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The synthesis (Pd-mediated coupling strategy) and characterization (NMR, IR, elemental analysis, etc.) of
a short series of quinoline–oxazole hybrid compounds has been carried out. These materials are found to
be moderately active against Plasmodium falciparum in vitro, with activities in the sub-micromolar range,
and to display acceptable cytotoxicity to mononuclear leukocytes. Chemical modification strategies, with
the intention to increase the biological potency of this new class of anti-malarial agents, are discussed.

� 2011 Elsevier Ltd. All rights reserved.
Malaria infection results in over 300 million clinical cases and
1.5–2.7 million deaths worldwide per year. Over half of these cases
are caused by the most virulent human malaria species, Plasmo-
dium falciparum.1 This apicomplexan protozoan alternates between
asexual reproduction in humans and sexual reproduction in female
mosquitoes of the genus Anopheles. Following initial infection of
human hepatocytes, P. falciparum reproduces asexually through
erythrocytic schizogony every 36–48 h.

Classical anti-malarial compounds (e.g., quinine: Fig. 1) antago-
nize P. falciparum by inducing heme accumulation in the parasite
membrane, consequently disturbing cation homeostasis and result-
ing in parasite death.2,3 The characteristic quinoline ring is found in
both the natural product quinine4 and the synthetic anti-malarial
chloroquine (CQ: Fig. 1). This latter molecule is a relatively inexpen-
sive and highly effective 4-amino-quinoline anti-malarial and was
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for some time the first choice for the treatment of uncomplicated
falciparum malaria despite its notable side effects.5,6 However, CQ
is presently ineffective in the majority of areas of endemic malaria
due to the development and spread of resistant P. falciparum iso-
lates.5,7–10

Alternative anti-malarials such as mefloquine, artemisinin and
their derivatives are used to treat these drug-resistant infections,
but these drugs increase treatment costs as much as 10-fold. There
is also an increased risk of other side effects with these novel com-
pounds such as neurotoxicity.3,11 Proposed solutions to the
expanding drug resistance includes research into novel modes of
drug action8,12 and synthetic modifications of existing anti-malar-
ial agents. Specifically, this latter strategy typically involves chem-
ical alteration of side chain functional groups. The overall goal is to
create novel molecular scaffolds which can evade resistance mech-
anisms to the original mother compound.

Oxazole derivatives, such as the 2-amino-1,3-oxazoles and the
4,5-dihydro-1,3-oxazoles (i.e., the 2-oxazolines), have long been
recognized for their potent biological activity13–15 and relatively
low cost of production. To our knowledge, the application of an
oxazoline derivative as a potential anti-malarial agent has not hith-
erto been investigated. In this report, we detail the synthesis and
in vitro anti-malarial testing of a short series of quinoline–oxazole
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Figure 1. The structures of quinine, CQ, AQ and compounds 1–4.

Scheme 1. The general reaction protocols leading to compounds 1–4.
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hybrids (Fig. 1: compounds 1–4) and establish IC50 data for both
these molecules against CQ resistant (K1) and sensitive (3D7) P. fal-
ciparum cell lines.

Compounds 1–4 (Fig. 1) were synthesised (Scheme 1) by adapt-
ing a Pd-mediated cross-coupling procedure (Buchwald–Hartwig
reaction)16,17 involving 4-iodo-7-chloroquinoline18 (via commercial
4,7-dichloroquinoline) and an appropriate aniline with a meta- or
para-located 1,3-oxazole substituent.19,20 These latter components
were in turn produced from the suitably substituted 2-(nitro-
phenyl)-2-oxazoline20–22 by standard reduction protocols (10% Pd/
C, HCOONH4 in EtOH: reflux: Scheme 1).23,24 Purification was per-
formed using standard flash chromatographic separation and recys-
tallisation procedures.25–27
Compounds 1–4 were initially screened on cultures of P. falcipa-
rum clone 3D7A to evaluate if these materials exhibited any anti-
malarial activities.28 Qualitative estimates based on examination
of blood films made from treated cultures (Supplementary data)
suggested that all four compounds were active in the 1 lM range
and could facilitate complete cell eradication upon extended expo-
sures (2–7 d). Having established this aspect, precise IC50 values
were then established.33 In addition, the general cytotoxicity pro-
file was determined on isolated mononuclear leukocytes (MNL)
using standard protocols.34,35

When compared to CQ and Atovaquone (AQ),4 compounds 1–4
are about an order of magnitude less active against P. falciparum
in vitro (Table 1). Of the four novel compounds, compound 3, the
meta-substituted derivative with further substitution on oxazoline
ring position-4, is the most promising. It has been previously
shown that the replacement of H by a methyl group has little effect
on the donor ability of the oxazoline (i.e., the electronic nature of
the heterocycle as quantified by pKa values).36 Previous examples
of aniline-derived quinoline anti-malarial agents have demon-
strated superior activity for para-appended aromatic derivatives
(e.g., pyronaridine, amodiaquine, etc.)37 and hence our observed
activity trend here is contradictory to this general observation.

Although MNL, including monocytes, macrophages and den-
dritic cells, are not the target of 4-aminoquinoline toxicity, these
cells are easily obtained in large numbers from peripheral blood
and have been used by others in simple quantitative comparisons
of compound cytotoxicity.38–40 CQ application to peripheral blood
MNL by Winstanley et al.40 resulted in a significant degree of cell
death compared to control cells, dependent on concentration over
the 1–100 lM range. This observed toxicity was consistent with
5–500 lM application of CQ and compounds 1–3 to monocytes,
for a five-day incubation period (Supplementary data). Compound
4, the lowest active novel compound, was precluded from these
cytotoxicity trails. Treatment with compounds 1 and 2 resulted
in gradually decreasing cell health with increased drug concentra-
tion, including the presence of cell fragments and small



Table 1
IC50 data (lM) for CQ, Atovaquone (AQ) and compounds 1–4 tested against P. falciparum strains K1 (CQ resistant) and 3D7 (CQ sensitive)a

Strain IC50 (lM)

CQ AQ 1 2 3 4

K1 NMa 0.0177 (±0.0002) 0.846 (±0.156) 0.895 (±0.134) 0.711 (±0.127) >1b

3D7 0.0177 (±0.0002) NMa 0.192 (±0.012) 0.091 (±0.015) 0.083 (± 0.026) 0.308 (± 0.091)

a NM = not measured.
b Value >1 not precisely determined.
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macrophages without visible pseudopodia, following incubation in
500 lM (Table S1: Supplementary data). This concentration depen-
dent pattern and the general qualitative observations of monocytes
treated with compounds 1 and 2 were very similar to those cells
subjected to CQ solutions. In the two highest concentrations of
compound 3, crystal aggregations in globular- and spike-form were
clearly visible and the cells were considerably more damaged com-
pared to application of all other compounds. A general conclusion
to these observations is that compounds 1–3 have a general toxic-
ity profile similar to CQ and are hence at least relatively non-toxic
to non-target cells.

Mechanisms for drug accumulation in the food vacuole that
include a ‘receptor’ for CQ, an intravacuolar receptor, free heme
molecules acting as a receptor, or a carrier-mediated method,
stress the importance of this 3-D drug structure and subsequent
effectiveness of the compounds themselves.4,5,37,41 Alternatively,
the basicity of a compound affects anti-malarial activity in the
weak base model, which proposes the difference in pH between
the external medium and the food vacuole as the single determi-
nant of CQ accumulation.5 Considering the very similar expected
pKa values between the novel compounds, differences in anti-
malarial activity between the individual novel quinoline com-
pounds and between these compounds and CQ are likely attribut-
able to variation in the side chain structure, supportive of the
receptor mechanism for drug accumulation. The in vitro results
also suggest, based on these concepts, that increasing the overall
basicity of derivatives having the same general structural charac-
teristics of 3 might facilitate greater biological potency. This will
be examined in later compounds by, for example, the replace-
ment of the oxazoline by a more basic oxazole or incorporation
of EDGs or more basic functionalities onto the heterocyclic ring
system.15 These modifications may result in sufficient structural
changes of our materials compated to that of CQ with the objec-
tive of evading the CQ-resistance mechanism(s). It has been noted
that CQ derivatives with shortened and lengthened amine side
chains have been shown to exhibit undiminished activity against
resistant isolates.42

In both the anti-malarial and cytotoxicity analysis, compounds
2 and 3 demonstrated slightly superior activity (in terms of IC50

values at 48 h) and the latter an acceptable toxicity profile. Appli-
cation of compound 1 resulted in the death of all detectable para-
sites (7 d incubation) at the three highest drug concentrations,
proving to be slightly more effective at outright cell death rates
than compounds 2–4 but all with an overall lower potency than
CQ. Furthermore, compound 1 was minimally toxic to monocytes,
compared to the other compounds (2, 3 and CQ).

These data suggest that although the general class of quinoline–
oxazole hybrids appear to have promise as anti-malarial agents
due to their low toxicity and ease of syntheses, considerable
improvements to the general potency, most importantly increasing
activity to the nanomolar level, will be necessary for these com-
pounds to be useful drug candidates. This facet might be facilitated
by the incorporation of electron withdrawing groups or other basic
side chains to the generalized quinoline–oxazole structure, and
such endeavors are currently a focus of our research.
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