TOTAL SYNTHESIS OF CYCLOMALTOHEXAOSE*,†

YUKIO TAKAHASHI AND TOMOYA OGAWA**

RIKEN (The Institute of Physical and Chemical Research), Wako-shi, Saitama, 351-01 (Japan) (Received September 4th, 1986; accepted for publication, January 26th, 1987)

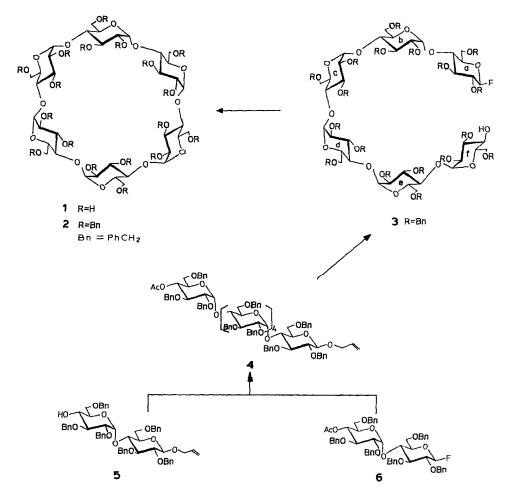
ABSTRACT

Described for the first time is a total synthesis of cyclomaltohexaose, in 0.3% overall yield, in 21 steps starting from maltose. Maltose was transformed into allyl O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-glucopyranoside (5) and O-(4-O-acetyl-2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-glucopyranosyl fluoride (6). Glycosylation of compound 5 with compound 6, and partial deprotection of the product gave allyl O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-bis[O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-bis[O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)]-2,3,6-tri-O-benzyl- β -D-glucopyranoside, which was further glycosylated with the glycosyl donor 6, and converted into the key intermediate O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-tetrakis[O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)]-2,3,6-tri-O-benzyl- β -D-glucopyranosyl fluoride (3). The crucial cyclization was achieved through intramolecular glycosylation of the key intermediate 3, to afford a 21% yield of octadeca-O-benzylcyclomaltohexaose (2). Catalytic transfer hydrogenation of compound 2 yielded cyclomaltohexaose.

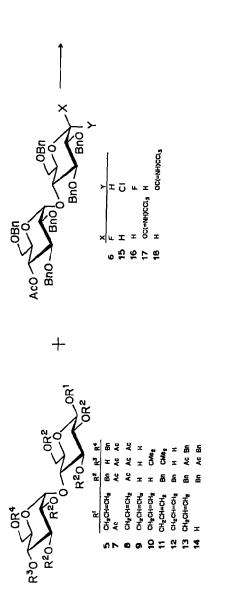
INTRODUCTION

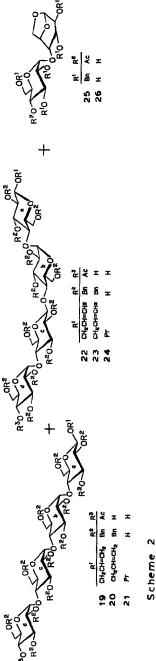
Cyclomalto-oligosaccharides (cyclodextrins), degradation products of starch by an amylase (EC 2.4.1.19) of *Bacillus macerans*², have been the subjects of intense research in terms of chemical modifications³ for the development of artificial functional molecules useful not only in fundamental research but also for industrial development. In spite of such broad interests, an approach to the total synthesis of cyclodextrins remained to be developed. We report here the first total synthesis of cyclomaltohexaose, starting from maltose.

Retrosynthetic analysis of cyclomaltohexaose led us to design the D-glucohexaose derivative 3, which may be suitable to examine for possible use in an intramolecular glycosylation to form octadeca-O-benzylcyclomaltohexaose (2).


^{*}Dedicated to Burckhardt Helferich in commemoration of the hundredth anniversary of his birth.

[†]Glucan Synthesis, Part VI. For Part V (preliminary communication), see ref. 1.

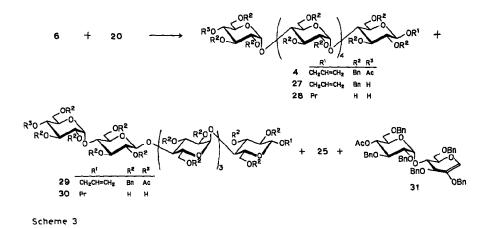

^{**}To whom enquiries should be addressed.


Anomeric β -D-fluoride structure **3** was designed for intramolecular formation of an α -(1->4)-glycosidic linkage for the following reasons. First, selective cleavage of O-acyl groups in the presence of an anomeric C-F bond under mildly basic conditions had been observed in 1926 by Helferich and co-workers⁴. Therefore, introduction of an anomeric fluoride atom, and subsequent manipulation of a protecting group at OH-4f for the preparation of compound **3** should be possible. Second, an efficient method for activation of an anomeric β -D-fluoride to give an α -D-glucoside with reasonable selectivity had been developed by Mukaiyama and co-workers⁵.

The anomeric fluoride 3 may be obtained from allyl glycoside 4, which, in turn could be prepared by repeated glycosylation of glycosyl acceptor 5 with glycosyl donor $\mathbf{6}$. A synthetic route to anomeric fluorides was first developed in

Scheme 1

1923 by Brauns⁶, using water-free hydrofluoric acid. A much milder and stereoselective approach to anomeric β -D-fluorides was reported in 1929 by Helferich and Gootz⁷ through SN2 displacement of an anomeric α -D bromide by silver fluoride in acetonitrile.


In spite of the availability of several recently developed procedures for the preparation of anomeric fluorides⁸, we followed the Helferich and Gootz approach, in order to achieve highly stereoselective formation of a β -D-fluoride.

RESULTS AND DISCUSSION

Allyl glycoside 8, obtainable from maltose octaacetate 7 by treatment with allyl tributyltin oxide⁹, was converted into the penta-O-benzyl derivative 12 in 36% overall yield by sequential treatment with (1) sodium methoxide in methanol, (2) 2,2-dimethoxypropane and p-toluenesulfonic acid, (3) benzyl bromide and sodium hydride, and (4) 1:1 acetic acid-methanol. Selective benzylation at a primary hydroxyl group of compound 12 by the stannylation-alkylation method¹⁰ afforded the desired glycosyl acceptor 5 in 95% yield.

Such glycosyl donors as chloride 15, fluoride 6, and imidate 17 or 18 were prepared from compound 5 in order to determine efficient conditions for the stereoselective synthesis of the D-glucotetraosyl derivative 19. Acetylation of compound 5 gave acetate 13, and O-deallylation of compound 13 with palladium(II) chloride-sodium acetate-aq, acetic acid¹¹ afforded a 93% yield of hemiacetal 14. Treatment of compound 14 with thionyl chloride-N, N-dimethylformamide¹² afforded an 89% yield of α -D-chloride 15, which was converted into β -D-fluoride 6 in 90% yield by treatment with silver fluoride in acetonitrile. The configuration at C-1a of compound 6 was assigned in harmony with the following ${}^{13}C$ -, ${}^{1}H$ -, and ¹⁹F-n.m.r. data: signals for C-1a, H-1a, and C_{1a}-F appeared at $\delta_{\rm C}$ 109.6 with ¹J_{CH} 172 and ${}^{1}J_{CF}$ 217 Hz (ref. 13), δ_{H} 5.378 with ${}^{3}J_{HH}$ 5.9 and ${}^{2}J_{HF}$ 54.1 Hz (ref. 14), and δ_F 133.7 with ²J_{HF} 53.7 and ³J_{HF} 10.4 Hz (ref. 14), respectively. A mixture of the β and α -D-fluorides 6 and 16 was obtained in 75% yield, in the ratio of 3:2, when compound 14 was treated with diethylhexafluoropropylamine¹⁵. The configuration at C-1a of compound 16 was assignable according to ¹³C- and ¹H-n.m.r. data, which included signals for C-1a and H-1a at $\delta_{\rm C}$ 105.0 with ${}^{1}J_{\rm CH}$ 180 and ${}^{1}J_{\rm CF}$ 227 Hz (ref. 13), and at $\delta_{\rm H}$ 5.540 with ${}^{3}J_{\rm HH}$ 2.9 and ${}^{2}J_{\rm HF}$ 52.6 Hz (ref. 14). The imidates 17 and 18 were readily obtained according to Schmidt and co-workers¹⁶.

Glycosylations of glycosyl acceptor 5 with glycosyl donors were examined as follows. Silver triflate-promoted glycosylation with a slight excess of chloride 15 in dichloroethane gave a 63% yield of a mixture of glucotetraosyl derivatives 19 and 22 in the ratio of 1.74:1, as well as an 8% yield of the 1,6-anhydro derivative 25. The structure of compound 25 was assigned from the ¹³C- and ¹H-n.m.r. spectra, which contained signals for H-1a at $\delta_{\rm H}$ 5.470 as a singlet, and C-1a at $\delta_{\rm C}$ 100.7, and was further confirmed by transformation into deblocked product 26. The ¹H- and ¹³C-n.m.r. spectra of compound 26 showed signals for H-1a, H-1b, C-1a,

and C-1b at $\delta_{\rm H}$ 5.482 (singlet), $\delta_{\rm H}$ 5.144 with ${}^{3}J_{\rm HH}$ 3.7 Hz, $\delta_{\rm C}$ 102.0 with ${}^{1}J_{\rm CH}$ 177 Hz, and $\delta_{\rm C}$ 98.5 with ${}^{1}J_{\rm CH}$ 170 Hz, respectively. When mercuric bromide-mercuric cyanide was used instead of silver triflate, the 1,6-anhydro derivative 25 became the major product. Mukaiyama⁵ glycosylation of 5 with 1.15 equivalents of β -fluoride 6 afforded an 80% yield of a 1.76:1 mixture of 19 and 22, as well as a 15% yield of 1,6-anhydro derivative 25. Addition of other Lewis acids, such as boron trifluoride etherate, or cesium fluoride, did not improve the ratio of 19 to 22 in favor of 19. Trichloroacetimidates 17 and 18 were also separately examined as glycosyl donors in the presence of Me₃Si triflate, but only inferior results were obtained in our hands.

The structures of glucotetraosyl derivatives 19 and 22 were assigned from their ¹³C-n.m.r. data. For compound 19, one signal for a β -D-anomeric carbon atom was observed at δ 102.6, while for compound 22, two signals, for two β -D-anomeric carbon atoms were observed at δ 102.5 and 102.2. These assignments were confirmed by transformation into deblocked propyl glucotetraosides 21 and 24, respectively. The ¹H-n.m.r. spectra of compounds 21 and 24, shown in Fig. 1, clearly showed the stereochemistry of these compounds. Judging from the results thus far obtained from glycosylation experiments for the synthesis of compound 19, we decided to use glycosyl fluorides as the most efficient glycosyl donors for the extension of a glucan chain in an α -D-(1 \rightarrow 4) fashion.

Having obtained glucotetraosyl intermediate 19, two synthesis routes to glucohexaosyl derivative 4 were examined. The first approach utilized the glucotetraosyl glycosyl acceptor 20 and glycosyl donor 6, and the second employed glucotetraosyl glycosyl donor 34 and glycosyl acceptor 5.

Glycosylation of glucotetraosyl derivative 20 (obtained from compound 19 with 2 equivalents of glycosyl donor 6 in the presence of silver triflate and stannous(II) chloride⁵, afforded a 65% yield of a 1.95:1 mixture of the desired product 4 and the β anomer 29, as well as a 21% yield of recovered glycosyl

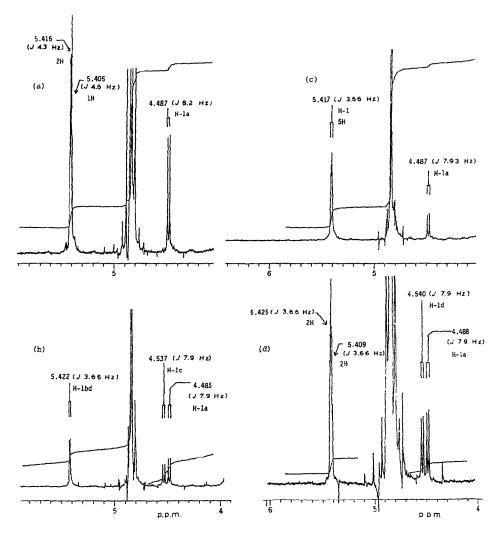
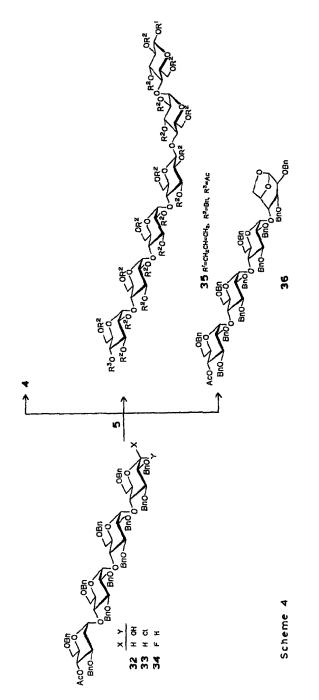
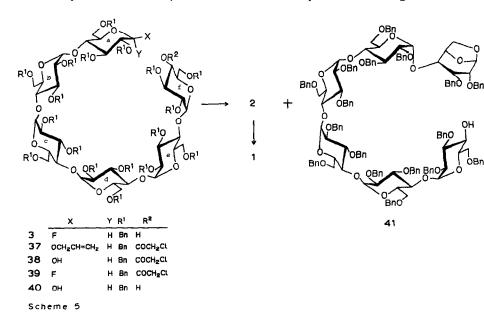



Fig. 1. 400-MHz, ¹H-n.m.r. spectra of synthetic propyl glycosides: (a) $Glc\alpha(\rightarrow 4Glc\alpha)_2 \rightarrow Glc\beta \rightarrow OPr$ (21). (b) $Glc\alpha \rightarrow 4Glc\beta \rightarrow 4Glc\beta \rightarrow 4Glc\beta \rightarrow OPr$ (24). (c) $Glc\alpha(\rightarrow 4Glc\alpha)_4 \rightarrow Glc\beta \rightarrow OPr$ (28), and (d) $Glc\alpha \rightarrow 4Glc\beta(\rightarrow 4Glc\alpha)_3 \rightarrow Glc\beta \rightarrow OPr$ (30). The spectra were recorded in D₂O at 21^o.


acceptor 20. The excess of glycosyl donor 6 was converted into 1,6-anhydro derivative 25 and glycal derivative 31, in 25 and 23% yield, respectively. The structures of 4 and 29 were assigned from ¹³C-n.m.r. data. In the case of compound 4, one signal for a β -D-anomeric carbon atom was observed at δ 102.7, along with five signals for α -D-anomeric carbon atoms at δ 96.9, 96.6, 96.4, and 96.2 in the ratios of 1:1:1:2, whereas, in the case of compound 29, two signals for β -D-anomeric carbon atoms were observed, at δ 102.6 and 102.2, along with four signals for α -D-anomeric carbon atoms, at δ 96.9, 96.6, 96.5, and 96.2. These structural

assignments for compounds 4 and 29 were confirmed by their transformation into deblocked propyl glycosides 28 and 30, respectively. The ¹H-n.m.r. spectra shown in Fig. 1 clearly proved their anomeric configurations.

An alternative route to glucohexaosyl derivative 4 was based on coupling of glucotetraosyl glycosyl donor 34 with glycosyl acceptor 5. Synthesis of glycosyl donor 34 from compound 19 was straightforward. Three steps for the conversion of compound 19 into fluoride 34 were performed, via hemiacetal 32, in 48% overall yield: (1) palladium(II) chloride-sodium acetate-aq. acetic acid, (2) thionyl chloride-N, N-dimethylformamide, and (3) silver fluoride-acetonitrile. The configuration at C-1a of compound 34 was again determined as β -D from ¹H-, ¹³C-, and ¹⁹F-n.m.r. data. Silver triflate and stannous chloride-promoted glycosylation⁵ of glycosyl acceptor 5 with glycosyl donor 34 in diethyl ether was examined by using 14.5 equivalents of compound 5 in order to minimize side reactions of the glycosyl donor 34, and a 1.74:1 mixture of compound 4 and isomer 35 were obtained in 55% yield, as well as a 33% yield of 1,6-anhydro derivative 36. Compound 35 was not characterized by n.m.r. data, but was most probably the stereoisomer of compound 4, as shown in Scheme 4. The structure of compound 36 was assigned from ¹Hn.m.r. data, which contained characteristic signals for H-1a and H-1b at δ 5.482 as a singlet and at δ 4.992 as a doublet, respectively. From the viewpoint of synthesis efficiency, the former route to compound 4 by use of glucotetraosyl glycosyl acceptor 20 and glucobiosyl glycosyl donor 6 was chosen, rather than the latter.

Having prepared the key glucohexaosyl derivative 4, transformation of compound 4 into the key glycosyl fluoride 3 was studied. First, replacement of the O-acetyl group of compound 4 by an O-(monochloroacetyl) group was performed to give compound 37 in 86% overall yield in two steps. Palladium-catalyzed Odeallylation of compound 37 gave a 60% yield of hemiacetal 38, which was stereoselectively converted into β -D-fluoride 39 in 73% yield. The configuration at C-1a

was assigned from the ¹³C-n.m.r. spectrum of compound **39**, which contained a signal for C-1a at δ 109.2. Zemplén deacylation of compound **39** was readily achieved, in agreement with the observation of Helferich and co-workers³ in 1926, to afford a 95% yield of the key glycosyl fluoride **3**. The ¹³C- and ¹H-n.m.r. data for compound **3** were in agreement with the structure assigned. Crucial intramolecular glycosylation of compound **3** under the Mukaiyama conditions⁵ furnished a 21% yield of the protected cyclomaltohexaose **2**, as well as a 20% yield of 1,6anhydro derivative **41**. The structure of compound **41** was assigned from ¹H-n.m.r. data, which revealed four doublets with J 3.4 Hz at δ 5.682, 5.620, 5.594, and 5.560 for H-1c, H-1d, H-1e, and H-1f, as well as a characteristic singlet and a doublet, with J 3.4 Hz at δ 5.478 and 5.002 for H-1a and H-1b, respectively. Compound **2** was also obtainable by benzylation of commercially available cyclomaltohexaose. Comparison of the ¹H- and ¹³C-n.m.r. data of the totally synthetic sample of **2** and the natural derivative proved their identity. *O*-Debenzylation of compound **2** under hydrogen-transfer conditions¹⁷ afforded cyclomaltohexaose (1).

In conclusion, a total synthesis of cyclomaltohexaose (1) was excecuted in 21 steps from maltose in 0.3% overall yield. The crucial intramolecular glycosylation employing β -maltohexaosyl fluoride 3 was achieved in 21% yield.

EXPERIMENTAL

General. --Melting points were determined with a Yanagimoto micro melting-point apparatus and are uncorrected. Optical rotations were determined with a Perkin-Elmer Model 241 MC polarimeter, for solutions in CHCl₃ at 25°, unless noted otherwise. Column chromatography was performed on columns of Silica Gel (Merck, 70-230 mesh). Flash chromatography was performed on columns of Wako gel C-300 (200-300 mesh). T.l.c. and high-performance t.l.c. was performed on Silica Gel 60 F₂₅₄ (Merck, Darmstadt). Molecular sieves were purchased from Nakarai Chemicals, Ltd. I.r. spectra were recorded with an EPI-G2 Hitachi spectrophotometer, using KBr pellets for the crystalline samples, and films for the liquid samples. ¹H-N.m.r. spectra were recorded with either a JNM-GX400 or a JNM-FX90Q n.m.r. spectrometer. ¹³C-N.m.r. spectra were recorded with a JNM-FX 100FT n.m.r. spectrometer operated at 25.05 MHz. The values of δ_{C} and $\delta_{\rm H}$ are expressed in p.p.m. downwards from the signal for internal Me₄Si, for solutions in CDCl₃, unless noted otherwise. Values of $\delta_{\rm F}$, expressed in p.p.m. upfield from the signal for trichlorofluoromethane, were measured against an internal standard of hexafluorobenzene (163.0 p.p.m.). Values of δ_{H} (D₂O) and δ_{C} (D₂O) are expressed in p.p.m. downward from Me₄Si, by reference to internal standards of Me₂CO (2.225) or Me₃COH (1.230), and 1,4-dioxane (67.4) or MeOH (49.8), respectively.

Allyl O-(2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-acetyl- β -D-glucopyranoside (8). — To a solution of Bu₃SnOCH₂CH=CH₂ (6.0 g, 17 mmol) in Cl(CH₂)₂Cl (80 mL) were added dropwise a solution of SnCl₄ (2.0 mL, 14.7 mmol) in Cl(CH₂)₂Cl (40 mL) at -5° , and then, dropwise, a solution of compound 7 (10 g, 14.7 mmol) in Cl(CH₂)₂Cl (40 mL) during 40 min at 20°. The mixture was stirred for 1.5 h at 20°, poured into aq. NaHCO₃, and extracted with EtOAc. The organic layer was vigorously stirred with aq. KF, filtered through Celite, dried (MgSO₄), and evaporated *in vacuo*. Chromatography of the residue on SiO₂ gel in 6:1 toluene–THF afforded **8** (7.3 g, 73%); m.p. 106–107° (EtOAc–*i*Pr₂O), [α]_D +50.4° (*c* 0.2); R_F 0.47 in 3:1 toluene–THF; n.m.r. data: δ_H 6.04–5.62 (m, 1 H, CH₂–CH=), 2.14, 2.10, 2.04 (3 s, 9 H, 3 CH₃CO), 2.02 (s, 6 H, 2 CH₃CO), and 2.00, and 1.99 (2 s, 6 H, 2 CH₃CO); δ_C 98.9 (¹J_{CH} 160 Hz, C-1a) and 95.4 (¹J_{CH} 177 Hz, C-1b).

Anal. Calc. for C₂₉H₄₀O₁₈: C, 51.5; H, 6.0. Found: C, 51.7; H, 6.0.

Allyl O-(4,6-O-isopropylidene- α -D-glucopyranosyl)-($1\rightarrow 4$)- β -D-glucopyranoside (10). — A solution of compound 8 (5.8 g, 8.5 mmol) in 0.05M NaOMe-MeOH (30 mL) was stirred for 2 h at 20°, made neutral with Amberlyst 15, and the suspension filtered. The filtrate was evaporated, to give crude 9 (3.3 g). A mixture of crude 9 (3.3 g), (MeO)₂CMe₂ (4.8 mL, 39 mmol), and pTsOH \cdot H₂O (5 mg) in DMF (20 mL) was stirred for 1 h at 20°, the acid neutralized with Et₃N, and the solution evaporated *in vacuo*. The residue was stirred in 20:1 MeOH-AcOH (20 mL) for 12 h at 20°, and evaporated *in vacuo*. Chromatography of the residue on SiO₂ gel in 90:9:1 CH₂Cl₂-MeOH-Et₃N afforded 10 (2.3 g, 63%).

Compound 9: N.m.r. data: $\delta_{\rm H}$ (D₂O) 5.42 (d, 1 H, J 4.2 Hz, H-1b) and 4.53 (d, 1 H, J 8.1 Hz, H-1a); $\delta_{\rm C}$ (CD₃OD) 102.9, 102.3 (C-1a, C-1b), and 80.7 (C-4a).

Compound 10: $[\alpha]_D$ +28.4° (c 0.2); R_F 0.60 in 5:1 CHCl₃-MeOH; n.m.r. data: δ_H 1.31 and 1.23 (2 s, 6 H, CCH₃); δ_C (CD₃OD) 103.4 (CMe₂ and C-1a), 100.9 (C-1b), and 81.6 (C-4a).

Anal. Calc. for C₁₈H₃₀O₁₁: C, 51.2; H, 7.2. Found: C, 50.9; H, 7.4.

Allyl O-(2,3-di-O-benzyl-4,6-O-isopropylidene- α -D-glucopyranosyl)-(1 \rightarrow 4)-(2,3,6-tri-O-benzyl- β -D-glucopyranoside) (11). — To a solution of compound 10 (0.4 g, 1.0 mmol) in DMF (20 mL) was added NaH (0.27 g, 50% oil suspension, 5.6 mmol) at 0°, and the mixture was stirred for 30 min at 20°. To the mixture was added, dropwise, C₆H₅CH₂Br (0.68 mL, 5.6 mmol) at -5° . The mixture was stirred for 1 h, and the excess of NaH was decomposed by adding MeOH. After evaporation *in vacuo*, a solution of the residue in EtOAc was successively washed with aq. NaHCO₃ and H₂O, dried (MgSO₄), and evaporated *in vacuo*. Chromatography of the residue on SiO₂ gel in 100:3:1 toluene-EtOAc-Et₃N afforded 11 (0.68 g, 83%); [α]_D +19.8° (c 0.5); $R_{\rm F}$ 0.59 in 5:1 toluene-EtOAc; n.m.r. data: $\delta_{\rm H}$ 1.48 and 1.46 (2 s, 6 H, CCH₃); $\delta_{\rm C}$ 102.6 (¹J_{CH} 166 Hz, C-1a), 99.3 (CMe₂). 97.4 (¹J_{CH} 177 Hz, C-1b), and, 29.3 and 19.3 (CCH₃).

Anal. Calc. for C₅₃H₆₀O₁₁: C, 72.9; H, 6.9. Found: C, 72.8; H, 6.9.

Allyl O-(2,3-di-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-glucopyranoside (12). — A solution of compound 11 (0.42 g, 480 μ mol) in 1:1 MeOH-AcOH (10 mL) was stirred for 1 h at 80°, cooled, concentrated *in vacuo*, and the concentrate dissolved in EtOAc. The organic layer was successively washed

with aq. NaHCO₃ and H₂O, dried (MgSO₄), and evaporated *in vacuo*. Chromatography of the residue on SiO₂ gel in 10:1 toluene--THF afforded **12** (277 mg, 70%); $[\alpha]_D$ +23.6°, m.p. 101–102° (EtOAc-*i*Pr₂O); R_F 0.34 in 3:1 toluene--THF; n.m.r. data: δ_C 102.5 (¹J_{CH} 160 Hz, C-1a), 96.4 (¹J_{CH} 174 Hz, C-1b), 84.7 (C-3a), 82.1 (C-2a), 81.2 (C-3b), and 79.3 (C-4a).

Anal. Calc. for C₅₀H₅₆O₁₁: C, 72.1; H, 6.8. Found: C, 71.7; H, 6.8.

Allyl O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-glucopyranoside (5). — A mixture of compound 12 (9.2 g, 11 mmol) and (Bu₃Sn)₂O (4.73 g, 7.9 mmol) in toluene (200 mL) was stirred for 4 h under reflux with continuous azeotropic removal of water, and concentrated to ~100 mL. To this mixture were added Bu₄NBr (3.56 g, 11 mmol) and C₆H₅CH₂Br (6.6 mL, 55 mmol). The mixture was stirred for 24 h at 80–85°, cooled, and evaporated *in vacuo*. A solution of the residue in EtOAc was washed successively with aq. NaHCO₃ and aq. KF, dried (MgSO₄), filtered, and the filtrate evaporated *in vacuo*. Chromatography of the residue on SiO₂ gel in 20:1 toluene–EtOAc afforded 5 (9.66 g, 95%); [α]_D +21.6° (*c* 0.5); *R*_F 0.52 in 5:1 toluene–EtOAc; n.m.r. data: δ _C 102.6 (¹*J*_{CH} 159 Hz, C-1a), 96.6 (¹*J*_{CH} 172 Hz, C-1b), 84.8 (C-3a), 82.2 (C-2a), 81.3 (C-3b), 79.1 (C-4a), and 69.9 and 69.4 (C-6a and C-6b).

Anal. Calc. for C₅₇H₆₂O₁₁: C, 74.2; H, 6.8. Found: C, 74.3; H, 6.8.

O-(4-O-Acetyl-2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1- \rightarrow 4)-2,3,6-tri-Obenzyl-D-glucopyranose (14). — A solution of compound 5 (1.73 g, 1.9 mmol) in 2:1 pyridine-Ac₂O (6 mL) was stirred for 4 h at 20° and evaporated *in vacuo*. Chromatography of the residue on SiO₂ gel in 20:1 toluene-EtOAc afforded allyl O-(4-O-acetyl-2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1- \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-glucopyranoside (13; 1.8 g, quantitative); $[\alpha]_D$ +28.0° (c 0.6); R_F 0.61 in 5:1 toluene-EtOAc; n.m.r. data: δ_H 1.80 (s, 3 H, Ac); δ_C 102.5 (C-1a), 96.7 (C-1b), 84.6 (C-3a), 82.1 (C-2a), 79.3 (C-3b), 79.2 (C-4a), and 20.8 (COCH₃).

A mixture of compound 13 (13.3 g, 13.8 mmol), $PdCl_2$ (5.3 g, 30 mmol), and AcONa (5.3 g. 65 mmol) in 9:1 AcOH-H₂O (50 mL) was stirred for 1 h at 70°, filtered through Celite, and the filtrate evaporated *in vacuo*. A solution of the residue in EtOAc was successively washed with aq. NaHCO₃ and H₂O, dried (MgSO₄), and evaporated *in vacuo*. Chromatography of the residue on SiO₂ gel in 7:1 toluene-EtOAc afforded a 1:1 mixture of the α and β anomers of 14 (11.9 g, 93%); $[\alpha]_D$ +36.0° (c 0.7); R_F 0.37 and 0.26 in 5:1 toluene-EtOAc; n.m.r. data: δ_H 1.80 (s, 3 H, CH₃CO); δ_C 97.4 (C-1a β), 96.9 and 96.7 (C-1b), and 90.6 (C-1a α).

Anal. Calc. for C₅₆H₆₀O₁₂: C, 72.7; H, 6.5. Found: C, 73.1; H, 6.6.

O-(4-O-Acetyl-2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1- \rightarrow 4)-2,3,6-tri-Obenzyl- β -D-glucopyranosyl fluoride (6). — To a solution of compound 14 (4.45 g, 4.8 mmol) in Cl(CH₂)₂Cl (20 mL) were added SOCl₂ (1.75 mL, 24 mmol) and DMF (0.3 mL, 4 mmol). The mixture was stirred for 2 days at 20°, filtered through SiO₂ gel, and the filtrate evaporated *in vacuo*. Chromatography of the residue on SiO₂ gel in 10:1 toluene-EtOAc afforded O-(4-O-acetyl-2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1- \rightarrow 4)-2,3,6-tri-O-benzyl- α -D-glucopyranosyl chloride (15; 4.02 g, 89%); $[\alpha]_{D}$ +81.9° (c 0.1); R_{F} 0.70 in 5:1 toluene-EtOAc; n.m.r. data: δ_{H} 6.06 (d, 1 H, J 3.7 Hz, H-1a), 5.57 (d, 1 H, J 3.3 Hz, H-1b), and 1.81 (s, 3 H, CH₃CO); δ_{C} 97.1 (C-1b), 93.2 (C-1a), and 20.8 (COCH₃).

[A]. A mixture of compound **15** (2.1 g, 2.2 mmol) and AgF (0.8 g, 6.3 mmol) in CH₃CN (20 mL) was stirred for 18 h at 20° with protection from light. After filtration through Celite, the filtrate was evaporated *in vacuo*. A solution of the residue in EtOAc was washed with aq. NaCl, dried (MgSO₄), and evaporated *in vacuo*. Chromatography of the residue on SiO₂ gel in 10:1 toluene–EtOAc afforded **6** (1.86 g, 90%); $[\alpha]_D$ +45.4° (*c* 0.2); R_F 0.48 in 8:1 toluene–EtOAc; n.m.r. data: δ_H 5.538 (d, 1 H, J 3.7 Hz, H-1b), 5.378 (dd, 1 H, J 5.9 and 54.1 Hz, H-1a), 5.050 (t, 1 H, J 9.3 Hz, H-4b), and 1.844 (s, 3 H, CH₃CO); δ_C 109.6 (¹J_{CH} 172 Hz and ¹J_{CF} 217 Hz, C-1a), 97.0 (¹J_{CH} 173 Hz, C-1b), 82.9 (³J_{CF} 8.5 Hz, C-3a), 80.5 (²J_{CF} 53.7, ³J_{HF} 10.4 Hz).

Anal. Calc. for C₅₆H₅₉FO₁₁: C, 72.6; H, 6.4. Found: C, 72.3; H, 6.4.

[B]. To a solution of compound 14 (50 mg, 50 μ mol) in Et₂O (5 mL) was added a solution of diethyl-1,1,2,3,3,3-hexafluoropropylamine (15 mg, 70 μ mol) in Et₂O (2 mL) at -5° . After stirring for 24 h at 20°, a solution of diethylhexafluoropropylamine (5 mg, 23 μ mol) in Et₂O (1 mL) was added. The mixture was stirred for 4 h at 20°, and poured into aq. KF. The organic layer was dried (MgSO₄), and evaporated *in vacuo*. Purification of the residue on Lobar LiChroprep Si60 (size A) in 30:1 toluene-EtOAc gave a 2:3 mixture of 16 and 6 (37 mg, 75%).

Compound 16: $R_F 0.48$ in 8:1 toluene–EtOAc; n.m.r. data: $\delta_H 5.586$ (d, 1 H, J 3.5 Hz, H-1b), 5.538 (dd, 1 H, J 2.5, 53.8 Hz, H-1a), and 1.816 (s, 3 H, CH₃CO); $\delta_C 105.0$ (¹ $J_{CF} 227$, ¹ $J_{CH} 180$ Hz, C-1a) and 97.1 (¹ $J_{CH} 172$ Hz, C-1b).

O-(4-O-Acetyl-2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-($1\rightarrow$ 4)-2,3,6-tri-Obenzyl- β - and α -D-glucopyranosyl trichloroacetimidate (**17** and **18**). — A mixture of compound **14** (500 mg, 540 μ mol), Cl₃CCN (540 μ L, 5.4 mmol) and NaH (50% oil dispersion, 30 mg, 630 μ mol) in CH₂Cl₂ (2 mL) was stirred for 1 h at 0°. The mixture was filtered through Celite, and the filtrate was evaporated *in vacuo*. Chromatography of the residue on SiO₂ gel in 10:1 toluene-EtOAc afforded **18** (370 mg, 65%) and **17** (170 mg, 30%).

Compound 17: $R_F 0.52$ in 5:1 toluene-EtOAc; n.m.r. data: $\delta_H 5.91$ (d, 1 H, J 5.7 Hz, H-1a), 5.57 (d, 1 H, J 3.5 Hz, H-1b), and 1.81 (s, 3 H, CH₃CO).

Compound 18: R_F 0.61 in 5:1 toluene–EtOAc; n.m.r. data: δ_H 6.52 (d, 1 H, J 4.8 Hz, H-1a), 5.62 (d, 1 H, J 4.8 Hz, H-1b), and 1.81 (s, 3 H, CH₃CO); δ_C 169.4 (COCH₃), 161.3 (C=NH), 96.8 (C-1b), 94.1 (C-1a), and 20.8 (COCH₃).

Allyl O-(4-O-acetyl-2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-bis[O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)]-2,3,6-tri-O-benzyl- β -D-glucopyranosyl)-(1 \rightarrow 4)]-2,3,6-tri-O-benzyl- β -D-glucopyranosyl)-(1 \rightarrow 4)-O-(2,3,6-tri-O-benzyl- β -D-glucopyranosyl-(1 \rightarrow 4)-O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-glucopyranoside (**22**), and O-(4-O-acetyl-2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-1,6-anhydro-2,3-di-O-benzyl- β -D-

glucopyranose (25). — [A]. To a mixture of compound 5 (3.1 g, 3.3 mmol), AgOSO₂CF₃ (2.51 g, 9.8 mmol), and powdered molecular sieves 4A (9 g) in Cl(CH₂)₂Cl (8 mL) was added dropwise a solution of compound 15 (3.12 g, 3.4 mmol) in Cl(CH₂)₂Cl (10 mL). The mixture was stirred for 19 h at 20°, filtered through Celite, and the Celite washed with EtOAc. The filtrates were combined, successively washed with aq. NaHCO₃ and H₂O, dried (MgSO₄), and evaporated *in vacuo*. Chromatography of the residue on SiO₂ gel in 20:1 toluene-EtOAc afforded 19 (2.42 g, 40%), 22 (1.38 g, 23%), 25 (190 mg, 8%), and recovered 5 (640 mg, 21%).

[B]. To a mixture of compound 5 (3.1 g, 3.3 mmol), AgOSO₂CF₃ (1 g, 3.9 mmol), SnCl₂ (740 mg, 3.9 mmol), and powdered molecular sieves 4A (9 g) in Et₂O (15 mL) was added dropwise a solution of compound 6 (3.5 g, 3.8 mmol) in Et₂O (15 mL). After stirring for 20 h, more of the solution of compound 6 (200 mg, 220 μ mol) was added. The mixture was stirred for 24 h at 20°, and filtered through Celite. The filtrate was successively washed with aq. NaHCO₃ and H₂O, dried (MgSO₄), and evaporated *in vacuo*. Chromatography of the residue on SiO₂ gel in 20:1 toluene–EtOAc afforded 19 (3.0 g, 51%), 22 (1.7 g, 29%), 25 (460 mg, 15%), and recovered 5 (590 mg, 17%).

[C]. To a mixture of compounds 5 (100 mg, 110 μ mol) and 17 (122 mg, 120 μ mol), and powdered molecular sieves 4A (200 mg) in Cl(CH₂)₂Cl (0.5 mL) was added Me₃SiOSO₂CF₃ (23 μ L, 120 μ mol) under Ar. The mixture was stirred for 1 h at 0°, diluted with EtOAc, and filtered through Celite. The filtrate was washed successively with aq. NaHCO₃ and H₂O, dried (MgSO₄), and evaporated *in vacuo*. Chromatography of the residue on Lobar LiChroprep Si60 (size A) in 20:1 toluene-EtOAc afforded 19 (42 mg, 21%), 22 (24 mg, 12%), and trimethylsilylated 5 (34 mg, 32%). The α -imidate 18 (130 mg) under the same conditions afforded 19 (54 mg, 27%), 22 (60 mg, 30%), and recovered 5 (45 mg).

Compound 19: $[\alpha]_{\rm D}$ +58.2° (c 0.2); $R_{\rm F}$ 0.65 (h.p.t.l.c.) in 5:1 toluene– EtOAc; n.m.r. data: $\delta_{\rm H}$ 7.25–7.0 (m, 60 H, aromatic), 6.2–5.66 (m, 1 H, CH₂CH=), and 1.79 (s, 3 H, CH₃CO); $\delta_{\rm C}$ 102.6 (¹J_{CH} 155 Hz, C-1a), 96.9, 96.5, 96.3 (¹J_{CH} 170–172 Hz, C-1b, C-1c, and C-1d), 84.7 (C-3a), 82.1 (C-2a), 81.4 (C-3b and C-3c), 79.6 (C-3d), 79.3 (C-4a, C-4b, C-4c), and 20.9 (COCH₃).

Anal. Calc. for C₁₁₃H₁₂₀O₂₂: C, 74.2; H, 6.6. Found: C, 74.1; H, 6.6.

Compound 22: $[\alpha]_D$ +41.4° (c 0.2); R_F 0.59 (h.p.t.l.c.) in 5:1 toluene-EtOAc; n.m.r. data: δ_H 7.25-7.0 (m, 60 H, aromatic), 6.2-5.66 (m, 1 H, CH₂CH=), and 1.79 (s, 3 H, CH₃CO); δ_C 102.5 (C-1a), 102.2 (C-1c), 96.9 (C-1b and C-1d), 84.7, 84.6 (C-3a and C-3c), 82.5, 82.3 (C-2a and C-2c), and 20.8 (COCH₃).

Anal. Calc. for C₁₁₁H₁₂₀O₂₂: C, 74.2; H, 6.6. Found: C, 73.9; H, 6.6.

Compound **25**; m.p. 92–93° (EtOAc–iPr₂O), $[\alpha]_D$ +6.1° (c 0.3); R_F 0.29 (h.p.t.l.c.) in 5:1 toluene–EtOAc; n.m.r. data: δ_H 7.3–7.1 (m, 25 H, aromatic), 5.478 (s, 1 H, H-1a), 5.012 (t, 1 H, J 10.0 Hz, H-4b), 4.951 (d, 1 H, J 3.4 Hz, H-1b), and 1.855 (s, 3 H, CH₃CO); δ_C 169.3 (COCH₃), 100.7 (C-1a), 98.1 (C-1b), 65.6 (C-6a), and 20.6 (COCH₃).

Anal. Calc. for C₄₉H₅₂O₁₁: C, 72.0; H, 6.4. Found: C, 71.8; H, 6.4.

Allyl O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-bis[O-(2,3,6-tri-Obenzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)]-2,3,6-tri-O-benzyl- β -D-glucopyranoside (20) and its deprotection product. — To a solution of compound 19 (2.28 g, 1.25 mmol) in 1.1 MeOH-THF (40 mL) was added 0.5M NaOMe-MeOH (2.5 mL), and the mixture was stirred for 24 h at 20° and then for 2 h at 50°. Neutralization with Amberlyst 15, filtration, and evaporation of the filtrate *in vacuo* afforded a residue which was chromatographed on SiO₂ gel in 15:1 toluene-EtOAc, to give 20 (2.15 g, 97%); [α]_D +44.6° (c 0.3); R_F 0.50 in 9:1 toluene-EtOAc; n.m.r. data: δ_C 102.6 (C-1a), 96.7, 96.5, 96.3 (C-1b, C-1c, C-1d), 84.6 (C-3a), 82.0 (C-2a), 81.6 (C-3d), and 81.4 (C-3b, C-3c).

Anal. Calc. for C₁₁₁H₁₁₈O₂₁·0.2 H₂O: C, 74.4; H, 6.7. Found: C, 74.1; H, 6.7.

A mixture of **20** (18.8 mg) and 10% Pd–C (19 mg) in AcOH (2 mL) was stirred for 1 h at 80° under H₂, cooled, and filtered through Celite. The filtrate was evaporated *in vacuo*, and the residue was purified by means of Sephadex G-25 in H₂O, to give propyl *O*- α -D-glucopyranosyl-(1 \rightarrow 4)-bis[*O*- α -D-glucopyranosyl-(1 \rightarrow 4)]- β -D-glucopyranoside (**21**; 6.6 mg, 96%); R_F 0.54 in 2:2:1 BuOH–MeOH– H₂O; n.m.r. data: δ_H (D₂O) 5.416 (d, 2 H, J 4.3 Hz) and 5.405 (d, 1 H, J 4.6 Hz, H-1b, H-1c, H-1d), 4.487 (d, 1 H, J 8.2 Hz, H-1a), 3.298 (dd, 1 H, J 8.2 and 9.5 Hz, H-2a), and 3.428 (t, 1 H, J 9.5 Hz, H-3a); δ_C (D₂O) 102.8 (C-1a), 100.6, 100.5, 100.3 (C-1b, C-1c, C-1d), 78.0 (C-4a, C-4b, C-4c), 23.0 (*C*H₂CH₃), and 10.4 (CH₂CH₃).

Allyl O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-O-(2,3,6-tri-O-benzyl- β -D-glucopyranosyl)-(1 \rightarrow 4)-O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-glucopyranoside (23) and its deprotected product. — Compound 22 (220 mg, 120 μ mol) was treated as for the preparation of 20, to give 23 (quantitative); $[\alpha]_D$ +29.6° (c 0.4); R_F 0.24 in 7:1 toluene–EtOAc.

Anal. Calc. for C₁₁₁H₁₁₈O₂₁: C, 74.6; H, 6.7. Found: C, 74.6; H, 6.7.

A mixture of compound 23 (86 mg, 50 μ mol) and 10% Pd–C (20 mg) in AcOH (2 mL) was stirred for 30 min at 80° under H₂. The usual work-up, and chromatography on Sephadex G-25 in H₂O, afforded propyl *O*- α -D-glucopyrano syl-(1 \rightarrow 4)-*O*- β -D-glucopyranosyl-(1 \rightarrow 4)-*O*- α -D-glucopyranosyl-(1 \rightarrow 4)- β -D-glucopyranoside (24; 34 mg, quantitative); R_F 0.71 in 2:2:1 BuOH–MeOH–H₂O; n.m.r. data: δ_H (D₂O) 5.422 (d, 2 H, J 3.7 Hz, H-1b and H-1d), 4.537 (d, 1 H, J 7.9 Hz, H-1c), 4.485 (d, 1 H, J 7.9 Hz, H-1a), 3.423 (t, 2 H, J 9.5 Hz, H-4a and H-4a), 3.357 (dd, 1 H, J 7.9 and 9.5 Hz, H-2c), and 3.297 (dd, 1 H, J 7.9 and 9.5 Hz, H-2a); δ_C (D₂O) 103.1, 102.8 (C-1a and C-1c), 100.2 and 99.9 (C-1b and C-1d), 22.9 (CH₂CH₃), and 10.4 (CH₂CH₃).

Deprotection of 25 to give O- α -D-glucopyranosyl-(1 \rightarrow 4)-1,6-anhydro- β -D-glucopyranose (1,6-anhydromaltose) (26). — A solution of compound 25 (60 mg, 70 μ mol) in 0.05M NaOMe-MeOH (2 mL) was stirred for 16 h at 20°, and worked up. Chromatography of the crude product on Lobar LiChroprep Si60 (size A) in 6:1 toluene-EtOAc gave the deacetylation product (40 mg, 69%); R_F 0.75 in 3:1 toluene-THF. A mixture of this compound (40 mg) and 10% Pd-C (42 mg) in AcOH

(1.5 mL) was stirred for 30 min at 80° under H₂. Work-up, and chromatography of the product on Sephadex G-25 in H₂O, afforded **26** (quantitative); R_F 0.63 in 2:2:1 BuOH–MeOH–H₂O; n.m.r. data: δ_H (D₂O) 5.482 (s, 1 H, H-1a), 5.144 (d, 1 H, J 3.7 Hz, H-1b), 4.780 (d, 1 H, J 5.2 Hz, H-5a), and 4.148 (d, 1 H, J 7.9 Hz, H-6a); δ_C (D₂O) 102.0 ($^{1}J_{CH}$ 177 Hz, C-1a), 98.5 ($^{1}J_{CH}$ 170 Hz, C-1b), 66.0 (C-6a) and 61.4 (C-6b); lit.¹⁸ δ_C (D₂O) 101.7 (C-1a), 98.3 (C-1b), 65.7 (C-6a), and 61.2 (C-6b).

O-(4-O-acetyl-2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1- \rightarrow 4)-tetrakis-Allyl $[O-(2,3,6-tri-O-benzyl-\alpha-D-glucopyranosyl)-(1\rightarrow 4)]-2,3,6-tri-O-benzyl-\beta-D-gluco$ pyranoside (4), and allyl O-(4-O-acetyl-2,3,6-tri-O-benzyl- α -D-glucopyranosyl)- $(1\rightarrow 4)$ -O-(2,3,6-tri-O-benzyl- β -D-glucopyranosyl)- $(1\rightarrow 4)$ -tris-[O-(2,3,6-tri-O-ben $zyl-\alpha$ -D-glucopyranosyl)- $(1\rightarrow 4)$]-2,3,6-tri-O-benzyl- β -D-glucopyranoside (29). — To a stirred mixture of compound 20 (1.0 g, 560 µmol), AgOSO₂CF₃ (400 mg, 1.6 mmol), SnCl₂ (270 mg, 1.4 mmol), and powdered molecular sieves 4A (2.5 g) in Et_2O (4 mL) was added dropwise a solution of compound 6 (1.05 g, 1.1 mmol) in Et₂O (10 mL) during 3 h at -5 to 0°. The mixture was stirred for 16 h at 20°, filtered through Celite, and the Celite washed with EtOAc. The filtrate and washings were combined, successively washed with aq. NaHCO₃ and H₂O, dried (MgSO₄), and evaporated in vacuo. Chromatography of the residue on SiO₂ gel in 20:1 toluene-EtOAc and then on Lobar LiChroprep Si60 (size C) in 17:1 toluene-EtOAc afforded 4 (650 mg, 43% based on 20), 29 (330 mg, 22% based on 20), 25 (230 mg, 25% based on 6), the glycal 31 (230 mg, 23% based on 6), and recovered 20 (220 mg, 21%).

Compound 4: $[\alpha]_D$ +64.7° (c 0.3); R_F 0.32 (h.p.t.l.c.) in 9:1 toluene-EtOAc; n.m.r. data: δ_H 1.79 (s, 3 H, Ac); δ_C 134.3 (-CH=CH₂), 117.2 (CH=CH₂), 102.7 (C-1a), 96.9, 96.6, 96.4, and 96.2 (C-1b, C-1c, C-1d, C-1e, and C-1f in the ratios of 1:1:1:2), 84.7 (C-3a), 82.1 (C-2a), and 20.9 (COCH₃).

Anal. Calc. for C₁₆₇H₁₇₆O₃₂: C, 74.4; H, 6.6. Found: C, 74.3; H, 6.6.

Compound **29**: $[\alpha]_D$ +57.6° (c 0.3); R_F 0.25 (h.p.t.l.c.) in 9:1 toluene– EtOAc; n.m.r. data: δ_C 134.2 (-CH=CH₂), 117.2 (-CH=CH₂), 102.6 (C-1a), 102.2 (C-1e), 96.9, 96.6, 96.5, 96.2 (C-1b, C-1c, C-1d, C-1f), 84.7 (C-3a, C-3e), and 20.8 (COCH₃).

Anal. Calc. for C₁₆₇H₁₇₆O₃₂: C, 74.4; H, 6.6. Found: C, 74.6; H, 6.6.

Compound 31: R_F 0.23 (h.p.t.l.c.) in 9:1 toluene–EtOAc; n.m.r. data: δ_H 6.334 (s, 1 H, H-1a), 5.135 (d, 1 H, J 3.7 Hz, H-1b), and 1.829 (s, 3 H, CH₃CO); δ_C 169.5 (C=O), 96.6 (C-1b), and 20.8 (COCH₃).

Allyl O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-tetrakis[O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)]-2,3,6-tri-O-benzyl- β -D-glucopyranoside (27) and its deprotection product. — A solution of compound 4 (500 mg, 190 μ mol) in 1:1 MeOH-THF (4 mL) containing 0.5M NaOMe (0.1 mL) was stirred for 19 h at 20°. Work-up, and chromatography on Lobar LiChroprep (size B) in 15:1 toluene-EtOAc, afforded 27 (390 mg, 79%); [α]_D +64.7° (c 0.3); $R_{\rm F}$ 0.49 in 8:1 toluene-EtOAc; n.m.r. data: $\delta_{\rm C}$ 134.2 (CH=CH₂), 117.1 (CH=CH₂), 102.6 (C-1a), 96.8, 96.6, 96.3 (five anomeric carbon atoms in the ratios of 1:1:3), 84.6 (C-3a), 82.0 (C-2a), and 81.4 (C-3b, C-3c, C-3d, C-3e, and C-3f).

Anal. Calc. for C₁₆₅H₁₇₃O₃₁: C, 74.7; H, 6.6. Found: C, 74.5; H, 6.6.

A mixture of compound **27** (19 mg, 7 μ mol) and 10% Pd–C (19 mg) in AcOH (2 mL) was stirred for 1 h at 80° under H₂. Work-up, and purification through use of Sephadex G-25 in H₂O, gave propyl *O*- α -D-glucopyranosyl-(1 \rightarrow 4)-tetrakis[α -Dglucopyranosyl-(1 \rightarrow 4)]- β -D-glucopyranoside (**28**; 7 mg, 94%); $R_{\rm F}$ 0.56 in 2:2:1 BuOH–MeOH–H₂O; n.m.r. data: $\delta_{\rm H}$ (D₂O, 20°) 5.417 (d, 5 H, *J* 3.7 Hz, H-1b, H-1c, H-1d, H-1e, and H-1f), 4.487 (d, 1 H, *J* 7.9 Hz, H-1a), 3.428 (t, 1 H, *J* 9.5 Hz, H-4a), 3.298 (dd, 1 H, *J* 7.9 and 9.5 Hz, H-2a), and 0.924 (t, 3 H, *J* 7.3 Hz, CH₂CH₃).

Deprotection of **29**. — Compound **29** (31 mg, 12 μ mol) was treated as for **27**, to give the deacetylation product (29 mg, 93%): $[\alpha]_D$ +55.1° (*c* 0.7); R_F 0.60 in 5:1 toluene–EtOAc. A mixture of the deacetylation product (10 mg, 4 μ mol) and 10% Pd–C (20 mg) in 1:9 HCO₂H–MeOH (1 mL) was stirred for 1 h at 50°, cooled, and filtered through Celite. Evaporation of the filtrate *in vacuo*, and chromatography of the residue on Sephadex G-25 in H₂O, afforded propyl *O*- α -D-glucopyranosyl-(1 \rightarrow 4)-*O*- β -D-glucopyranosyl-(1 \rightarrow 4)-tris[*O*- α -D-glucopyranosyl-(1 \rightarrow 4)]- β -D-glucopyranosyl-(1

O-(4-O-Acetyl-2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-bis[O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)]-2,3,6-tri-O-benzyl-D-glucopyranose (32) and its conversion into the glycosyl fluoride. — A mixture of compound 19 (320 mg, 170 μ mol), PdCl₂ (40 mg, 230 μ mol), and AcONa (40 mg, 500 μ mol) in 9:1 AcOH-H₂O (10 mL) was stirred for 1 h at 70°, cooled, and filtered through Celite. The filtrate was evaporated *in vacuo*, and a solution of the residue in EtOAc was successively washed with aq. NaHCO₃ and H₂O, dried (MgSO₄), and evaporated *in vacuo*. Chromatography of the residue on SiO₂ gel in 10:1 toluene–EtOAc afforded 32 (230 mg, 74%); [α]_D +61.5° (c 0.6); $R_{\rm F}$ 0.39 and 0.53 in 5:1 toluene–EtOAc; n.m.r. data: $\delta_{\rm H}$ 1.79 (s, 3 H, CH₃CO); $\delta_{\rm C}$ 96.8, 96.6. 96.2 (C-1b, C-1c, C-1d), 90.8 (C-1a α), and 20.8 (COCH₃).

Anal. Calc. for C₁₁₀H₁₁₅O₂₂: C, 73.2; H, 6.4. Found: C, 73.5; H, 6.5.

A mixture of compound **32** (230 mg, 130 μ mol), SOCl₂ (50 μ L, 700 μ mol), and a trace of DMF in Cl(CH₂)₂Cl (4 mL) was stirred for 16 h at 20°, filtered through SiO₂ gel, and the filtrate evaporated *in vacuo*. To a solution of the residue in CH₃CN (2 mL) was added AgF (40 mg, 320 μ mol). The mixture was stirred for 16 h at 20° in the dark, filtered through Celite, the filtrate evaporated, and the residue dissolved in EtOAc. The solution was washed with aq. NaCl, dried (MgSO₄), and evaporated *in vacuo*. Chromatography of the residue on SiO₂ gel in 15:1 toluene–EtOAc afforded O-(4-O-acetyl-2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1→4)-bis[O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1→4)]-2,3,6-tri-Obenzyl- β -D-glucopyranosyl fluoride (**34**; 150 mg, 65%); $R_{\rm F}$ 0.38 (h.p.t.l.c.) in 9:1 toluene-EtOAc; n.m.r. data: $\delta_{\rm H}$ 5.643 (d, 1 H, J3.6 Hz), 5.556 (d, 1 H, J 3.6 Hz), 5.472 (d, 1 H, J 3.6 Hz) (H-1b, H-1c, and H-1d), 5.363 (dd, 1 H, J 6.1 and 54.0 Hz, H-1a), 5.082 (t, 1 H, J 10.0 Hz, H-4d), and 1.790 (s, 3 H, CH₃CO); $\delta_{\rm C}$ 169.4 (COCH₃), 109.6 (${}^{1}J_{\rm CF}$ 217 Hz, H-1a), 96.8 and 96.4 (C-1b, C-1c, and C-1d, in the ratio of 2:1), 82.9 (${}^{3}J_{\rm CF}$ 9.8 Hz, C-3a), 81.4 (C-3b, C-3c, C-3d), 80.5 (${}^{2}J_{\rm CF}$ 24.4 Hz, C-2a), 79.9 (C-3d), 79.4 (C-4a, C-4b, C-4c), and 20.8 (COCH₃); $\delta_{\rm F}$ 134.2 (${}^{2}J_{\rm HF}$ 53.7 and ${}^{3}J_{\rm HF}$ 11.0 Hz).

Coupling of 34 to 5. — To a mixture of compound 5 (62 mg, 900 μ mol), AgOSO₂CF₃ (24 mg, 900 μ mol), SnCl₂ (17 mg, 900 μ mol), and powdered molecular sieves 4A (200 mg) in Et₂O (2.5 mL) was added a solution of compound 34 (111 mg, 62 μ mol) in Et₂O (2.5 mL) at 0°. The mixture was stirred for 24 h at 20°, filtered through Celite, and the Celite washed with EtOAc. The filtrate and washings were combined, successively washed with aq. NaHCO₃ and H₂O, dried $(MgSO_4)$, and evaporated in vacuo. Chromatography of the residue on Lobar LiChroprep Si60 (size A) in 15:1 toluene-EtOAc afforded allyl O-(4-O-acetyl-2,3,6 -tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-tetrakis[O-(2,3,6-tri-O-benzyl- α -Dglucopyranosyl)- $(1\rightarrow 4)$]-2,3,6-tri-O-benzyl- β -D-glucopyranoside (4; 59 mg, 35%), allyl O-(4-O-acetyl-2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-bis[O-(2,3,6-tri-*O*-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)]-*O*-(2,3,6-tri-*O*-benzyl- β -D-glucopyranosyl)- $(1\rightarrow 4)-O-(2,3,6-\text{tri}-O-\text{benzyl}-\alpha-D-\text{glucopyranosyl})-(1\rightarrow 4)-2,3,6-\text{tri}-O-\text{benzyl}-\beta-D$ glucopyranoside (35; 34 mg, 20%), and O-(4-O-acetyl-2,3,6-tri-O-benzyl- α -Dglucopyranosyl)- $(1\rightarrow 4)$ -bis[O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)- $(1\rightarrow 4)$]-1,6anhydro-2,3-di-O-benzyl- β -D-glucopyranose (36; 79 mg, 33%).

Compound 4: R_F 0.40 (h.p.t.l.c.), compound 35: R_F 0.35 (h.p.t.l.c.) in 8:1 toluene-EtOAc.

Compound **36**: R_F 0.18 (h.p.t.l.c.) in 8:1 toluene-EtOAc; n.m.r. data: δ_H 5.590 (d, 1 H, J 3.4 Hz), 5.535 (d, 1 H, J 3.4 Hz, H-1c and H-1d), 5.482 (s, 1 H, H-1a), 5.061 (t, 1 H, J 9.8 Hz, H-4d), 4.992 (d, 1 H, J 3.4 Hz, H-1b), and 1.784 (s, 3 H, CH₃CO).

Allyl O-[2,3,6-tri-O-benzyl-4-O-(monochloroacetyl)-α-D-glucopyranosyl]-(1→4)-tetrakis[O-(2,3,6-tri-O-benzyl-α-D-glucopyranosyl)-(1→4)]-2,3,6-tri-O-benzyl-β-D-glucopyranoside (37). — A mixture of compound 27 (390 mg, 150 µmol) and (ClCH₂CO)₂O (50 mg, 290 µmol) in Cl(CH₂)₂Cl (6 mL) containing pyridine (50 µL, 600 µmol) was stirred for 1.5 h at 20°, and evaporated *in vacuo*. A solution of the residue in EtOAc was successively washed with aq. NaHCO₃ and H₂O, dried (MgSO₄), and evaporated *in vacuo*. Chromatography of the residue on Lobar LiChroprep (size B) in 10:1 toluene–EtOAc afforded 37 (350 mg, 88%); [α]_D +69.4° (c 0.2); R_F 0.52 in 8:1 toluene–EtOAc; n.m.r. data: δ_C 165.7 (COCH₂Cl), 134.2 (CH=CH₂), 117.1 (CH=CH₂), 102.6 (C-1a), 96.6, 96.4, 96.2 (in the ratios of 1:1:3, C-1b, C-1c, C-1d, C-1e, C-1f), 84.6 (C-3a), 82.0 (C-2a), 81.5 (C-3b, C-3c, C-3d, C-3e), 79.4 (C-3f, C-4a, C-4b, C-4c, C-4d, C-4e), and 40.5 (COCH₂Cl). Anal. Calc.forC₁₆₇H₁₇₅ClO₃₂·C₆H₅CH₃:C,74.1;H,6.5.Found:C,74.0;H,6.5.

 $O-[2,3,6-Tri-O-benzy]-4-O-(monochloroacety])-\alpha-D-glucopyranosyl]-(1\rightarrow 4)-$

tetrakis[2,3,6-tri-O-benzyl- α -D-glucopyranosyl-(1 \rightarrow 4)]-2,3,6-tri-O-benzyl-D-glucopyranose (**38**). — A mixture of compound **37** (340 mg, 120 µmol), PdCl₂ (150 mg, 850 µmol), and NaOAc (150 mg, 1.8 mmol) in 9:1 AcOH-H₂O (10 mL) was sonicated with an ultrasonic cleaner (TOCHO) for 1 h at 20°, and then stirred for 16 h at 20°, filtered through Celite, and the filtrate evaporated *in vacuo*. A solution of the residue in EtOAc was successively washed with aq. NaHCO₃ and H₂O, dried (MgSO₄), and evaporated *in vacuo*. Chromatography of the residue on SiO₂ gel in 15:1 toluene–EtOAc afforded **38** (200 mg, 60%); $[\alpha]_D$ +93.8° (*c* 0.1); *R*_F 0.18 and 0.23 (h.p.t.l.c.) in 8:1 toluene–EtOAc; n.m.r. data: δ_C 165.8 (COCH₂Cl), 96.7 and 96.2 (in the ratio of 2:3, C-1b, C-1c, C-1d, C-1e, and C-1f). 90.7 (C-1a α), and 40.6 (COCH₂Cl).

Anal. Calc. for C₁₆₄H₁₇₁ClO₃₂: C, 73.2; H, 6.4. Found: C, 73.5; H, 6.4.

O-[2,3,6-Tri-O-benzyl-4-O-(monochloroacetyl)-α-D-glucopyranosyl]-(1→4)tetrakis[O-(2,3,6-tri-O-benzyl-α-D-glucopyranosyl)-(1→4)]-2,3,6-tri-O-benzyl-β-Dglucopyranosyl fluoride (**39**). — A mixture of compound **38** (177 mg, 70 µmol) and SOCl₂ (40 µL, 360 µmol) in Cl(CH₂)₂Cl (2 mL) containing a trace of DMF was stirred for 24 h at 20° and then filtered through SiO₂ gel. The filtrate was evaporated *in vacuo*, to give crude α-chloride; R_F 0.59 (h.p.t.l.c.) in 8:1 toluene–EtOAc. A mixture of the crude chloride and AgF (20 mg, 160 µmol) in CH₃CN (1.5 mL) was stirred for 16 h at 20° in the dark, filtered through Celite, and the Celite washed with EtOAc. The filtrate and washings were combined, successively washed with aq. NaCl and H₂O, dried (MgSO₄), and evaporated *in vacuo*. Chromatography of the residue on SiO₂ gel in 20:1 toluene–EtOAc afforded **39** (129 mg, 73%); [*α*]_D +72.5° (*c* 0.1); R_F 0.57 (h.p.t.l.c.) in 8:1 toluene–EtOAc; n.m.r. data: δ_C 165.8 (COCH₂Cl), 109.2 (d, ¹J_{CF} 217 Hz, C-1a), 96.7, 96.5, 96.2 (in the ratios of 2:1:2, C-1b, C-1c, C-1d, C-1e, C-1f), 82.9 (d, ³J_{CF} 9.8 Hz, C-3a), 81.5 (C-3b, C-3c, C-3d, C-3e), 80.6 (d, ²J_{CF} 24.4 Hz, C-2a), and 40.6 (COCH₂Cl).

Anal. Calc. for C₁₆₄H₁₇₀ClFO₃₁: C, 73.2; H, 6.3. Found: C, 73.2; H, 6.4.

O-(2,3,6-Tri-O-benzyl- α -D-glucopyranosyl)- $(1\rightarrow 4)$ -tetrakis[O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)- $(1\rightarrow 4)$]-2,3,6-tri-O-benzyl- β -D-glucopyranosyl fluoride (3). — A solution of compound **39** (40 mg, 15 μ mol) in 1:1 MeOH-THF (dried over activated molecular sieves 4A) containing 0.5M NaOMe-MeOH (4 μ L) was stirred for 2 h at 20°, and then evaporated *in vacuo*. Chromatography of the residue on SiO₂ gel in 20:1 toluene-EtOAc afforded **3** (37 mg, 95%); $[\alpha]_D$ +56.2° (c 0.2); R_F 0.37 (h.p.t.l.c.) in 8:1 toluene-EtOAc; n.m.r. data: δ_H 5.693, 5.653, 5.595, 5.560, 5.475 (5 d, 5 H, J 3.6 Hz, H-1b, H-1c, H-1d, H-1e, H-1f), and 5.358 (dd, 1 H, J 6.0 and 54.0 Hz, H-1a); δ_C 109.7 (d, ${}^{1}J_{CF}$ 217 Hz, C-1a), 96.8, 96.3 (in the ratio of 2:3, C-1b, C-1c, C-1d, C-1e, C-1f), 82.9 (d, ${}^{3}J_{CF}$ 9.8 Hz, C-3a), 81.4 (C-3b, C-3c, C-3d, C-3e), and 80.4 (d, ${}^{2}J_{CF}$ 24.5 Hz, C-2a).

Anal. Calc. for C₁₆₂H₁₆₉FO₃₀: C, 74.4; H, 6.4. Found: C, 74.6; H, 6.5.

Cyclization of 3. — To a stirred mixture of $AgOSO_2CF_3$ (10 mg, 40 μ mol), $SnCl_2$ (10 mg, 50 μ mol), and powdered molecular sieves 4A (100 mg) in Et₂O (2 mL) was added dropwise a solution of compound **40** (35 mg, 14 μ mol) in Et₂O (5

mL) during 20 min at -5 to 0° under Ar. The mixture was stirred for 16 h at 20°, filtered through Celite, and the Celite washed with EtOAc. The filtrate and washings were combined, successively washed with aq. NaHCO₃ and H₂O, dried (MgSO₄), and evaporated *in vacuo*. Chromatography of the residue on SiO₂ gel in 10:1 toluene-EtOAc afforded octadeca-O-benzylcyclomaltohexaose (2; 71 mg, 21%); O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-tetrakis[O-(2,3,6-tri-O-benzyl- α -D-glucopyranosyl)-(1 \rightarrow 4)]-1,6-anhydro-2,3-di-O-benzyl- β -D-glucopyranose (41; 6.7 mg, 20%), and hydrolysis product 40 (5.1 mg, 14%).

Compound 2: $[\alpha]_D$ +34.7° (c 0.2); $R_F 0.74$ (h.p.t.l.c.) in 8:1 toluene–EtOAc; n.m.r. data: $\delta_H 5.163$ (d, 1 H, J 10.7 Hz, CH_2Ph), 5.065 (d, 1 H, J 3.4 Hz, H-1), 4.852 (d, 1 H, J 10.9 Hz, CH_2Ph), 4.470 (d, 1 H, J 12.5 Hz, CH_2Ph), 4.423 (d, 1 H, J 12.7 Hz, CH_2Ph), 4.377 (d, 1 H, J 12.0 Hz, CH_2Ph), 4.295 (d, 1 H, J 12.0 Hz, CH_2Ph), 4.121 (t, 1 H, J 9.8 Hz, H-3), 4.018 (t, 1 H, J 9.5 Hz, H-4), 3.980 (dd, 1 H, J 2.8 and 10.4 Hz, H-6), 3.881 (bd, 1 H, J 9.5 Hz, H-5), 3.461 (d, 1 H, J 10.2 Hz, H-6'), and 3.445 (dd, 1 H, J 3.4 and 9.8 Hz, H-2); δ_C 98.7 (C-1), 81.1 (C-4), 79.3 (C-3), 79.2 (C-2), 75.7, 73.5, 72.9 (3 CH_2Ph), 71.7 (C-5), and 69.2 (C-6).

Compound 41: R_F 0.21 (h.p.t.l.c.) in 8:1 toluene-EtOAc; n.m.r. data: δ_H 5.682, 5.620, 5.594, 5.560 (4 d, 4 H, J 3.4 Hz, H-1c, H-1d, H-1e, H-1f), 5.478 (s, 1 H, H-1a), and 5.002 (d, 1 H, J 3.4 Hz, H-1b).

Octadeca-O-benzylcyclomaltohexaose (2) by benzylation of the natural material. — To a suspension of NaH (50%, 0.64 g, 11 mmol) in DMF (2 mL) was added cyclomaltohexaose (500 mg, 510 μ mol), and the mixture was stirred for 20 min at 20°. To this mixture was added dropwise C₆H₅CH₂Br (1.32 mL, 11 mmol) at -5°. The mixture was stirred for 1 h at 0°, and then for 2 h at 20°. The usual work-up, and chromatography on SiO₂ gel in 20:1 toluene–EtOAc afforded a quantitative yield of 2; [α]_D +34.1° (c 0.7); n.m.r. data: δ _H 5.162 (d, 1 H, J 11.0 Hz, CH₂Ph), 5.065 (d, 1 H, J 3.4 Hz, H-1), 4.851 (d, 1 H, J 11.0 Hz, CH₂Ph), 4.470 (d, 1 H, J 12.7 Hz, CH₂Ph), 4.422 (d, 1 H, J 12.7 Hz, CH₂Ph), 4.377 (d, 1 H, J 12.2 Hz, CH₂Ph), 4.294 (d, 1 H, J 12.2 Hz, CH₂Ph), 4.120 (t, 1 H, J 9.8 Hz, H-3), 4.018 (t, 1 H, J 8.5 Hz, H-4), 3.970 (dd, 1 H, J 2.6 and 10.7 Hz, H-6), 3.880 (bd, 1 H, J 9.3 Hz, H-5), 3.460 (d, 1 H, J 10.4 Hz, H-6'), and 3.445 (dd, 1 H, J 3.4 and 9.8 Hz, H-2); δ _C 98.6 (C-1), 81.0 (C-4), 79.3 (C-3), 79.1 (C-2), 75.6, 73.4, 72.8 (3 CH₂Ph), 71.6 (C-5), and 69.1 (C-6).

Anal. Calc. for C₁₆₂H₁₆₈O₃₀: C, 75.0; H, 6.5. Found: C, 74.6; H, 6.4.

Cyclomaltohexaose (1). — A mixture of compound 2 (148 mg, 58 μ mol) and 10% Pd-C (150 mg) in 2:2:1 THF-MeOH-H₂O (30 mL) containing HCO₂H (3 mL) was stirred for 3 h at 50°, filtered through Celite, and the filtrate evaporated in vacuo. A suspension of the residue in H₂O (10 mL) was filtered through a 0.5 μ m filter unit (MILEX-SR) to remove a trace of Pd-C, and the filtrate was evaporated in vacuo, to give 1 (quantitative); R_F 0.56 (h.p.t.l.c.) in 2:2:1 BuOH-MeOH-H₂O; n.m.r. data: δ_H (99:1 D₂O-HCO₂H) 4.76 (d, 1 H, J 3.1 Hz, H-1); δ_C (99:1 D₂O-HCO₂H) 102.2 (C-1), 82.0 (C-4), 74.1 (C-3), 72.8 (C-2), 72.5 (C-5), and 61.2 (C-6).

N.m.r. data for natural 1: $\delta_{\rm H}$ (99:1 D₂O-HCO₂H) 4.74 (d, 1 H, J 3.1 Hz,

H-1); δ_{C} (99:1 D₂O-HCO₂H) 102.4 (C-1), 82.1 (C-4), 74.2 (C-3), 72.8 (C-2), 72.6 (C-5), and 61.2 (C-6).

ACKNOWLEDGMENTS

We thank Dr. J. Uzawa and Mrs. T. Chijimatsu for recording and measuring the n.m.r. spectra, and Dr. H. Honma and his staff for the elemental analyses. We also thank A. Takahashi and K. Moriwaki for their technical assistance.

REFERENCES

- 1 T. OGAWA AND Y. TAKAHASHI, Carbohydr. Res., 138 (1985) C5-C9.
- 2 D. FRENCH, Adv. Carbohydr. Chem., 12 (1957) 189–210; W. SAENGER, Angew. Chem., Int. Ed. Engl., 19 (1980) 344-362.
- 3 R. BRESLOW, Science, 218 (1982) 532-537; I. TABUSHI, Acc. Chem. Res., 15 (1982) 66-72; A. P. CROFT AND R. A. BARTSCH, Tetrahedron, 39 (1983) 1417-1474.
- 4 B. HELFERICH, K. BÄUERLEIN, AND F. WIEGAND, Ann., 447 (1926) 27-37.
- 5 T. MUKAIYAMA, Y. MURAI, AND S. SHODA, Chem. Lett., (1981) 431-432.
- 6 D. H. BRAUNS, J. Am. Chem. Soc., 45 (1923) 833-839.
- 7 B. HELFERICH AND R. GOOTZ, Ber., 62 (1929) 2505-2507.
- T. MUKAIYAMA, Y. HASHIMOTO, AND S. SHODA, Chem. Lett., (1983) 935-983; Y. ARAKI,
 K. WATANABE, F.-H. KUAN, K. ITOH, N. KOBAYASHI, AND Y. ISHIDO, Carbohydr. Res., 127 (1984)
 C5-C9; M. HAYASHI, S. HASHIMOTO, AND R. NOYORI, Chem. Lett., (1984) 1747-1750;
 W. A. SZAREK, G. GRYNKIEWICZ, B. DOBOSZEWSKI, AND G. W. HAY, *ibid.*, (1984) 1751-1754;
 K. C. NICOLAOU, R. E. DOLLE, D. P. PAPAHAJIS, AND J. L. RANDALL, J. Am. Chem. Soc., 106
 (1984) 4189-4192; W. ROSENBROOK, JR., D. A. RILEY, AND P. A. LARTEY, Tetrahedron Lett., (1985)
 3-4; G. H. POSNER AND S. R. HAINES, *ibid.*, (1985) 5-8.
- 9 T. OGAWA AND M. MATSUI, Carbohydr. Res., 51 (1976) c13-c18.
- 10 T. OGAWA AND M. MATSUI, Carbohydr. Res., 56 (1977) C1-c6; 62 (1978) C1-c4; Tetrahedron, 37 (1981) 2362-2369; A. VEYRIÈRES, J. Chem. Soc., Perkin Trans. 1, (1981) 1626-1629.
- 11 T. OGAWA AND S. NAKABAYASHI, Carbohydr. Res., 93 (1981) C1-C5; T. OGAWA, S. NAKABAYASHI. AND T. KITAJIMA, *ibid.*, 114 (1983) 225-236.
- 12 M. S. NEWMAN AND P. K. SUJEETH, J. Org. Chem., 43 (1978) 4367-4369; see also ref. 11.
- 13 K. BOCK AND C. PEDERSEN, Acta. Chem. Scand., Ser. B, 29 (1975) 682-686; V. WRAY, J. Chem. Soc., Perkin Trans. 2, (1976) 1598-1605.
- 14 L. D. HALL, J. F. MANVILLE, AND N. S. BHACCA, Can. J. Chem., 47 (1969) 1-17; L. PHILLIPS AND V. WRAY, J. Chem. Soc. B, (1971) 1618-1624.
- 15 A. TAKAOKA, H. IWAKIRI, AND N. ISHIKAWA, Bull. Chem. Soc. Jpn., 52 (1979) 3377-3380.
- 16 R. R. SCHMIDT AND J. MICHEL, Angew. Chem., Int. Ed. Engl., 19 (1980) 731-732; 21 (1982) 77-78.
- 17 B. ELAMIN, G. M. ANANTHARAMAIAH, G. P. ROYER, AND G. E. MEANS, J. Org. Chem., 44 (1979) 3442-3444; V. S. RAO AND A. S. PERLIN, Carbohydr. Res., 83 (1980) 175-177.
- 18 P. KARRER AND L. KAMIENSKI, Helv. Chim. Acta, 15 (1932) 739-740; M. MORI, M. HAGA, AND S. TEJIMA, Chem. Pharm. Bull., 22 (1974) 1331-1338; H. MATSUDA AND S. TEJIMA, Yakugaku Zasshi, 101 (1981) 814-821.