PREPARATION AND REACTIONS OF 2-BENZENESULPHONYLTETRAHYDROPYRAN

Steven V. Ley*, Barry Lygo and Anne Wonnacott

Department of Chemistry, Imperial College, London SW7 2AY.

Summary: The anion derived from 2-benzenesulphonyltetrahydropyran (1) reacts with various electrophiles to give alkylated or acylated products some of which are useful precursors for spiroketal synthesis.

Methods for forming carbon-carbon bonds at the 2-position of cyclic ethers are currently of importance in synthesis. Our recent observation that 2-diphenylphosphinoxy cyclic ethers undergo the Wittig-Horner reaction with aldehydes or lactols is one solution to this problem.² These results, however, prompted the idea that similar 2-benzenesulphonyl derivatives might provide an alternative and potentially more flexible approach. Here we report preliminary observations upon the use of the anion derived from 2-benzenesulphonyltetrahydropyran (1).

The crystalline and easily handled sulphone (1) was obtained by reaction of either 3,4-dihydro-2H-pyran or 2-methoxytetrahydropyran with benzenesulphinic acid. During this last process the reaction rate was noticeably enhanced by the addition of calcium chloride.

Deprotonation of (1) was readily achieved using one equivalent of \underline{n} -butyllithium at -78°C in tetrahydrofuran. The resulting anion was subsequently reacted with a variety of electrophilic species. For example with allylbromide the volatile exocyclic diene (2) was obtained in 55% yield; directly upon work-up with saturated ammonium chloride, there being no need to eliminate benzenesulphinic acid in a separate step. Similarly reaction of the anion with aldehydes such as acrolein or iso-butyraldehyde afforded (3) and (4) in 76% and 77% yields respectively again by simultaneous loss of benzenesulphinic acid. Reaction with methylchloroformate produced the acylated derivative (5) (81%).

Application of the chemistry to the preparation of spiroketals is also possible. Reactions of the anion from (1) with the bromide (6) affords an intermediate which on protic work-up with camphor sulphonic acid gave the naturally occuring spiroketal pheromone (7) previously isolated from Dacus oleae. In a similar way reaction of the optically active iodide (8) provides the natural product (9) (79%) in its optically pure form ([α] 20 - 12.1°). Alkylation of the anion with (10) gave the spiroketal (11) (47%) after protonation. The anion from (1) also reacts with the dimethyl totylsilyl protected iodide (12) to give (7) (52%) on acidic work-up.

Reactions of anions α to both oxygen and the phenylsulphonyl group have so far found limited use in the literature. 5 We believe these new results will promote further applications in a variety of useful transformations.

We thank the SERC, Pfizer Central Research, Sandwich, Kent and the Wolfson Foundation for generous financial support.

Footnotes.

All new compounds were fully characterised by spectroscopyic microanalytical and/or accurate mass data.

Later reactions showed that the addition of camphor sulphonic acid was not necessary owing to the concomitant formation of phenylsulphinic acid during the neutralisation of reaction mixture.

References

- 1. For recent references see:-
 - R.M. Adlington, J.E. Baldwin, A. Basak and R.P. Kozyrod, \underline{J} . Chem. Soc., Chem. Commun., 1983, 944.
 - F. Baumberger and A. Vasella, Helv. Chim. Acta., 1983, 66, 2210.
 - P. Kocienski and C. Yeates, Tetrahedron Lett., 1983, 24, 3905.
 - R. Amouroux, Heterocycles, 1984, 22, 1489.
 - G.E. Keck and J.B. Yates, J. Am. Chem. Soc., 1982, 104, 5829.
- 2. S.V. Ley and B. Lygo, Tetrahedron Lett., 1984, 25, 113.
- 3. R. Baker, R.H. Herbert and A.H. Parton, <u>J. Chem. Soc. Chem.</u> Commun., 1982, 601.
- 4. W. Frank, G. Hindorf and W. Reith, Angew. Chem. Int. Ed. Engl. 1978, 17, 862.
- 5. For recent references see:-
 - P. Sinaÿ, J-M. Beau and J-M Lancelin, 5th International Conference on Organic Synthesis (ICOS 5), Freiburg 1984.
 - R.A. Russell, A.S. Krauss, R.N. Warrener and R.W. Irvine, <u>Tetrahedron Lett.</u>, 1984, <u>25</u>, 1517.
 - B.M. Trost and P. Quayle, J. Am. Chem. Soc., 1984, 106, 2469.

(Received in UK 26 November 1984)