.3, 110.0, 101.7, 50.4, 47.9, 47.1. IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3412,3098,3053,2923,1586,1484,1455,1337$, 1264, 1181, 1091, 884, 799. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3}$: C, 82.16; H, 6.34; N, 11.50; found: C, 82.04; H, 6.10; N, 11.39. $\mathrm{Rf}=0.10\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 19), 254 \mathrm{~nm}\right)$. $\mathrm{HRMS}(\mathrm{APCl}-\mathrm{TOF}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3}$ 366.1970; Found 366.1946.
(\pm)-2-(1H-Indol-5-yl)-2-phenylethan-1-amine (27aa). Compound 27aa was obtained using GP9. Column chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 8)\right)$ gave the product as white crystals (160 mg , 92% yield; mp 97$98{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Hexane $\left.)\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.48(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H})$, $7.29-7.11(\mathrm{~m},=\mathrm{CH}, \mathrm{NH}, 7 \mathrm{H}), 7.15(\mathrm{bs},=\mathrm{CH}, 1 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz},=\mathrm{CH}, 1 \mathrm{H}), 6.42(\mathrm{~s},=\mathrm{CH}, 1 \mathrm{H}), 4.08$ (d, J = 4.7 Hz, CH, 1H), 3.34-3.22 (m, CH2, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CD ${ }_{3} \mathrm{OD}$) δ 143.7, 135.5, 132.7, 128.6, $128.4,127.8,126.2,125.0,121.6,119.1,111.3,101.1,53.6,46.0$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 3368,1794$, 1735,1552, 1378, 1265, 1097, 894, 765. Rf=0.12 ($\left.\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 19), 254 \mathrm{~nm}\right)$. HRMS (APCI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2}$ 237.1392; Found 237.1381.

- ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: XXX

NMR spectra for all compounds (PDF)

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: nsarac@atauni.edu.tr
ORCID

Berrak Ertugrul: 0000-0002-9042-4602
Haydar Kilic: 0000-0002-7009-9953
Farrokh Lafzi: 0000-0002-3371-0899
Nurullah Saracoglu: 0000-0002-1504-7480

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We would like to thank The Scientific and Technological Research Council of Turkey (TÜBITAK) (Project No: 114Z200) for its financial support.

■ REFERENCES

(1) (a) Taber, D. F.; Tirunahari, P. K. Indole Synthesis: A Review and Proposed Classification. Tetrahedron 2011, 67, 7195-7210. (b) Higuchi, K.; Kawasaki, T. Simple Indole Alkaloids and Those with a Nonrearranged Monoterpenoid Unit. Nat. Prod. Rep. 2007, 24, 843-868. (c) Kochanowska-Karamyan, A. J.; Hamann, M. T. Marine Indole Alkaloids: Potential New Drug Leads for the Control of Depression and Anxiety. Chem. Rev. 2010, 110, 4489-4497. (d) Inman, M.; Moody, C. J. Indole Synthesis-Something Old, Something New. Chem. Sci. 2013, 4, 29-41. (e) Xu, W.; Gavia, D. J.; Tang, Y. Biosynthesis of Fungal Indole Alkaloids. Nat. Prod. Rep. 2014, 31, 1474-1487. (f) Sravanthi, T. V.; Manju, S. L. Indoles-A Promising Scaffold for Drug Development. Eur. J. Pharm. Sci. 2016, 91, 1-10.
(2) (a) Zhang, M. Z.; Mulholland, N.; Beattie, D.; Irwin, D.; Gu, Y. C.; Chen, Q.; Yang, G. F.; Clough, J. Synthesis and Antifungal Activity of 3-(1,3,4-Oxadiazol-5-yl)-indoles and 3-(1,3,4-Oxadiazol-5-yl) Methyl-Indoles. Eur. J. Med. Chem. 2013, 63, 22-32. (b) Young, S. N. How to Increase Serotonin in the Human Brain without Drugs. J. Psychiatry Neurosci. 2007, 32, 394-399. (c) Nichols, D. E.; Nichols, C. D. Serotonin Receptors. Chem. Rev. 2008, 108, 1614-1641. (d) Zhang, M. Z.; Chen, Q.; Yang, G. F. A Review on Recent Developments of Indole-Containing Antiviral Agents. Eur. J. Med. Chem. 2015, 89, 421-441. (e) Feniuk, W.; Humphrey, P. P. A. The Development of a Highly Selective 5-HT1 Receptor Agonist, Sumatriptan, for the Treatment of Migraine. Drug Dev. Res. 1992, 26, 235-240. (f) Kaushik, N. K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C. H.; Verma, A. K.; Choi, E. H. Biomedical Importance of Indoles. Molecules 2013, 18, 6620-6662.
(3) Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. Rings in Drugs: Miniperspective. J. Med. Chem. 2014, 57, 5845-5859.
(4) (a) Sheftell, F. D.; Bigal, M. E.; Tepper, S. J.; Rapaport, A. M. Sumatriptan: A Decade of Use and Experience in the Treatment of Migraine. Expert Rev. Neurother. 2004, 4, 199-209. (b) Pal, A.; Gautam, A.; Munjal, S. Pharmacokinetic Characterization and Dose Selection of a Novel Sumatriptan Nasal Spray Formulation, DFN-02. J. Clin. Pharmacol. 2017, 57, 1472-1478.
(5) (a) Takiya, L.; Piccininni, L. C.; Kamath, V. Safety and Efficacy of Eletriptan in the Treatment of Acute Migraine. Pharmacother. 2006, 26, 115-128. (b) McHarg, A. D.; Napier, C. M.; Stewart, M.; Melrose, H. L.; Wallis, R. M. The Functional Activity of Eletriptan and other $5-\mathrm{HT}_{1 \mathrm{~B} / 1 \mathrm{D}}$ Agonists at the Human Recombinant $5-\mathrm{HT}_{1 \mathrm{~B}}$ and $5-\mathrm{HT}_{1 \mathrm{D}}$ Receptors. Headache 1999, 39, 369-370. (c) Hoskin, K. L.; Lambert, G. A.; Donaldson, C.; Zagami, A. S. The 5Hydroxytryptamine ${ }_{1 B / 10 / 1 F}$ Receptor Agonists Eletriptan and Naratriptan Inhibit Trigeminovascular Input to the Nucleus Tractus Solitarius in the Cat. Brain Res. 2004, 998, 91-99. (d) Capi, M.; Curto, M., Lionetto, L.; de Andrés, F.; Gentile, G.; Negro, A.; Martelletti, P. Eletriptan in the Management of Acute Migraine: An Update on the Evidence for Efficacy, Safety, and Consistent Response. Ther. Adv. Neurol. Disord. 2016, 9, 414-423.
(6) (a) Bourinbaiar, A. S.; Lee-Huang, S. The non-Steroidal anti-Inflammatory Drug, Indomethacin, as an Inhibitor of HIV Replication. FEBS Lett. 1995, 360, 85-88. (b) Schuna, A. A. Update on Treatment of Rheumatoid Arthritis. J. Am. Pharm. Assoc. 1998, 38, 728-737. (c) Goodnight, S. H. Aspirin Therapy for Cardiovascular Disease. Curr. Opin. Hematol. 1996, 3, 355-360. (d) Rodriguez, L. A.; Varas, C.; Patrono, C. Differential Effects of Aspirin and non-Aspirin Nonsteroidal Antiinflammatory Drugs in the Primary Prevention of Myocardial Infarction in Postmenopausal Women. Epidemiology 2000, 11, 382-387. (e) Sloane, P. D. Advances in the Treatment of Alzheimer's Disease. Am. Fam. Physician 1998, 58, 1577-1586. (f) Flynn, B. L.; Theesen, K. A. Pharmacologic Management of Alzheimer Disease Part III: Nonsteroidal Antiinflammatory Drugs-Emerging Protective Evidence?. Ann. Pharmacother. 1999, 33, 840-849. (g) Jones, M. K.; Wang, H.; Peskar, B. M.; Levin, E.; Itani, R. M.; Sarfels, I. J.; Tarnawski, A. S. Inhibition of Angiogenesis by Nonsteroidal anti-Inflammatory Drugs: Insight into Mechanisms and Implications for Cancer Growth and Ulcer Healing. Nat. Med. 1999, 5, 1418-1423. (h) Matos, C.; Lima, J. L. C.; Reis, S.; Lopes, A.; Bastos, M. Interaction of Antiinflammatory Drugs with EPC Liposomes: Calorimetric Study in a Broad Concentration Range. Biophys. J. 2004, 2, 946-954.
(7) (a) Wu, Q. X.; Crews, M. S.; Draskovic, M.; Sohn, J.; Johnson, T. A.; Tenney, K.; Valeriote, F. A.; Yao, X. J.; Bjeldanes, L. F.; Crews, P. Azonazine, a Novel Dipeptide from a Hawaiian Marine Sediment-Derived Fungus, Aspergillus Insulicola. Org. Lett. 2010, 12, 4458-4461. (b) Kam, T. S.; Tan, S. J.; Ng, S. W.; Komiyama, K. Bipleiophylline, an Unprecedented Cytotoxic Bisindole Alkaloid Constituted from the Bridging of Two Indole Moieties by an aromatic Spacer Unit. Org. Lett. 2008, 10, 3749-3752. (c) Li, X. N.; Zhang, Y.; Cai, X. H.; Feng, T.; Liu, Y. P.; Li, Y.; Ren, J.; Zhu, H. J.; Luo, X. D. Psychotripine: a New Trimeric Pyrroloindoline Derivative from Psychotria pilifera. Org. Lett. 2011, 13, 5896-5899. (d) Raju, R.; Piggott, A. M.; Conte, M.; Aalbersberg, W. G. L.; Feussner, K.; Capon, R. J. Naseseazines A and B: A New Dimeric Diketopiperazine Framework from a MarineDerived Actinomycete, Streptomyces sp. Org. Lett. 2009, 11, 3862-3865. (e) Dong, J. Y.; Zhou, W.; Li, L.; Liu, Y. J.; Zhang, K. Q. A New Epidithiodioxopiperazine Metabolite Isolated from Gliocladium roseum YMF1.00133. Chin. Chem. Lett. 2006, 17, 922-924. (f) Zhang, W.; Liu, Z.; Li, S.; Yang, T.; Zhang, Q.; Ma, L.; Tian, X.; Zhang, H.; Huang, C.; Zhang, S.; Ju, J.; Shen, Y.; Zhang, C. Spiroindimicins A-D: New Bisindole Alkaloids from a Deep-Sea-Derived Actinomycete. Org. Lett. 2012, 14, 3364-3367. (g) Denizot, N.; Tomakinian, T.; Beaud, R., Kouklovsky, C.; Vincent, G. Synthesis of 3-Arylated Indolines from Dearomatization of Indoles. Tetrahedron Lett. 2015, 56, 4413-4429. (h) Zhang, D.; Song, H.; Qin, Y. Total Synthesis of Indoline Alkaloids: A Cyclopropanation Strategy. Acc. Chem. Res. 2011, 44, 447-457.
(8) (a) Ruiz-Sanchis, P.; Savina, S. A.; Alberici, F.; Alvarez, M. Structure, Bioactivity and Synthesis of Natural Products with Hexahydropyrrolo[2,3-b]indole. Chem. Eur. J. 2011, 17, 1388-1408. (b) Witkop, B. From the "Ordeal Bean" (Physostigma venenosum) to the Ordeal of Alzheimer's Disease: Some of the Legacy of Percy Lavon Julian (1899-1975). Heterocycles 1998, 49, 9-27. (c) Crich, D.; Banerjee, A. Chemistry of the Hexahydropyrrolo[2,3-b]indoles: Configuration, Conformation, Reactivity, and Applications in Synthesis. Acc. Chem. Res. 2007, 40, 151-161. (d) Repka, L. M.; Reisman, S. E. Recent Developments in the Catalytic, Asymmetric Construction of Pyrroloindolines Bearing All-Carbon Quaternary Stereocenters. J. Org. Chem. 2013, 78, 12314-12320. (e) Shaw, K.-P.; Aracava, Y.; Akaike, A.; Daly, J. W.; Rickett, D. L.; Albuquerque, E. X. The reversible Cholinesterase Inhibitor Physostigmine Has Channel-Blocking and Agonist Effects on the Acetylcholine ReceptorIon Channel Complex. Mol. Pharmacol. 1985, 28, 527-538.
(9) (a) Keating, G. M. Silodosin: A Review of Its Use in the Treatment of the Signs and Symptoms of Benign Prostatic Hyperplasia. Drugs 2015, 75, 207-217. (b) Barve, I. J., Chen, L. H., Wei, P. C., Hung, J. T., Sun, C. M. Enantioselective Synthesis of $(-)-(R)$ Silodosin by Ultrasound-Assisted Diastereomeric Crystallization. Tetrahedron 2013, 69, 2834-2843. (c) Yan, P. C., Zhang, X. Y., Hu, X. W., Zhang, B., Zhang, X. D., Zhao, M., Zhou, Q. L. First Asymmetric Synthesis of Silodosin through Catalytic Hydrogenation by Using Ir-SIPHOX catalysts. Tetrahedron Lett. 2013, 54, 1449-1451. (d) Chapple, C. R.; Montorsi, F.; Tammela, T. L.; Wirth, M.; Koldewijn, E.; Fernandez, E. F. Silodosin Therapy for Lower Urinary Tract Symptoms in Men with Suspected Benign Prostatic Hyperplasia: Results of an International, Randomized, Double-Blind, Placebo- and Active-Controlled Clinical Trial Performed in Europe. Eur. Urol. 2011, 59, 342-352.
(10) (a) Almagro, L.; Fernandez-Perez, F.; Pedreno, M. A. Indole alkaloids from Catharanthus roseus: Bioproduction and Their Effect on Human Health. Molecules 2015, 20, 2973-3000. (b) Gul, W.; Hamann, M. T. Indole Alkaloid Marine Natural Products: An Established Source of Cancer Drug Leads with Considerable Promise for the Control of Parasitic, Neurological and Other Diseases. Life Sci. 2005, 78, 442-453. (c) Yokoshima, S.; Ueda, T., Kobayashi, S.; Sato, A., Kuboyama, T., Tokuyama, H., Fukuyama, T. Stereocontrolled Total Synthesis of (+)Vinblastine. J. Am. Chem. Soc. 2002, 124, 2137-2139. (d) Ishikawa, H.; Colby, D. A.; Boger, D. L. Direct Coupling of Catharanthine and Vindoline to Provide Vinblastine: Total Synthesis of (+)- and ent-(-)-Vinblastine. J. Am. Chem. Soc. 2008, 130, 420-421. (e) Ishikawa, H.; Colby, D. A.; Seto, S.; Va, P.; Tam, A.; Kakei, H.; Boger, D. L. Total Synthesis of Vinblastine, Vincristine, Related Natural Products, and Key Structural Analogues. J. Am. Chem. Soc. 2009, 131, 4904-4916.
(11) (a) Andreani, A.; Rambaldi, M. Indole Derivatives as Agrochemicals. J. Heterocycl. Chem. 1988, 25, 1519-1523. (b) Barden, T. C. Indoles: Industrial, Agricultural and Over-the-Counter Uses. Top. Heterocycl. Chem. 2011, 26, 31-46. (c) Nie, G.; Zhou, L., Guo, Q.; Zhang, S. A New Electrochromic Material from an Indole Derivative and Its Application in High-Quality Electrochromic Devices. Electrochem. Commun. 2010, 12, 160-163. (d) Valentine, R. A.; Whyte, A.; Awaga, K.; Robertson, N. New Indole Trimers as Precursors for Molecular Electronic Materials. Tetrahedron Lett. 2012, 53, 657-660. (e) Park, M. S.; Choi, D. H.; Lee, B. S.; Lee, J. Y. Fused Indole Derivatives as High Triplet Energy Hole Transport Materials for Deep Blue Phosphorescent Organic Light-Emitting Diodes. J. Mater. Chem. 2012, 22, 3099-3104.
(12) (a) Mino, T.; Ishikawa, M.; Nishikawa, K.; Wakui, K.; Sakamoto, M. Palladium-Catalyzed Asymmetric Allylic Alkylation of Indoles by C-N Bond Axially Chiral Phosphine Ligands. Tetrahedron: Asymmetry 2013, 24, 499-504. (b) So, C. M.; Yeung, C. C.; Lau, C. P.; Kwong, F. Y. A New Family of Tunable Indolylphosphine Ligands by One-Pot Assembly and Their Applications in Suzuki-Miyaura Coupling of Aryl Chlorides. J. Org. Chem. 2008, 73, 78037806.
(13) Sandtorv, A. H. Transition Metal-Catalyzed C-H Activation of Indoles. Adv. Synth. Catal. 2015, 357, 2403-2435.
(14) (a) Guo, T.; Huang, F.; Yu, L.; Yu, Z. Indole Synthesis through Transition Metal-Catalyzed C-H Activation. Tetrahedron Lett. 2015, 56, 296-302. (b) Gribble, G. W. Recent Developments in Indole Ring SynthesisMethodology and Applications. J. Chem. Soc. Perkin Trans. 1 2000, 1045-1075. (c) Zeni, G.; Larock, R. C. Synthesis of Heterocycles via Palladium π-Olefin and π-Alkyne Chemistry. Chem. Rev. 2004, 104, 2285-5309. (d) Humphrey, G. R.; Kuethe, J. T. Practical Methodologies for the Synthesis of Indoles. Chem. Rev. 2006, 106, 2875-2911. (e) Cacchi, S., Fabrizi, G.; Goggiamani, A. Copper Catalysis in the Construction of Indole and Benzo[b]furan Rings. Org. Biomol. Chem. 2011, 9, 641-652. (f) Yoshikai, N.; Wei, Y. Synthesis of Pyrroles, Indoles, and Carbazoles through Transition-Metal-Catalyzed C-H Functionalization. Asian J. Org. Chem. 2013, 2, 466-478.
(15) Cacchi, S.; Fabrizi, G. Synthesis and Functionalization of Indoles Through Palladium-Catalyzed Reactions. Chem. Rev. 2005, 105, 2873-2920.
(16) (a) Fischer, E.; Jourdan, F. Ueber die Hydrazine der Brenztraubensäure. Ber. Dtsch. Chem. Ges. 1883, 16, 2241-2245. (b) Park, I. K.; Suh, S. E.; Lim, B. Y.; Cho, C. G. Aryl Hydrazide Beyond as Surrogate of Aryl Hydrazine in the Fischer Indolization: The Synthesis of N-Cbz-indoles, N-Cbz-carbazoles, and N, N^{\prime}-Bis-Cbz-pyrrolo[2,3f Jindoles. Org. Lett. 2009, 11, 5454-5456. (c) Talaz, O.; Saracoglu, N. A Study on the Synthesis of Structural Analogs of Bis-Indole Alkaloid Caulerpin: A Step-By-Step Synthesis of a Cyclic Indole-Tetramer. Tetrahedron 2010, 66, 1902-1910.
(17) (a) Bartoli, G.; Palmieri, G.; Bosco, M.; Dalpozzo, R. The reaction of Vinyl Grignard Reagents with 2Substituted Nitroarenes: A New Approach to the Synthesis of 7-Substituted Indoles. Tetrahedron Lett. 1989, 30, 2129-2132. (b) Bartoli, G.; Dalpozzo, R.; Nardi, M. Applications of Bartoli Indole Synthesis. Chem. Soc. Rev. 2014, 43, 4728-4750.
(18) (a) Larock, R. C.; Yum, E. K. Synthesis of Indoles via Palladium-Catalyzed Heteroannulation of Internal Alkynes. J. Am. Chem. Soc. 1991, 113, 6689-6690. (b) Larock, R. C.; Yum, E. K.; Refvik, M. D. Synthesis of 2,3-Disubstituted Indoles via Palladium-Catalyzed Annulation of Internal Alkynes. J. Org. Chem. 1998, 63, 7652-7662.
(19) (a) Joucla, L.; Djakovitch, L. Transition Metal-Catalysed, Direct and Site-Selective N1-, C2- or C3-Arylation of the Indole Nucleus: 20 Years of Improvements. Adv. Synth. Catal. 2009, 351, 673-714. (b) Bandini, M.; Eichholzer, A. Catalytic Functionalization of Indoles in a New Dimension. Angew. Chem. Int. Ed. 2009, 48, 9608-9644. (c) Giri, R.; Thapa, S.; Kafle, A. Palladium-Catalysed, Directed C-H Coupling with Organometallics. Adv. Synth. Catal. 2014, 356, 1395-1411. (d) Kakiuchi, F.; Chatani, N. Catalytic Methods for C-H Bond Functionalization: Application in Organic Synthesis. Adv. Synth. Catal. 2003, 345, 1077-1101. (e) Hussain, I.; Singh, T. Synthesis of Biaryls through Aromatic C-H Bond Activation: A Review of Recent Developments. Adv. Synth. Catal. 2014, 356, 1661-1696.
(20) (a) Maity, S.; Manna, S., Rana, S.; Naveen, T.; Mallick, A.; Maiti, D. Efficient and Stereoselective Nitration of Mono- and Disubstituted Olefins with AgNO_{2} and TEMPO. J. Am. Chem. Soc. 2013, 135, 3355-3358. (b) Barrett, A. G. M.; Graboski, G. G. Conjugated Nitroalkenes: Versatile Intermediates in Organic Synthesis. Chem. Rev. 1986, 86, 751-762. (c) Tripathi, C. B.; Kayal, S.; Mukherjee, S. Catalytic Asymmetric Synthesis of α, β-Disubstituted $\alpha, \gamma-$ Diaminophosphonic Acid Precursors by Michael Addition of α-Substituted Nitrophosphonates to Nitroolefins. Org. Lett. 2012, 14, 3296-3299. (d) Huang, H. B.; Jacobsen, E. N. Highly Enantioselective Direct Conjugate Addition of Ketones to Nitroalkenes Promoted by a Chiral Primary Amine-Thiourea Catalyst. J. Am. Chem. Soc. 2006, 128, 7170-7171. (e) Fioravanti, S.; Pellacani, L.; Tardella, P. A.; Vergari, M. C. Facile and Highly Stereoselective One-Pot Synthesis of Either (E)- or (Z)-Nitro Alkenes. Org. Lett. 2008, 10, 1449-1451. (f) Evans, D. A.; Mito, S.; Seidel, D. Scope and Mechanism of Enantioselective Michael Additions of 1,3-Dicarbonyl Compounds to Nitroalkenes Catalyzed by Nickel(II)-Diamine Complexes. J. Am. Chem. Soc. 2007, 129, 11583-11592. (g) Nair, D. K.; Mobin, S. M.; Namboothiri, I. N. Synthesis of Imidazopyridines from the Morita-Baylis-Hillman Acetates of Nitroalkenes and Convenient Access to Alpidem and Zolpidem. Org. Lett. 2012, 14, 4580-4583. (h) Corma, A.; Serna, P.; Garcia, H. Gold Catalysts Open a New General Chemoselective Route to Synthesize Oximes by Hydrogenation of α, β-Unsaturated Nitrocompounds with H2. J. Am. Chem. Soc. 2007, 129, 6358-6359. (i) Martin, N. J. A.; Ozores, L.; List, B. Organocatalytic Asymmetric Transfer Hydrogenation of Nitroolefins. J. Am. Chem. Soc. 2007, 129, 8976-8977.
(21) (a) Jayasundera, K. P.; Kusmus, D. N.; Deuilhe, L., Etheridge, L.; Farrow, Z.; Lun, D. J.; Rowlands, G. J. The Synthesis of Substituted Amino[2.2]paracyclophanes. Org. Biomol. Chem. 2016, 14, 10848-10860. (b) Mendez, I.; Rodriguez, R.; Polo, V.; Passarelli, V.; Lahoz, F. J.; Garcia-Orduna, P.; Carmona, D. Temperature Dual Enantioselective Control in a Rhodium-Catalyzed Michael-Type Friedel-Crafts Reaction: A Mechanistic Explanation. Chem. Eur. J. 2016, 22, 11064-11083. (c) Zhang, X.; Zhang, Z.; Boissonnault, J.; Cohen, S. M. Design and Synthesis of Squaramide-Based MOFs as Efficient MOF-Supported Hydrogen-Bonding Organocatalysts. Chem. Commun. 2016, 52, 8585-8588. (d) Kusurkar, R. S.; Alkobati, N. A.; Gokule, A. S.; Puranik, V. G. Use of the Pictet-Spengler Reaction for the Synthesis of 1, 4-Disubstituted-1,2,3,4-Tetrahydro- β-carbolines and 1, 4-Disubstituted- β-carbolines: Formation of γ-Carbolines. Tetrahedron 2008, 64, 1654-1662. (e) Rao, P. C.; Mandal, S. Friedel-Crafts Alkylation of Indoles with Nitroalkenes through Hydrogen-Bond-Donating Metal-Organic Framework. ChemCatChem 2017, 9, 1172-1176. (f) Carmona, D.; Lamata, M. P.; Sanchez, A.; Viguri, F.; Oro, L. A. Enantioselective Friedel-Crafts Alkylations Catalysed by Well-Defined Iridium And Rhodium Half-Sandwich Complexes. Tetrahedron: Asymmetry 2011, 22, 893-906. (g) Sheng, Y. F.; Li, G. Q.; Kang, Q.; Zhang, A. J.; You, S. L. Asymmetric Friedel-Crafts Reaction of 4,7-Dihydroindoles with Nitroolefins by Chiral Brønsted Acids under Low Catalyst Loading. Chem. Eur. J. 2009, 15, 3351-3354.
(22) (a) Shi, Y. C.; Wang, S. G.; Yin, Q.; You, S. L. N-Alkylation of Indole via Ring-Closing Metathesis/Isomerization/Mannich Cascade under Ruthenium/Chiral Phosphoric Acid Sequential Catalysis. Org. Chem. Front. 2014, 1, 39-43. (b) Siddiki, S. H.; Kon, K.; Shimizu, K. I. Selective N-Alkylation of Indoles with Primary Alcohols Using a Pt/HBEA Catalyst. Green Chem. 2015, 17, 173-177. (c) Ling, L.; Cao, J.; Hu, J.; Zhang, H. CopperCatalyzed N-Alkylation of Indoles by N-Tosylhydrazones. RSC Adv. 2017, 7, 27974-27980. (d) Jorapur, Y. R.; Jeong, J. M.; Chi, D. Y. Potassium Carbonate as a Base for the N-Alkylation of Indole and Pyrrole in Ionic Liquids. Tetrahedron Lett. 2006, 47, 2435-2438.
(23) (a) Bayindir, S.; Erdogan, E.; Kilic, H.; Saracoglu, N. An Efficient Synthesis of New Aza-Substituted Indoles via Michael-Type Addition. Synlett 2010, 1455-1458. (b) Kilic, H.; Bayindir, S.; Erdogan, E.; Saracoglu, N. Synthesis of Highly N-Substituted Indole Library via Conjugate Additions of Indoline and Their Synthetic Tool Potentials. Tetrahedron 2012, 68, 5619-5630.
(24) (a) Kianmehr, E.; Ghanbari, M.; Faghih, N.; Rominger, F. A Palladium-Catalyzed One-Pot Procedure for the Regioselective Dimerization and Cyanation of Indoles. Tetrahedron Lett. 2012, 53, 1900-1904. (b) Zhang, Y.; Liu, X.; Zhao, X.; Zhang, J., Zhou, L.; Lin, L.; Feng, X. Enantioselective Friedel-Crafts Alkylation for Synthesis of 2Substituted Indole Derivatives. Chem. Commun. 2013, 49, 11311-11313. (c) Jiao, L.; Bach, T. Regioselective Direct C-H Alkylation of NH Indoles and Pyrroles by a Palladium/Norbornene-Cocatalyzed Process. Synthesis 2014, 46, 35-41. (d) Jiao, L.; Bach, T. Palladium-Catalyzed Direct 2-Alkylation of Indoles by Norbornene-Mediated Regioselective Cascade C-H Activation. J. Am. Chem. Soc. 2011, 133, 12990-12993.
(25) (a) Cano, R.; Yus, M.; Ramon, D. J. Environmentally Friendly and Regioselective C_{3}-Alkylation of Indoles with Alcohols Through a Hydrogen Autotransfer Strategy. Tetrahedron Lett. 2013, 54, 3394-3397. (b) Li, S. S.; Lin, H.; Zhang, X. M.; Dong, L. Ruthenium-Catalyzed Direct C3 Alkylation of Indoles with α, β-Unsaturated Ketones. Org. Biomol. Chem. 2015, 13, 1254-1263. (c) Zheng, X.; Zhang, L.; Li, J.; Luo, S.; Cheng, J. P. Magnetic Nanoparticle Supported Polyoxometalates (POMs) via Non-Covalent Interaction: Reusable Acid Catalysts and Catalyst Supports for Chiral Amines. Chem. Commun. 2011, 47, 12325-12327.
(26) Leitch, J. A.; Bhonoah, Y.; Frost, C. G. Beyond C2 and C3: Transition-Metal-Catalyzed C-H Functionalization of Indole. ACS Catal. 2017, 7, 5618-5627.
(27) Belsky, I.; Gertner, D.; Zilkha, A. Synthesis of Some 5-Trimethylsilylinodoles. J. Org. Chem. 1968, 33, 1348-1350.
(28) (a) Rodriguez, J. M.; Pujol, M. D. Straightforward Synthesis of Nitroolefins by Microwave- or UltrasoundAssisted Henry Reaction. Tetrahedron Lett. 2011, 52, 2629-2632. (b) Jalal, S.; Sarkar, S.; Bera, K.; Maiti, S.; Jana, U. Synthesis of Nitroalkenes Involving a Cooperative Catalytic Action of Iron(III) and Piperidine: A One-Pot Synthetic Strategy to 3-Alkylindoles, 2H-Chromenes and N-Arylpyrrole. Eur. J. Org. Chem. 2013, 4823-4828.
(29) Wang, G.; de Silva, G. P.; Wiebe, N. E.; Fehr, G. M.; Davis, R. L. Development of a Metal-Free Amine Oxidation Method Utilizing DEAD Chemistry. RSC Adv. 2017, 7, 48848-48852.
(30) Ji, H.; Jing, Q.; Huang, J.; Silverman, R. B. Acid-Facilitated Debenzylation of N-Boc, N-Benzyl Double Protected 2-Aminopyridinomethyl Pyrrolidine Derivatives. Tetrahedron 2012, 68, 1359-1366.
(31) Bull, S. D.; Davies, S. G.; Fenton, G.; Mulvaney, A. W.; Prasad, R. S.; Smith, A. D. Chemoselective Oxidative Debenzylation of Tertiary N-Benzyl Amines. Chem. Commun. 2000, 337-338.
(32) Haddach, A. A.; Kelleman, A.; Deaton-Rewolinski, M. V. An efficient method for the N-Debenzylation of Aromatic Heterocycles. Tetrahedron Lett. 2002, 43, 399-402.
(33) Gigg, R.; Conant, R. Conversion of the N-Benzylacetamido Group into the Acetamido Group by Autoxidation in Potassium t-Butoxide-Dimethyl Sulphoxide. J. Chem. Soc., Chem. Commun. 1983, 465-466.
(34) Shendage, D. M.; Fröhlich, R.; Haufe, G. Highly Efficient Stereoconservative Amidation and Deamidation of α-Amino Acids. Org. Lett. 2004, 6, 3675-3678.
(35) Pavan Kumar, G.; Rambabu, D., Basaveswara Rao, M. V.; Pal, M. lodine-Mediated Neutral and Selective NBoc Deprotection. J. Chem. 2013, 2013, 1-5.
(36) Routier, S.; Sauge, L.; Ayerbe, N.; Coudert, G.; Mérour, J. Y. A Mild and Selective Method for N-Boc Deprotection. Tetrahedron Lett. 2002, 43, 589-591.
(37) Evans, E. F.; Lewis, N. J.; Kapfer, I.; Macdonald, G.; Taylor, R. J. N-tert-Butoxycarbonyl (BOC) Deprotection using Boron Trifluoride Etherate. Synth. Commun. 1997, 27, 1819-1825.
(38) Kamata, K.; Kasai, J.; Yamaguchi, K.; Mizuno, N., Efficient Heterogeneous Oxidation of Alkylarenes with Molecular Oxygen. Org. Lett. 2004, 6, 3577-3580.
(39) Gao, P.; Sipos, G.; Foster, D.; Dorta, R., Developing NHC-Iridium Catalysts for the Highly Efficient Enantioselective Intramolecular Hydroamination Reaction. ACS Catal. 2017, 7, 6060-6064.
(40) Presset, M.; Pignon, A.; Paul, J.; Le Gall, E.; Leonel, E.; Martens, T., Synthesis of Indolines by a Zn-Mediated Mannich Reaction/Pd-Catalyzed Amination Sequence. J. Org. Chem. 2017, 82, 3302-3310.
(41) Hlasta, D. J.; Luttinger, D.; Perrone, M. H.; Silbernagel, M. J.; Ward, S. J.; Haubrich, D. R., Alpha 2-Adrenergic Agonists/Antagonists: The Synthesis and Structure-Activity Relationships of a Series of Indolin-2-yl and Tetrahydroquinolin-2-yl Imidazolines. J. Med. Chem. 1987, 30, 1555-1562.
(42) Jiao, L.-Y.; Oestreich, M., Oxidative Palladium(II)-Catalyzed C-7 Alkenylation of Indolines. Org. Lett. 2013, 15, 5374-5377.
(43) Ferraro, A.; Bernardi, L.; Fochi, M., Organocatalytic Enantioselective Transfer Hydrogenation of β-Amino Nitroolefins. Adv. Synth. Catal. 2016, 358, 1561-1565.
(44) Pensa, A. V.; Cinelli, M. A.; Li, H.; Chreifi, G.; Mukherjee, P.; Roman, L. J.; Martasek, P.; Poulos, T. L.; Silverman, R. B., Hydrophilic, Potent, and Selective 7-Substituted 2-Aminoquinolines as Improved Human Neuronal Nitric Oxide Synthase Inhibitors. J. Med. Chem. 2017, 60 (16), 7146-7165.
(45) Mehndiratta, S.; Wang, R.-S.; Huang, H. L.; Su, C. J.; Hsu, C. M.; Wu, Y. W.; Pan, S. L.; Liou, J. P., 4-IndolyI-Nhydroxyphenylacrylamides as Potent HDAC Class I and IIB Inhibitors in vitro and in vivo. Eur. J. Med. Chem. 2017, 134, 13-23.
(46) Wang, L.; Li, P.; Menche, D., Concise Synthesis of Tetrahydropyrans by a Tandem Oxa-Michael/Tsuji-Trost Reaction. Angew. Chem. Int. Ed. 2010, 49, 9270-9273.
(47) Meng, G. R.; Szostak, M., Palladium-catalyzed Suzuki-Miyaura Coupling of Amides by Carbon-Nitrogen Cleavage: General Strategy for Amide N-C Bond Activation. Org. Biomol. Chem. 2016, 14, 5690-5707.

[^0]: ${ }^{\text {a }}$ Reaction conditions: 10 a (1.0 equiv), $\mathbf{1 1}$ (1.0 equiv).

