Enantioselective Synthesis of cis- and trans-2(S)-Amino-1-d-indane: Debrominative [1,2]-Hydride Shift Rearrangement by Reduction of cis-2-Azido-1-bromoindane with LiAlD₄

Anton A. Mitrochkine,[†] Ingrid Blain,[†] Christelle Bit,[†] Cécile Canlet,[‡] Sébastien Pierre,[†] Jacques Courtieu,[‡] and Marius Réglier^{*,†}

Laboratoire de Bioinorganique Structurale, UMR CNRS 6517, Universités d'Aix-Marseille 1 et 3, Faculté des Sciences et Techniques de Saint Jérôme, case 432, avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France, and Institut de Chimie Moléculaire d'Orsay, Bât 410, Laboratoire de Chimie Structurale Organique, URA CNRS 1384, 91405 Orsay Cedex, France

Received February 27, 1997[®]

This article describes the synthesis of the racemic and optically pure forms of (1R, 2S)-cis- and (1*S*,2*S*)-*trans*-2-Amino-1-*d*-indanes 2 {94% ee} and 3 {83% ee} (ee determined by ²H NMR in chiral liquid crystal PBLG/CH₂Cl₂, Courtieu, J. et al. J. Am. Chem. Soc. **1995**, 117, 6520) prepared by LiAlD₄ reduction of (\pm) - and (1S,2S)-trans-2-azido-1-bromomoindane (11) {87% ee} and (\pm) and (1R,2S)-cis-2-azido-1-[(methanesulfonyl)oxy]indane (10) {83% ee}, respectively. Whereas the LiAlD₄ reduction of *trans*-2-azido-1-bromomoindane (11) led to *cis*-2-amino-1-*d*-indane 2 by a $S_N 2$ pathway, exclusively, the reduction of *cis*-1-bromo derivative 12 gave only small amounts of the S_N2 product trans-2-amino-1-d-indane (3) (15%) accompanied by 2-amino-2-d-indane (4) (85%) in which the deuterium atom is incorporated in α position to the amino group. It was established that the primary amine 4 comes from a stereospecific [1,2]-hydride shift rearrangement. We propose that the azido group is reduced first, and the [1,2]-hydride shift rearrangement prevails over the competitive $S_N 2$ substitution. The exclusive formation of *trans*-2-amino-1-*d*-indane (3) requires *cis*-2-azido-1-[(methanesulfonyl)oxy]indane (10) where the mesylate assisted by electrophilic Li^+ cation switches the deuteride attack to the ester carbon and the direct S_N2 substitution occurs before the azide is reduced.

Introduction

In the course of our studies on the functional models¹ and the topology² of the dopamine β -hydroxylase active site (DBH; EC 1.14.17.1),³ a copper-containing monooxygenase which catalyzes the transformation of dopamine into noradrenaline, it became necessary to synthesize 2-aminoindanes 2 and 3 stereoselectively deuterated in one of the benzylic positions. In addition, both racemic and optically pure (2S) forms were required. Aluminohydrides which are the reagents commonly used for the C-X bond hydrogenolysis of alkyl halides, react as nucleophilic reagents that donate a hydride ion to the halogenated substrates.⁴ Although a variety of mechanisms, including $S_N 2$ and single electron transfer (SET), have been proposed to describe this reduction,^{5,6} the pioneering stereochemical studies of Eliel,⁷ Mosher,⁸ and more recently Ashby⁶ have shown that LiAlH₄ reacts with secondary benzylic chlorides and bromides according to

S0022-3263(97)00378-2 CCC: \$14.00

a S_N2 mechanism devoid of radical species. Therefore, we decided to study the LiAlD₄ reduction of *trans*- and cis-2-azido-1-bromoindanes (11 and 12) in order to prepare selectively cis- and trans-2-amino-1-d-indanes (2 and **3**). During this work, we found that the reduction of the cis-1-bromo derivative 12 did not follow the predicted pathway but gave 2-amino-2-d-indane (4) in which the deuterium atom is incorporated in the α position of the amino group. Using 2-azido-1-bromoindanes 21 and 22 deuterated in 2 position, we will show that 4 comes from a stereospecific [1,2]-hydride shift rearrangement.

Results and Discussion

 (\pm) -2-Azido-1-bromoindanes **11** and **12** were obtained as a mixture from (\pm) -2-azido-1-indanol (8)⁹ by bromination with PBr₃ in CCl₄. We found that the ratio **11**:**12** depended on the reaction conditions. For example, a **11**: 12 = 99:1 ratio was obtained when PBr₃ was rapidly added (<5 min) at rt to a 0.3 M CCl₄ solution of 8. Given that both bromides 11 and 12 are necessary for our study

[†] Universités d'Aix-Marseille.

[‡] URA CNRS

[®] Abstract published in Advance ACS Abstracts, August 1, 1997. (1) Réglier, M.; Amadéi, E.; Alilou, E. H.; Eydoux, F.; Pierrot, M.; Waegell, B. In *Bioinorganic Chemistry of Copper*, Karlin, K. D., Tiecklar, Z., Eds., Chapman and Hall: New York, 1993; p 348.

⁽²⁾ Eydoux, F.; Chlenov, M. A.; Réglier, M. Bioorg. Med. Chem. Lett. 1995, *9*, 941.

⁽³⁾ Stewart, L. C.; Klinmann, J. P. Annu. Rev. Biochem. 1988, 57,

⁽³⁾ Stewart, L. C.; Khinnann, J. F. Anna. Rev. Dochem. 1906, 37, 551. Klinmann, J. P. Chem. Rev. 1996, 96, 2541.
(4) Seyden-Penne, J. Reduction by Alumino- and Borohydrides in Organic Synthesis, VCH: New York, 1991.
(5) Ashby, E. C.; Pham, T. N. J. Org. Chem. 1986, 51, 3598. Ashby, E. C.; Pham, T. N.; Amrollah-Madjdabadi, A. J. Org. Chem. 1991, 56, 1506.

^{1596.}

⁽⁶⁾ Ashby, E. C.; DePriest, R. N.; Goel, A. B.; Wenderoth, B.; Pham, (6) ASIBY, E. C., DETREST, K. N., GOET, A. D., Wenderotti, B., Fham,
T. N. J. Org. Chem. **1984**, 49, 3545.
(7) Eliel, E. L. J. Am. Chem. Soc. **1949**, 71, 3970.
(8) Elsenbaumer, R. L.; Mosher, H. S. J. Org. Chem. **1979**, 44, 600.

⁽⁹⁾ Mitrochkine, A.; Eydoux, F.; Martres, M.; Gil, G.; Heumann A.; Réglier, M. Tetrahedron: Asymmetry **1995**, 6, 59. Mitrochkine, A.; Gil, G.; Réglier, M. Tetrahedron: Asymmetry **1995**, 6, 1535.

 a (i) NaH, THF, then TsCl or nBuLi, THF then MsCl, (ii) PBr_3, CCl_4, (iii) LiAlD_4, THF.

and since they are very easily separated by flash chromatography (SiO₂, pentane:CH₂Cl₂ = 7:3, $\Delta R_f = 2$), we chose reaction conditions (addition of PBr₃ to a 0.03 M CCl₄ solution of **8**) which gave a maximum amount of *cis*-bromide **12** (94% yield, **11:12** = 2.4:1). In the same way, optically active (1*R*,2*S*)-**8** {83% ee}⁹ was converted into (1*S*,2*S*)-**11** {65% yield, 87% ee, $[\alpha]^{D}_{25} = +5.7$ (*c* 1.4, CHCl₃)} and (1*R*,2*S*)-**12** {25% yield, 90% ee, $[\alpha]^{D}_{25} = -21$ (*c* 1, CHCl₃)} both without noticeable loss of enantiomeric purity.¹⁰

(±)-11 was transformed with LiAlD₄ in THF, into (±)-2-amino-1-*d*-indane (2) (90% yield) which showed a broad singlet at 2.64 ppm in the ²H-NMR spectrum. The stereochemistry of **2** was clearly assigned by ¹H-NMR. Nondeuterated 2-aminoindane (1) shows three characteristic signals at 3.8, 3.1 and 2.6 ppm integrating for 1, 2, and 2 protons and, respectively, assigned to H_a, H^{trans}, and H^{cis}_β protons (Figure 1a). Deuterated compound **2** shows the same three resonances but with a ratio of the signal intensity of H^{trans}_β:H^{cis}_β = 2 (Figure 1b). This ratio and the 2.64 ppm chemical shift in ²H-NMR indicate that the deuterium atom in **2** is *cis* with respect to the amino group.

Reduction of the optically active *trans*-bromide (1*S*,2*S*)-**11** {87% ee} afforded (1*R*,2*S*)-**2** at a 66% yield {94% ee}. The enantiomeric excess was measured after transformation of (\pm)-**2** and (1*R*,2*S*)-**2** into *N*-trifluoroacetamide derivatives (\pm)-**6** and (1*R*,2*S*)-**6**, respectively, and through ²H-NMR using a chiral liquid crystal (PBLG/CH₂Cl₂) following the technique proposed by Courtieu *et al.*¹¹ The

Figure 1. ¹H NMR spectra in CDCl₃ of 2-aminoindanes 1–3.

²H-NMR spectra of (±)- and (1*R*,2*S*)-**6** are shown in Figure 2. Two different doublets are found for (±)-**6**, one for each enantiomer, with quadrupolar splittings $\Delta v_{Q1} =$ 1246 Hz and $\Delta v_{Q2} =$ 526 Hz (Figure 2a), whereas (1*R*,2*S*)-**6** shows one doublet with $\Delta v_Q =$ 526 Hz (Figure 2b). The large difference in the quadrupolar splittings ($\Delta_{Q1} - \Delta_{Q2} =$ 720 Hz) permits the direct measurement of the enantiomeric excess (94%) by integration of signals.

Reduction of (±)-**12** afforded a mixture which exhibits two broad singlets at 3.75 ppm and 3.10 ppm in the ²H-NMR at a 5.7:1 ratio. This result indicates that the desired compound **3** is obtained as minor product (signal at 3.10 ppm, 15%) accompanied by a new deuterated compound **4** (85%) for which the 3.75 ppm chemical shift in the ²H-NMR suggests a deuterium atom α to the amino group. ¹H and ¹³C-NMR spectra confirm this attribution. Indeed, in ¹H-NMR the three characteristic signals of H_{α}, H^{trans}_{β} and H^{cis}_{β} are in a ratio of 1:8.2:9.6 (Figure 3a). The two doublets of doublets observed for **1** at 3.1 ppm (H^{trans}_{β}) and 2.6 ppm (H^{cis}_{β}) are replaced in **4** by two simple doublets with a coupling constant ²J_{gem} = 15.9 Hz. Finally, in the ¹³C-NMR spectroscopy, the singlet at 53.2

⁽¹⁰⁾ Enantiomeric excesses were determined by HPLC using Chiral-cel column OD-H (Daicel) with hexane/isopropyl alcohol (99/1) as eluant.

⁽¹¹⁾ Canet, I.; Courtieu, J.; Loewenstein, A.; Meddour, A.; Pechiné, J. M. *J. Am. Chem. Soc.* **1995**, *117*, 6520.

Figure 2. Proton-decoupled ²H NMR spectra in the PBLG/ CH_2Cl_2 liquid crystal solvent of *cis* (*a*) (±)-6 and (*b*) (1*R*,2*S*)-6.

Figure 3. ¹H NMR spectra in CDCl₃ of 2-aminoindanes obtained by: (a) LiAlD₄ reduction of *cis*-2-azido-1-bromoindane (12) and (b) LiAlH₄ reduction of *cis*-2-azido-1-bromo-2-*d*-indane (22).

ppm attributed to the C_{α} carbon in **1** became a triplet with a coupling constant ${}^{1}J_{C-D} = 21$ Hz. All these results confirm that the major product 4 contains a methine deuterium as a result of a transposition.

These complications made us to focus more attention on better leaving groups such as sulfonate derivatives. Compounds (\pm) -9 and (\pm) -10 were obtained in excellent yields by reaction of the alcoholate anion of (\pm) -cis-2azido-1-indanol (8) with the corresponding sulfonyl chlo-

Figure 4. Proton-decoupled ²H NMR spectra in the PBLG/ CH_2Cl_2 liquid crystal solvent of *trans* (a) (±)-7 and (b) (1*S*,2*S*)-7.

ride. LiAlD₄ reduction of tosylate (\pm) -9 gave a mixture of compounds 3 and 4 but in a ratio of 3:1, reversed with respect to the reaction of (\pm) -12 (determined by ²H-NMR). Finally, (\pm) -trans-2-amino-1-d-indane (3) could be obtained as the unique product from (\pm) -10 when mesylate is the leaving group. For this reduced deuterated compound 3, ²H-NMR exhibits a single broad singlet at 3.10 ppm and three characteristic proton resonances with a ratio of the signal intensity of H_{β}^{trans} : $H_{\beta}^{cis} = 0.57$ (Figure 1c), showing the trans stereochemistry of the deuterium atom.

Reduction of the optically active (1*R*,2*S*)-**10** obtained from (1*R*,2*S*)-8 {83% ee} afforded (1*S*,2*S*)-3 at a 35% yield and 89% ee determined after transformation into the N-trifluoroacetamide derivatives 7 and ²H-NMR analysis (Figure 4). Similar to (\pm) -6, the ²H-NMR spectrum of (\pm) -7 consists of two doublets, one for each enantiomer, with quadrupolar splittings $\Delta v_{Q1} = 664$ Hz and $\Delta v_{Q2} =$ 166 Hz ($\Delta v_{Q1} - \Delta v_{Q2} = 498$ Hz; Figure 4a), whereas (1*S*,2*S*)-7 shows only one doublet with $\Delta v_Q = 664$ Hz (Figure 4b).

These results show that the LiAlD₄ reduction of transbromide 11 and cis-mesylate 10 occur with a high degree of stereolectivity by a S_N2 mechanism leading, exclusively, to cis-2-amino-1-d-indane (2) and trans-2-amino-1-d-indane (3), respectively. However, a question remains: does the azido group reduction occur before or after the hydrogenolysis of the C-Br bond? Hydride reduction of β -halo azides is known to lead to aziridines in high yields.¹² For example, reduction of *trans*-1-azido-2-bromoindane (13), an isomer of 11, gives indano[1,2b]aziridine (14) quantitatively.¹³ In this reaction, reduction of the azido group and the subsequent ring closure

⁽¹²⁾ Chen, S.-C. Synthesis 1974, 691.
(13) Chiu, I.-C.; Kohn, H. J. Org. Chem. 1983, 48, 2857. Nguy, N.
M.; Chiu, I.-C.; Kohn, H. J. Org. Chem. 1987, 52, 1649.

Scheme 3. Mechanistic Pathways Proposed for the LiAlD₄ Reduction of trans-2-Azido-1-bromoindane (11)

occur prior to the hydrogenolysis of the C-Br bond. Given that, we have never observed the formation of aziridine 14 upon reduction of 11, one possibility would be to consider that the benzylic C-Br bond hydrogenolysis occurs before azido group reduction. A second possibility takes into account azido group reduction leading to amide **B**, prior to the benzylic C-Br bond hydrogenolysis by a process faster than the ring closure which would have to lead to aziridine 14. In this case, hydrogenolysis can be accelerated by intramolecular assistance according to a five-membered ring transition state. The results obtained with cis-2-azido-1-bromoindane (12) support the second possibility (vide infra).

The reduction of cis-2-azido-1-bromoindane (12) and subsequent formation of 2-amino-2-d-indane (4) needs some comment. This compound was exclusively observed with cis derivatives 9 and 12, and the formation of 4 can be explained: (i) if we assume that the first step of the reaction is the reduction of azido group into amide **D** and (ii) if a [1,2]-hydride shift rearrangement occurs together with the displacement of the bromo group via an imine intermediate **E** (Scheme 4). In the final step, imine **E** is reduced to the amine by an excess of LiAlD₄. With better leaving groups such as mesylate and assisted by the electrophilic Li⁺ cation,¹⁴ the first step is now the hydrogenolysis of C-OMs bound via a S_N2 mechanism leading to azido compound G which is reduced to the amine **3** in the second step. Finally, with tosylate, which has poorer leaving group properties than mesylate, the two processes are competitive, and a mixture of compounds 3 and 4 is obtained.

Stereoselective [1,2]-hydride shift rearrangement has been demonstrated with ribonucleoside 2'(or 3')-monotosylates and lithium triethyl borohydride.¹⁵ In order to show without ambiguities the same type of rearrangement during the reduction of cis-2-azido-1-bromoindane (12) with LiAlD₄, we prepared *cis*- and *trans*-2-azido-1bromo-2-d-indanes (21 and 22) and studied their reactivity toward LiAlH₄ in THF. In the case of a [1,2]-hydride shift rearrangement, we should expect the formation of a 1:1 mixture of 2-amino-1-d-indanes 2 and 3 from the

Scheme 4. Mechanistic Pathways Proposed for the LiAlD₄ Reduction of *cis*-2-Azidoindane Derivatives 9, 10, and 12

^a (i) LiAlD₄, THF, 73%; (ii) NaH, THF then TsCl, 83%; (iii) MeONa, MeOH, 30%, (iv) NBS, DMSO-H₂O, 98%, (v) NaN₃, DMF, 97%, (vi) PBr₃, CCl₄.

reduction of the *cis*-2-azido-1-bromo-2-*d*-indane (22), while trans-2-azido-1-bromo-2-d-indane (21) should give 2-amino-2-d-indane (4).

2-d-Bromides 21 and 22 were obtained in six steps from 2-indanone 15 as described in Scheme 5. As expected, LiAlH₄ reduction of trans-bromide 21 afforded 2-amino-2-d-indane (4) as the unique product without any deuterium atom migration. Under the same conditions, cis-bromide 22 afforded a mixture of d-aminoindanes 2-4 which showed the three characteristic NMR signals for H_{α} , H_{β}^{trans} and H_{β}^{cis} in a 1:1.6:1.6 ratio (Figure 3b). From these values we can conclude a ratio 2:3:4 =47:47:6.16 The same ratio was confirmed by ²H-NMR

⁽¹⁴⁾ Krishnamurthy, S. J. Org. Chem. 1980, 45, 2250.
(15) Hansske, F.; Robins, M. J. J. Am. Chem. Soc. 1983, 105, 6736.

where three broad singlets at 3.75 (1 D), 3.10 (8 D), and 2.64 ppm (8 D), corresponding to *d*-aminoindanes **4**, **3** and **2**, were observed. The presence of high quantities (94%) of rearranged 2-amino-1-*d*-indanes **2** and **3** confirms our hypothesis of a [1,2]-hydride shift. Moreover, the presence of 2-amino-1-*d*-indanes **2** and **3** in 1:1 mixture demonstrates the occurrence of an imine intermediate **E** which undergoes a hydride attack by the both faces of the cyclopentane ring.

Conclusion

In conclusion, the results reported in this paper show that it is possible to synthesize all three isomers of selectively (cyclopentane ring) deuterated 2-aminoindanes 2-4 from 1,2-disubstituted starting materials and lithium aluminum deuterate as a reducing agent. However, the reactions were less straightforward than initially expected, and the orientation of the deuteration reaction depends on the stereochemistry and/or the nature of the leaving group that is replaced by the deuterium. Whereas the cis aminoindane 2 has been obtained by LiAlD₄ S_N2 reduction of trans bromo derivative 11, the formation of the trans deuterated aminoindane 3 requires a *cis* compound 10 with a better leaving group such as mesylate. During the reduction of the cis bromo derivative 12, a competitive [1,2]-hydride shift becomes the predominant reaction, suppressing the desired direct S_N2 substitution more or less completely leading to compound 4. It is shown that the azido group is reduced first, and the intramolecular substitution reaction ([1,2]-hydride shift) prevails over the competitive intermolecular one (S_N2 substitution), leading, via an imine, to the rearranged primary amine 4. Better leaving groups such as mesylate assisted by the electrophilic Li+ cation switches the deuteride attack to the ester carbon, and the direct $S_N 2$ substitution occurs before the azide is reduced.

Experimental Section

All the reagents were purchased from the Sigma-Aldrich Company and used without purification except 2-aminoindane hydrochloride (1) which was used after washing of a CH₂Cl₂ solution by saturated NaHCO₃, drying over Na₂SO₄, and evaporation of the solvent. Compound (\pm) -8 was obtained by hydroxybromination of indene ($\hat{NBS}/DMSO-H_2O$) followed by NaN₃ bromide substitution (NaN₃/DMF) as described in the literature.⁹ Optically pure (1*R*,2*S*)-8 was obtained in 83% ee by enzymatic resolution using lipase as described in the literature.9 Solvents were freshly distilled under argon: MeOH from magnesium, THF from sodium benzophenone ketyl, DMSO and DMF from calcium hydride, and CCl_4 from P_2O_5 . NMR spectra were recorded on Bruker AC-200 (1H and 13C) or AC-400 (²H) spectrometers. Chemical shifts are reported in ppm as δ values downfield from an internal standard of TMS (¹H and ¹³C) or CDCl₃ (²H). Elemental analyses were obtained on a CHN Technicon microanalyser.

1. Standard Conditions for LiAlD₄ (or LiAlH₄) Reductions. A solution of benzylic bromide (or sulfonate) and LiAlD₄ (or LiAlH₄) in THF was stirred under Ar until TLC (SiO₂, CH₃OH) showed complete disappearance of the starting material. Then, hydride excess was destroyed by slow addition of 1 N HCl, and the precipitate was separated from the solution by centrifugation. Concentration of the organic layer under reduced pressure gave an acidic aqueous solution (pH = 1) which was washed with CH₂Cl₂ and turned to pH = 9 by addition of 3 M NaOH solution. The basic layer was extracted three times with CH₂Cl₂, and the organic layers were dried over Na₂SO₄. Concentration under reduced pressure gave crude product which was purified by flash chromatography (SiO₂, CH₃OH).

cis-2-Amino-1-*d*-indane {2}. Under standard conditions, the reduction of *trans*-2-azido-1-bromoindane (11) (1.23 g, 5.2 mmol) by LiAlD₄ (1 g, 24 mmol) in THF (100 mL) at 0 °C gave 2 (624 mg, 90%). ¹H-NMR (CDCl₃), δ : 1.5 (br s; 2 H); 2.6 (dd; J = 15.8, 5.0 Hz; 1 H); 3.1 (br dd, J = 15.8, 6.6 Hz; 2 H); 3.8 (td, J = 6.6, 5.0 Hz; 1 H); 7.1–7.4 (m; 4 H). ¹³C-NMR (CDCl₃), δ : 42.7 (t, $J_{C-D} = 21$ Hz; CDH); 43.1 (CH₂); 53.0 (CH); 124.8 (2 CH); 126.4 (2 CH); 141.8 (2 C). ²H-NMR (CCl₄), δ : 2.64 (br s).

trans-2-Amino-1-*d*-indane {3}. Under standard conditions, the reduction of *cis*-2-azido-1-[(methanesulfonyl)oxy]indane (**10**) (518 mg, 2.05 mmol) by LiAlD₄ (818 mg, 20.5 mmol) in THF (50 mL) at -30 °C gave **3** (96 mg, 35%). ¹H-NMR (CDCl₃), δ : 1.5 (br s; 2 H); 2.6 (br dd, J = 15.8, 5.0 Hz; 2 H); 3.1 (dd, J = 15.8, 6.6 Hz; 1 H); 3.8 (dt, J = 6.6, 5.0 Hz; 1 H); 7.1–7.4 (m; 4 H). ¹³C-NMR (CDCl₃), δ : 42.7 (t, $J_{C-D} = 21$ Hz; CDH); 43.1 (CH₂); 53.0 (CH); 124.8 (2 CH); 126.4 (2 CH); 141.8 (2 C). ²H-NMR (CCl₄), δ : 3.10 (br s).

2-Amino-2-*d***-indane {4}.** Under the standard conditions, the reduction of *trans*-2-azido-1-bromo-2-*d*-indane **(21)** (50 mg, 0.21 mmol) by LiAlH₄ (50 mg, 1.3 mmol) in THF (2 mL) at 0 °C gave **4** (20 mg, 72%). ¹H-NMR (CDCl₃), δ : 1.7 (br s; 2 H); 2.6 (d, J = 15.9 Hz; 2 H); 3.1 (d, J = 15.9; 2 H); 7.1–7.4 (m; 4 H). ²H-NMR (CCl₄), δ : 3.75 (br s).

2. Standard Conditions for Trifluoroacetamidation Reactions. A solution of 2-aminoindane was treated with $(CF_3CO)_2NMe$ (1.5 equiv) in EtOAc at 0 °C. The mixture was stirred at rt until TLC (SiO₂, pentane:EtOAc = 70:30) showed complete disappearance of the starting material. The solution was washed with brine and dried over Na₂SO₄. Concentration under reduced pressure gave crude product which was purified by flash chromatography (SiO₂, pentane:EtOAc = 70:30).

2-Trifluoroacetamidoindane {**5**}. Under the standard conditions, the reaction of 2-aminoindane (**1**) (50 mg, 0.38 mmol) with (CF₃CO)₂NMe (90 μ L, 0.62 mmol) in EtOAc (1 mL) gave **5** (75 mg, 85%). Anal. Calcd for C₁₁H₁₀NOF₃: C 57.64; H 4.40; N 6.11. Found C 57.78; H 4.65; N 6.23. ¹H-NMR (CD₃CN), δ : 2.9 (dd; J = 16.4, 4.1 Hz; 2 H); 3.4 (dd, J = 16.4, 7 Hz; 2 H); 4.8 (m; 1 H); 6.6 (br s; 1 H); 7.1–7.3 (m; 4 H).

cis-2-Trifluoroacetamido-1-*d*-indane {6}. Under the standard conditions, the reaction of *cis*-2-amino-1-*d*-indane 2 (72 mg, 0.54 mmol) with $(CF_3CO)_2NMe$ (116 μ L, 0.8 mmol) in

⁽¹⁶⁾ Ratio **2:3:4** can be evaluated by resolving the following three equations: $I_{3.8} = [\mathbf{2}] + [\mathbf{3}]; I_{3.1} = 2[\mathbf{2}] + [\mathbf{3}] + 2[\mathbf{4}]$ and $I_{2.6} = [\mathbf{2}] + 2[\mathbf{3}] + 2[\mathbf{4}]$ where *I* are the integration values of signals at 3.8, 3.1, and 2.6 ppm.

EtOAc (2 mL) gave **6** (110 mg, 89%). Anal. Calcd for $C_{11}H_9DNOF_3$: C 57.39; H 4.80; N 6.08. Found C 57.50; H 5.00; N 6.10. ¹H-NMR (CD₃CN), δ : 2.9 (dd; J = 16.4, 5.5 Hz; 1 H); 3.3 (br dd, J = 16.4, 7.6 Hz; 2 H); 4.6 (td, J = 7.6, 5.5 Hz; 1 H); 7.1–7.3 (m; 4 H); 7.9 (br s; 1 H).

trans-2-Trifluoroacetamido-1-*d*-indane {7}. Under standard conditions, the reaction of *trans*-2-amino-1-*d*-indane (3) (70 mg, 0.53 mmol) with (CF₃CO)₂NMe (116 μ L, 0.8 mmol) in EtOAc (1 mL) gave 7 (100 mg, 82%). Anal. Calcd for C₁₁H₉DNOF₃: C 57.39; H 4.80; N 6.08. Found C 57.70; H 4.61; N 6.09. ¹H-NMR (CD₃CN), δ : 2.9 (dd; J = 16.4, 5.5 Hz; 2 H); 3.3 (br dd, J = 16.4, 7.6 Hz; 1 H); 4.6 (dt, J = 7.6, 5.5 Hz; 1 H); 7.1–7.3 (m; 4 H); 7.9 (br s; 1 H).

3. *cis*-2-Azido-1-(tosyloxy)indane {9}. A solution of *cis*-2-azido-1-indanol (8) (591 mg, 3.4 mmol) and NaH (122 mg, 4 mmol) in THF (40 mL) was strirred under Ar at -20 °C for 15 min. Then, TsCl (126 mg, 35 mmol) was slowly added in order to maintain the temperature below -20 °C. The mixture was stirred at -20 °C for 30 min, filtered through Celite, and washed with ether. Evaporation of the solvents under reduced pressure gave 9 (945 mg, 85%) as crude product which for stability reasons was used without further purification. ¹H-NMR (CDCl₃), δ : 2.5 (s; 3 H); 3.2 (d, J = 6.8 Hz; 2 H); 4.1 (dt, J = 6.6, 5.2 Hz; 1 H); 5.9 (d, J = 5.2 Hz; 1 H); 7.2–7.3 (m; 4 H); 7.4 (d, J = 8.2 Hz; 2 H); 7.9 (d, J = 8.2 Hz; 2 H). ¹³C-NMR (CDCl₃), δ : 21.6 (CH₃); 34.8 (CH₂); 62.2 (CH); 83.1 (CH); 125.0 (CH); 125.8 (CH); 127.6 (CH); 127.9 (CH); 129.8 (CH); 130.0 (CH); 136.3 (C); 140.1 (C); 133.7 (C); 145.1 (C).

4. *cis*-2-Azido-1-(mesyloxy)indane {10}. By the same procedure described for compound 9, the reaction of *cis*-2-azido-1-indanol (8) (464 mg, 2.65 mmol), 2.5 M nBuLi in hexanes (1.16 mL, 2.9 mmol), and MsCl (205 mL, 2.6 mmol) in THF (10 mL) gave compound 10 (518 mg, 85%) as crude product which for stability reasons was used without further purification. ¹H-NMR (CDCl₃), δ : 3.0 (s; 3 H); 3.1 (d, J = 6.8 Hz; 2 H); 4.15 (dt, J = 6.8, 5.1 Hz; 1 H); 5.9 (d, J = 5.1 Hz; 1 H); 7.0–7.5 (m; 4 H). ¹³C-NMR (CDCl₃), δ : 34.7 (CH₂); 38.7 (CH₃); 61.9 (CH); 82.8 (CH); 125.1 (CH); 126.0 (CH); 127.8 (CH); 130.6 (CH); 136.2 (C); 140.4 (C).

5. 2-Azido-1-bromoindanes {11 and 12}. A solution of *cis*-2-azido-1-indanol (8) (1.125 g, 6.4 mmol) and PBr₃ (405 μ L, 2.2 mmol) in CCl₄ (200 mL) was strirred at rt until TLC (SiO₂, pentane) showed complete disappearance of compound 8. The mixture is washed with brine and concentrated under reduced pressure. Flash chromatography (SiO2, pentane) gave 11 (1 g, 66%) and 12 (426 mg, 28%). trans-2-Azido-1-bromoindane {11}. Anal. Calcd for C₉H₈N₃Br: C 45.40; H 3.39; N 17.65. Found C 42.97; H 3.63; N 17.12. ¹H-NMR (CDCl₃), δ : 2.9 (dd, J = 16.4, 3.4 Hz; 1 H); 3.4 (dd, J = 16.4, 6.3 Hz; 1 H); 4.5 (dt, J = 3.4, 6.2 Hz; 1 H); 5.3 (d, J = 3.4 Hz; 1 H); 7.1-7.5 (m; 4 H). ¹³C-NMR (CDCl₃), δ: 36.5 (CH₂); 54.6 (CH); 69.8 (CH); 125.0 (CH); 125.7 (CH); 128.0 (CH); 129.6 (CH); 139.8 (C); 140.5 (C). *cis*-2-Azido-1-bromoindane {12}. Anal. Calcd for C₉H₈N₃Br: C 45.40; H 3.39; N 17.65. Found C 43.57; H 3.53; N 17.29. ¹H-NMR (CDCl₃), δ : 3.1 (d, J = 7.9; 1 H); 4.05 (dt, J = 7.9, 5.1 Hz; 1 H); 5.5 (d, J = 5.1 Hz; 1 H); 7.1– 7.5 (m; 4 H). ¹³C-NMR (CDCl₃), δ: 34.9 (CH₂); 57.2 (CH); 63.4 (CH); 125.0 (CH); 125.2 (CH); 127.9 (CH); 129.7 (CH); 139.0 (C); 140.7 (C).

6. *d*-2-Indanol {16}. A solution of 2-indanone 15 (2.8 g, 21 mmol) and LiAlD₄ (1.19 g, 28.6 mmol) in ether (150 mL) was refluxed under Ar for 6 h. Water (20 mL) was carefully added, and the mixture was stirred for 30 min. The suspension was filtered through Celite and concentrated under reduced pressure. Flash chromatography (SiO₂, CH₃OH) gave **16** (2.1 g, 73%). Anal. Calcd for C₉H₉DO: C 79.97; H 8.19. Found C 80.05; H 8.10. ¹H-NMR (CDCl₃), δ : 1.7 (s; 1 H); 3.0 (d, J = 16.3 Hz; 2 H); 3.3 (d, J = 16.3 Hz; 2 H); 7.2–7.4 (m; 4 H). ¹³C-NMR (CDCl₃), δ : 42.3 (2 CH₂); 72.4 (t, $J_{C-D} = 23$ Hz; CD); 124.8 (2 CH); 126.5 (2 CH); 140.9 (2 C).

7. 2-(Tosyloxy)-2-*d***-indane {17}. By the same procedure described for compound 9**, the reaction at $-5 \,^{\circ}$ C of 2-*d*-2-indanol **16** (2.1 g, 15.5 mmol), NaH (520 mg, 17 mmol), and TsCl (2.96 g, 15.5 mmol) in THF (100 mL) gave **17** (3.74 g, 83%) as crude product which was used without further purification. ¹H-NMR (CDCl₃), δ : 2.4 (s; 3 H); 3.1 (d, J = 6.5 Hz; 4 H); 7.1–7.3 (m; 4 H); 7.35 (d, J = 8.2 Hz; 2 H); 7.8 (d, J = 8.2 Hz; 2 H). ¹³C-NMR (CDCl₃), δ : 21.5 (CH₃); 39.5 (2 CH₂); 82.1 (t, $J_{C-D} = 23$ Hz; CD); 124.4 (2 CH); 126.8 (2 CH); 133.9 (C); 138.9 (2 C); 144.7 (C).

8. 2-*d*-Indene {18}. A solution of 2-(tosyloxy)-2-*d*-indane 17 (3.7 g, 13 mmol) and CH₃ONa (700 mg, 13 mmol) in CH₃OH (50 mL) was stirred under Ar at 40 °C for 3 d. Flash chromatography (SiO₂, pentane) gave 18 (495 mg, 30%). Anal. Calcd for C₉H₇D: C 92.27; H 7.73. Found C 92.50; H 7.71. ¹H-NMR (CDCl₃), δ : 3.4 (s; 2 H); 6.9 (s; 1 H); 7.2–7.5 (m; 4 H). ¹³C-NMR (CDCl₃), δ : 39.0 (CH₂); 121.0 (CH); 123.8 (CH); 124.6 (CH); 126.3 (CH); 132.0 (CH); 134.0 (t, $J_{C-D} = 25$ Hz; CD); 143.7 (C); 144.9 (C).

9. *trans*-2-Bromo-2-*d*-1-indanol {19}. A solution of 2-*d*-indene 18 (46 μ L, 0.4 mmol) and NBS (175 mg, 1 mmol) in DMSO (1 mL) containing water (18 μ L) was stirred at rt for 6 h. Water (2 mL) was added, and the mixture was extracted with ether (3 × 5 mL). Organic layer was washed with brine (2 × 5 mL), dried over Na₂SO₄, and concentrated under reduced pressure. Flash chromatography (SiO₂, CH₂Cl₂) gave 19 (80 mg, 95%). Anal. Calcd for C₉H₈DOBr: C 50.49; H 4.71. Found C 51.11; H 4.63. ¹H-NMR (CDCl₃), δ : 2.6 (br s; 1 H); 3.2 (d, *J* = 16.1 Hz; 1 H); 3.5 (d, *J* = 16.1 Hz; 1 H); 5.3 (s; 1 H); 7.1–7.4 (m; 4 H). ¹³C-NMR (CDCl₃), δ : 40.4 (CH₂); 54.2 (t, *J* = 24 Hz; CD); 83.4 (CH); 124.1 (CH); 124.6 (CH); 127.7 (CH); 129.0 (CH); 139.8 (C); 141.7 (C).

10. *trans*-2-Azido-2-*d*-1-indanol {20}. A solution of *trans*-2-bromo-2-*d*-1-indanol **19** (80 mg, 0.37 mmol) and NaN₃ (29 mg, 0.44 mmol) in DMF (5 mL) was stirred at 80 °C for 3 h. Water (10 mL) was added, and the mixture was extracted with ether (3×5 mL). Organic layer was washed with LiCl saturated solution (2×5 mL), dried on Na₂SO₄, and concentrated under reduced pressure. Flash chromatography (SiO₂, CH₃Cl₂) gave **20** (63 mg, 98%). Anal. Calcd for C₉H₈DON₃: C 61.35; H 5.72; N 23.85. Found C 61.12; H 5.22; N 23.61. ¹H-NMR (CDCl₃), δ : 2.4 (br s; 1 H); 3.1 (s; 2 H); 5.1 (s; 1 H); 7.2–7.5 (m; 4 H). ¹³C-NMR (CDCl₃), δ : 35.1 (CH₂); 65.3 (t, $J_{C-D} = 24$ Hz; CD); 76.4 (CH); 124.7 (CH); 125.1 (CH); 127.6 (CH); 129.0 (CH); 139.1 (C); 141.9 (C).

11. 2-Azido-1-bromo-2-d-indanes {21 and 22}. By a procedure analogous to the preparation of compounds 11 and 12, the reaction of *cis*-2-azido-2-*d*-1-indanol (20) (63 mg, 0.36 mmol) with PBr₃ (32.5 μ L, 0.18 mmol) in CCl₄ (6 mL) gave 21 (54 mg, 64%) and 22 (21 mg, 25%). trans-2-Azido-1-bromo-**2-***d***-indane** {**21**}. Anal. Calcd for C₉H₇DN₃Br: C 45.38; H 3.81; N 17.65. Found C 42.97; H 3.63; N 17.12. ¹H-NMR $(CDCl_3)$, δ : 2.9 (d, J = 16.1 Hz; 1 H); 3.4 (d, J = 16.1 Hz; 1 H); 5.3 (s; 1 H); 7.2–7.5 (m; 4 H). ¹³C-NMR (CDCl₃), δ : 36.4 (CH₂); 54.5 (CH); 69.9 (t, $J_{C-D} = 24$ Hz; CD); 125.1 (CH); 125.8 (CH); 128.1 (CH); 129.7 (CH); 139.8 (C); 140.5 (C). cis-2-Azido-1bromo-2-d-indane {22}. Anal. Calcd for C9H7DN3Br: C 45.38; H 3.81; N 17.65. Found C 42.97; H 3.63; N 17.12. 1H-NMR (CDCl₃), δ : 3.1 (s; 2 H); 5.5 (s; 1 H); 5.3 (s; 1 H); 7.2– 7.45 (m; 4 H). ¹³C-NMR (CDCl₃), δ: 35.0 (CH₂); 57.1 (CH); 63.2 (t, $J_{C-D} = 21$ Hz; CD); 125.2 (CH); 125.4 (CH); 128.1 (CH); 129.9 (CH); 139.2 (C); 140.9 (C).

Acknowledgment. We are grateful to the French Ministère des Affaires Etrangères and Provence-Alpes-Côte d'Azur country for the scholarship to two of us (A.A.M. and C.B.). We thank Dr. Andreas Heumann for helpful discussions.

JO970378O