

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters 16 (2006) 4543-4547

Bioorganic & Medicinal Chemistry Letters

Hydrazides of clozapine: A new class of D₁ dopamine receptor subtype selective antagonists

T. K. Sasikumar,* D. A. Burnett, H. Zhang, A. Smith-Torhan, A. Fawzi and J. E. Lachowicz

Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA

Received 16 May 2006; revised 6 June 2006; accepted 7 June 2006 Available online 30 June 2006

Abstract—Acylated and aroylated hydrazinoclozapines are highly potent dopamine D_1 antagonists that show remarkable selectivity over other dopamine receptors. The most potent compound in this series is the 2,6-dimethoxybenzhydrazide 33 with a $D_1 K_i$ of 1.6 nM and 212-fold selectivity over D_2 receptor. © 2006 Elsevier Ltd. All rights reserved.

Dopamine (DA) receptors belong to the G-protein coupled receptor superfamily. Five DA receptor subtypes are known (D₁–D₅) belonging to two main subgroups, D₁-like and D₂-like. The D₁-like subgroup includes the D₁ and D₅ receptors, while the D₂-like subgroup includes the D₂, D₃, and D₄ receptor subtypes.¹ The prototypical partial D₁ selective agonist SKF 38393 and antagonist SCH 23390 have been invaluable tools with which to study the function of this receptor subtype.^{2,3} A number of other highly selective ligands have been discovered and used for the understanding of neurodegenerative and psychiatric disorders involving the dopaminergic system.^{4,5a–d}

Clozapine 1, (8-chloro-11-(4-methyl-1-piperazinyl)-5*H*dibenzo[*b*,*e*][1.4]diazepine), is the prototype of a group of 'atypical' antipsychotic drugs exhibiting clinical efficacy similar to that of the classical antipsychotics but lacking most of their motor side effects.^{6–8} Clozapine binds with moderate affinity to D₁ receptors but interacts with other dopaminergic (D₂), serotogenic (5-HT_{2A}), adrenergic (α l and α 2), histaminergic, muscarinic, and other receptors.^{9–20} Closely related compound **2** was identified in our flash throughput screening and proved to have good affinity for the D₁ receptor (D₁ $K_i = 25.6$ nM) but modest selectivity over other DA receptors. Importantly, the activity of compound **2**

Keywords: Clozapine; Hydrazinoclozapine; Dopamine D1.

differs from that of clozapine in the selectivity versus the D_2 receptor (Fig. 1).

The synthesis of hydrazinoclozapine **5** and further modifications of the hydrazine moiety as well as product affinity and selectivity at DA and other receptors will be described.

The synthesis of these compounds was carried out as described in Scheme 1. Commercially available aminobenzoic acid **3** was cyclized to the lactone **4** in 96% yield. Compound **4** was subsequently reacted with TiCl₄ and *N*-methylpiperazine to afford clozapine in 53% yield.²¹ Clozapine was converted to the nitroso compound by diazotization using isoamyl nitrite and the resulting nitroso compound was reduced to the hydrazinoclozapine **5** in excellent yields.^{22,23} Modifications of the hydrazine unit have been extensively investigated for

Figure 1. Clozapine and acylated hydrazinoclozapine.

^{*} Corresponding author. Tel.: +1 908 740 4373; fax: +1 908 740 7164; e-mail: thavalakulamgar.sasikumar@spcorp.com

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2006.06.022

Scheme 1. Reagents and conditions: (a) xylene, reflux, 96%; (b) TiCl₄, *N*-methylpiperazine, 53%; (c) isoamyl-ONO, CH₂Cl₂; (d) Zn, HOAc, 95%; (e) RCOOH, DCC, DMAP, CH₂Cl₂; (f) EDCI, MeCN; (g) RCOCl, TEA, CH₂Cl₂.

the purpose of improving the overall pharmacokinetic profile. Acylations were carried out either by using acid or acid chloride with hydrazinoclozapine under standard reaction conditions.²⁴

Initial SAR results are shown in Table 1. Clozapine is moderately active in the dopamine D_1 assay with a K_i of 132 nM (average value of three K_i determinations on human D_1).²⁵ Hydrazine **5** showed 280 nM K_i at the D_1 dopamine receptor. The effect of the acylated hydrazine moiety was investigated. Acetylation of **5** decreases the dopaminergic activity by 2-fold, whereas *tert*-butyl and trifluoroacetylated derivatives showed improved potency. The cyclohexyl analog **15** demonstrated dopamine $D_1 K_i$ of 42 nM. Generally, alkanoyl analogs showed moderate dopaminergic activity.

Next we turned our attention to the aromatic substitution on the acyl hydrazine group. The aromatic hydrazides showed excellent D_1 dopaminergic affinity. Simple benzoyl derivative **16** showed only moderate dopamine D_1 activity, however substitution on the benzene ring greatly enhanced the D_1 affinity. The 4-methyl, 3-methyl, 3-chloro, 3-iodo, and 2-chloro groups are very well tolerated. The D_2 selectivity for compound **22** is noteworthy. High D_1/D_2 selectivity is common among this series (Table 2).

An extension of the aromatic SAR that clearly indicates the preference for 2,6-disubstitution on the benzene ring for high dopamine D₁ affinity is shown in Table 3. We sought to explore 2,6-disubstitution in detail. These compounds display excellent dopamine D₁ affinity with high selectivity over dopamine D₂ receptors. Dichloro compound **30** has $K_i = 3.4$ nM at D₁ receptor with a selectivity of 70-fold over D₂. The 2,6-dimethoxy compound **33** is one of the best compounds in this series Table 1. Dopamine D₁ and D₂ affinities of acyl hydrazides

Compound	R	K _i ^a	K _i ^a (nM)		
		D_1	D_2		
1	—	132	208	1.6	
5	_	280	647	2	
6	ξ -CH $_3$	494	na	na	
7	\mathbb{H}	98	na	na	
8	$\{-CF_3$	86	1900	22	
9	Ş	154	400	3	
10		111	1950	18	
11		79	621	8	
12	CI	56	582	10	
13		103	1600	16	
14	€−<>	150	na	na	
15	₹	42	1776	42	

na, not available.

^a Mean value of at least three separate K_i determinations.

(1.6 nM D₁ K_i and 212-fold selectivity over D₂). This compound is 16-fold more potent than our initial lead at D₁. A dramatic increase in D₂ selectivity was observed by the introduction of amino group at the ortho position as seen for compound **37** (D₁ $K_i = 3.2$ nM, D₂/D₁ = 317).²⁶

Several of these compounds showed an excellent pharmacokinetic profile as evidenced from a 'rapid rat' PK experiment.²⁷ Compound **28** has a rapid rat AUC of 2656 ng h/mL with C_{max} of 821 ng/mL and a T_{max} of 1 h. Compound **33** has an AUC of 2667 ng h/mL with C_{max} of 802 ng/mL and a T_{max} of 0.5 h.

The dopamine D_1 binding affinity of heterocyclic hydrazides is shown in Table 4. The 2-furyl and 2-thienyl analogs showed good affinity ($K_i = 15$ and 14 nM, respectively) with moderate selectivity, whereas 3-thienyl analog **41** exhibited 9 nM affinity and 333-fold selec-

Table 2. Dopamine D_1 and D_2 affinities of benzoyl hydrazides

Compound	R	K_{i}^{a}	D_2/D_1	
		D_1	D_2	
16		157	1150	7
17	Br	14	2386	170
18	ξ Cl	35	9251	262
19		7.7	1521	197
20	OMe	47	3000	63
21	CFa	68	na	na
22		3	517	172
23	OMe	13	1126	86
24	F	47	921	19
25	CI	4	181	45
26		3.6	350	97
27	F	12	374	31
28	CI	4	181	45

na, not available.

^a Mean value of at least three separate K_i determinations.

tivity over D_2 . Other thiophene derivatives such as 42– 44 showed good affinity for D_1 with low selectivity over D_2 . Other heterocyclic analogs such as 45 and 46 also showed reasonably good D_1 affinity. The 2-chloro-3pyridyl analog 47 gives a $D_1 K_i$ of 11 nM with 55-fold selectivity over D_2 receptor.

The influence of the polycyclic aromatic substitution on the acyl hydrazine moiety was also investigated. Naphthyl and quinolyl groups are tolerated as shown in Table 5. Notable compounds in this series are **48** (D₁ $K_i = 3.8$ nM, D₂/D₁ = 121), **49** (D₁ $K_i = 7.4$ nM, D₂/ D₁ = 178), and **52** (D₁ $K_i = 10$ nM, D₂/D₁ = 89). Compound **48** showed exceptional PK profile. The rat AUC for this compound was 12930 ng h/mL with a C_{max} of 3567 ng/mL and a T_{max} of 1 h. Introduction of a simple ethoxy group at 2-position of the naphthyl ring reduces the D₁ affinity by 17-fold (compound **50**).

The possibility of displacing the fluoro substitution on **27** was explored. The fluoro group could be replaced with piperidine without losing any D_1 activity. Introduction of bulky substituents such as *N*-methylpiperazinyl, phenoxy, etc. resulted in decreased D_1 binding affinity. The results are shown in Table 6.

Table	3.	Dopamine	D_1	and	D_2	affinities	of	di-	and	tri-substituted
benzov	vl ł	nydrazides								

Compound	R	K _i ^a	D ₂ /D ₁	
		D_1	D ₂	
29	CI	12	6394	515
30	CI	3.4	240	70
31	CI CI CI	4	390	95
32	€ CI	24	608	25
33	OMe MeO	1.6	340	212
34	CF ₃	2.5	383	153
35	NH ₂	2.6	496	190
36	Me	3	287	95
37	NH ₂	3.2	1015	317
38	H ₂ F ₃ C	7	92	13

^a Mean value of at least three separate K_i determinations.

We also prepared a wide variety of sulfonamides and ureas on the hydrazine moiety and found that those compounds are significantly less potent than the aroyl hydrazides.

Compounds with good dopamine D_1 binding were evaluated for functional antagonism in the cAMP assay. The K_b values correlated well with their corresponding K_i data. All these compounds functioned as full D_1 antagonists. Selectivity for D_1 was confirmed by assaying affinity at numerous receptors as shown in Table 7. Compounds **33–37** and **48** showed remarkable selectivities for D_1 over D_2 and D_4 . Like most known D_1 ligands, these compounds displayed significant affinity at the D_5 receptor. These compounds have high affinity for 5-HT_{2A}, but were less active in the α 2a binding assay.

In summary, from our study on a new class of clozapine hydrazide derivatives emerged a series of important

Table 4. Dopamine D_1 and D_2 affinities of heteroaryl acyl hydrazides

Compound	R	K_i^{a}	D_2/D_1	
		D_1	D ₂	
39	O	15	837	54
40	S	14	1474	105
41	No. Contraction of the second	9	2997	333
42	S OEt	10	180	18
43	S Ph	39	78	2
44	EtO	28	196	7
45	N-O	22	460	21
46	CF ₃ N-Ph	30	2084	69
47	CI	11	630	55

^a Mean value of at least three separate K_i determinations.

Table 5.	Dopamine	D_1 and	d D_2 affinities	s of poly	aryl acyl	hydrazides
----------	----------	-----------	--------------------	-----------	-----------	------------

Compound	R	K_i^a	D_2/D_1	
		D_1	D ₂	
48		3.8	458	121
49		7.4	1314	178
50	EtO	65	274	4
51	N N	23	484	21
52	₹ N	10	931	89
53	E Contraction of the second se	28	na	na

na, not available.

^a Mean value of at least three separate K_i determinations.

dopamine D_1 antagonists. The most significant results were obtained by introducing a 2,6-disubstituted benzoyl moiety to the clozapine hydrazine nucleus. Table 6. Dopamine D_1 and D_2 affinities of benzoyl hydrazides

^a Mean value of at least three separate K_i determinations.

Table 7. Additional selectivity data for compounds 28, 33-37, and 48^a

Compound	$D_1 K_i$	$D_1 K_b$	$D_2 K_i$	D ₄ K _i	D ₅ K _i	5-HT _{2A}	α2a
						Ki	Ki
28	4.0	2.8	181	870	73	1.0	455
33	1.6	0.7	340	1810	38	13.8	169
34	2.5	2.3	383	2000	7.0	1.2	2000
35	2.6	1.7	496	808	53	0.9	327
36	3.0	2.8	287	1870	31	2.2	791
37	3.2	6.7	1015	4846	58	2.9	456
48	3.8	2.0	458	977	105	1.0	882
34 35 36 37 48	2.5 2.6 3.0 3.2 3.8	2.3 1.7 2.8 6.7 2.0	383 496 287 1015 458	2000 808 1870 4846 977	7.0 53 31 58 105	1.2 0.9 2.2 2.9 1.0	2000 327 791 450 882

 ${}^{a}K_{i}$ and K_{b} in nM (mean value of at least three separate determinations).

Acknowledgments

We thank William Greenlee, Wen-Lian Wu, Jing Su, and Brian McKittrick for helpful discussions.

References and notes

- 1. Kebabian, J.; Calne, D. B. Nature 1979, 277, 93.
- Pendleton, R. G.; Samler, L.; Kaiser, C.; Ridley, P. T. Eur. J. Pharmacol. 1978, 51, 19.
- Iorio, L. C.; Barnett, A.; Leitz, F. H.; Houser, V. P.; Korduba, C. A. *Pharmacology* 1983, 226, 462.
- 4. Davis, D. A.; Paulis, T.; Janowski, A.; Smith, H. E. J. Med. Chem. 1990, 33, 809.
- (a) Shah, J. H.; Kline, R. H.; Geter-Douglas, B.; Izenwasser, S.; Witkin, J. M.; Newman, A. H. J. Med. Chem. 1996, 39, 3423; (b) Berger, J. G.; Chang, W. K.; Clader, J. W.; Hou, D.; Chipkin, R.; Mcphail, A. T. J. Med. Chem. 1989, 32; (c) Wu, W. -L.; Burnett, D. A.;

Spring, R.; Greenlee, W. J.; Smith, M.; Favreau, L.; Fawzi, A.; Zhang, H.; Lachowicz, J. E. *J. Med. Chem.* **2005**, *48*, 680; (d) Asproni, B.; Pau, A.; Bitty, M.; Melosu, M.; Cerri, R.; Dazzi, L.; Seu, E.; Maciocco, E.; Sanna, E.; Busonero, F.; Talani, G.; Pusceddu, L.; Altomare, C.; Trapani, G.; Biggio, G. *J. Med. Chem.* **2002**, *45*, 4655.

- Baldessarini, R. J.; Frankenburg, F. R. N. Eng. J. Med. 1991, 324, 746.
- 7. Hippius, H. J. Clin. Psychiatry 1999, 60, 22.
- 8. Remington, G.; Kapur, S. Psychopharmacology 2000, 148, 3.
- 9. Ashby, C. R.; Wang, R. Y. Synapse 1996, 24, 349.
- 10. Millan, J. Pharmacol. Exp. Ther. 2000, 295, 853.
- 11. Squires, R. F.; Saederup, E. Neurochem. Res. 1998, 23, 1283.
- 12. Michel, F. J.; Trudeau, L.-E. *Neuropharmacology* **2000**, *39*, 1536.
- Carlsson, A.; Waters, N.; Holm-Waters, S.; Tedroff, J.; Nilsson, M.; Carlsson, M. L. Annu. Rev. Toxicol. 2001, 41, 237.
- Kalkman, H. O.; Neumann, V.; Hoyer, D.; Tricklebank, M. D. Br. J. Pharmacol. 1998, 124, 1550.
- Idanpaan-Heikkila, J.; Alhava, E.; Olkinoura, M.; Palva, P. Eur. J. Clin. Pharmacol. 1977, 11, 193.
- Lieberman, J. A.; Johns, C. A.; Kane, J. M.; Rai, K.; Pisciotta, A. V.; Saltz, B. L.; Howard, A. J. Clin. Psychiatry 1988, 49, 271.
- Alvir, J. M.; Lieberman, J. A.; Safferman, A.; Schwimmer, J. L.; Schaaf, J. A. N. Eng. J. Med. **1993**, 329, 162.
- 18. Buchanan, R. W. Schizophr. Bull. 1995, 57, 57.
- 19. Casey, D. E. J. Clin. Psychiatry 1996, 57, 40.
- 20. Lindstrom, L. H. Acta Psychiatr. Scand. 1988, 77, 524.
- 21. Liao, Y.; DeVoer, P.; Meier, E.; Wikstrom, H. J. Med. Chem. 1997, 40, 4146.
- 22. Kricka, L. J.; Ledwith, A. Chem. Rev. 1974, 74, 101.
- 23. Hartman, W. W.; Roll, L. J. Org. Synth. 1943, 11, 418.
- 24. Two methods have been generally employed for the formation of hydrazide link. The hydrazine **5** was treated with the corresponding acid chloride in presence of TEA followed by silica gel purification affording the hydrazide. In the case of acids, we used EDCI or DCC coupling strategy. (In all cases, the yield of the product was 60-80%.)
- 25. For experimentals: Ltk- cells stably expressing D_1 and D_2 receptors at a density of 4-7 pmol/mg protein were lysed in hypotonic buffer and centrifuged at 48,000g. Membrane pellets were frozen and stored at -80 °C for use in binding assays. Receptor affinities were determined by equilibrium binding experiments in which bound and free radioligands were separated by rapid filtration, and bound counts were quantified by liquid scintillation counting. For D₁ binding, the radioligand was [³H] SCH 23390 (0.3 nM), and nonspecific binding was defined by addition of 10 µM unlabeled SCH 23390. For D₂ binding, the radioligand was [³H]methylspiperone (0.5 nM) and nonspecific binding was defined using 10 µM (-)-sulpride. Test compounds, radioligand, and membrane homogenates prepared from CHO cells expressing each receptor subtype were incubated in a 200 µL volume for 1 h at room temperature prior to filtration on GF-C plates. Competition binding data were analyzed using Graphpad Prism, in which curves fit a one-site competition model with a Hill Slope equal to or approximately 1. Mean K_i values from four separate determinations are reported. The SEM was below 15% in each case. LC-MS analysis was performed on an Applied Biosystems API-100 mass spectrometer and Shimadzu SCL-10A LC column: Altech platinum C18, 3 micron, 33 mm × 7 mm ID; gradient flow: 0 min-10% CH₃CN, 5 min—95% CH₃CN, 7 min—95% CH₃CN, 7.5 min-10% CH₃CN, and 9 min-stop. Chromatography was performed with Selecto Scientific flash silica gel, 32-63 µM.
- 26. A parallel synthesis method was developed for SAR determination; see Su, J. et al., following paper.
- 27. Korfmacher, W. A.; Cox, K. A.; Ng, K. J.; Veals, J.; Hsein, Y.; Wainhaus, S.; Broske, L.; Prelusky, D.; Nomeir, A.; White, R. E. *Rapid Commun. Mass Spectrom.* 2001, 15, 335, Data are from pooled samples from two rats in cassette-accelerated rapid rat protocol as described in the above reference. Briefly, two male Sprauge–Dawley rats were dosed orally at a dose of 10 mg/kg. Blood samples were collected at different time points and analyzed according to reference 27. Compound plasma levels for individual animals used to calculate PK parameters were generally within ±25% of average values.