Reactions of 2,2'-(Azo-2-phenoxypropane) with Bromine: a Novel Route to o- and p-Bromophenol

Kyongtae Kim* and Young-Chan Chang
Department of Chemistry, Seoul National University, Seoul 151, Korea

o - and p-Bromophenol have been synthesized from the reactions of 2,2'-(azo-2-phenoxypropane) with different concentrations of bromine in 68 and 88% yields, respectively.

[^0]$-70^{\circ} \mathrm{C}$, giving a 60% yield of (2). Another method requires careful control of conditions and gives only a 40% yield. ${ }^{3}$ We report here our results on the bromination of (1) (Scheme 1). Compound (1) is readily prepared from acetone by the route in Scheme 2.
With a molar ratio of (1) to Br_{2} of $\sim 1: 2$, the yields of (2) and (3) were 68 and 2%, respectively, based on (1). However, by increasing the proportion of bromine to about $1: 7$, only (3) was isolated, in 88% yield. To our knowledge, this is the first example in which both (2) and (3) may be synthesised in good

(2)
(3)

Scheme 1. Amounts (mmol) of bromine and products: ${ }^{\text {a }}$

Br_{2}	$\mathbf{(2)}$	$\mathbf{(3)}$	$\mathbf{(4)}$	$(\mathbf{5})$
19.41	13.70	0.44	1.34	Trace
67.94	0	17.81	1.64	1.61

a To a stirred solution of (1) $(10.07 \mathrm{mmol})$ in $\mathrm{MeCN}(60 \mathrm{ml})$ was added Br_{2} in $\mathrm{CCl}_{4}(30 \mathrm{ml})$ at room temperature. The reaction was completed in a few minutes. The products were identified by comparison of spectroscopic and physical data with those of authentic samples. Yields are for isolated products after column chromatography on silica gel: (5) and (4), hexane as eluant; (3), benzene; and (2), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
yields from the same reaction by controlling the bromine concentration. 1,3-Dibromopropanone (4) and 1,1,3tribromopropanone (5) ${ }^{5}$ could readily be separated, and their yields also depended on the concentration of bromine. The

Scheme 2
mechanism of the formation of (2) and (3) is uncertain. However, (1) appears to be readily hydrolysed to give acetone ${ }^{1,6}$ which then undergoes bromination to yield (4) and (5).

The authors are grateful to the Research Institute for Basic Sciences, Seoul National University, for financial support.

Received, 9th April 1986; Com. 469

References

1 J. M. Lee, K. Kim, and J. H. Shin, Bull. Korean Chem. Soc., 1985, 6, 358.
2 J. M. Brittain and P. B. D. de la Mare; M. Hudlicky and T. Hudlicky, Supplement D, 'The Chemistry of Halides, Pseudohalides and Azides,' Part 1, ed. S. Patai and Z. Rapport, Wiley, New York, 1983, ch. 12, p. 481; ch. 22, p. 1102.
3 R. C. Huston and M. M. Ballard, Org. Synth., 1943, Coll. Vol. 2, 97, and references cited therein.
4 D. E. Pearson, R. D. Wysongs, and C. V. Breder, J. Org. Chem., 1967, 32, 2358.
5 F. Weygand and V. Schmied-Kowarzik, Chem. Ber., 1949, 82, 335.
6 E. Benzig, Liebigs Ann. Chem., 1960, 631, 1.

[^0]: In connection with a mechanistic study on the reaction of $2,2^{\prime}$-(azo-2-phenoxypropane) (1) with cation radicals, ${ }^{1}$ we studied the reaction of (1) with bromine and found a useful route for obtaining o - (2) and p-bromophenol (3) by controlling the concentration of bromine. Although there have been extensive studies on the bromination of phenol under various conditions, ${ }^{2}$ little is known about efficient methods to prepare (2). ${ }^{3}$ Pearson et al. ${ }^{4}$ reported a complicated method for nearly specific halogenation ortho to the hydroxy group, which involved the use of bromine, t-butylamine, and toluene at

