Reactions of 2,2'-(Azo-2-phenoxypropane) with Bromine: a Novel Route to *o*- and *p*-Bromophenol

Kyongtae Kim* and Young-Chan Chang

Department of Chemistry, Seoul National University, Seoul 151, Korea

o- and *p*-Bromophenol have been synthesized from the reactions of 2,2'-(azo-2-phenoxypropane) with different concentrations of bromine in 68 and 88% yields, respectively.

In connection with a mechanistic study on the reaction of 2,2'-(azo-2-phenoxypropane) (1) with cation radicals,¹ we studied the reaction of (1) with bromine and found a useful route for obtaining o- (2) and p-bromophenol (3) by controlling the concentration of bromine. Although there have been extensive studies on the bromination of phenol under various conditions,² little is known about efficient methods to prepare (2).³ Pearson *et al.*⁴ reported a complicated method for nearly specific halogenation *ortho* to the hydroxy group, which involved the use of bromine, t-butylamine, and toluene at

-70 °C, giving a 60% yield of (2). Another method requires careful control of conditions and gives only a 40% yield.³ We report here our results on the bromination of (1) (Scheme 1). Compound (1) is readily prepared from acetone by the route in Scheme 2.

With a molar ratio of (1) to Br_2 of $\sim 1:2$, the yields of (2) and (3) were 68 and 2%, respectively, based on (1). However, by increasing the proportion of bromine to about 1:7, only (3) was isolated, in 88% yield. To our knowledge, this is the first example in which both (2) and (3) may be synthesised in good OH

Scheme 1. Amounts (mmol) of bromine and products:^a

Br ₂	(2)	(3)	(4)	(5)
19.41	13.70	0.44	1.34	Trace
67.94	0	17.81	1.64	1.61

^a To a stirred solution of (1) (10.07 mmol) in MeCN (60 ml) was added Br_2 in CCl_4 (30 ml) at room temperature. The reaction was completed in a few minutes. The products were identified by comparison of spectroscopic and physical data with those of authentic samples. Yields are for isolated products after column chromatography on silica gel: (5) and (4), hexane as eluant; (3), benzene; and (2), CH_2Cl_2 .

yields from the same reaction by controlling the bromine concentration. 1,3-Dibromopropanone (4) and 1,1,3-tribromopropanone (5)⁵ could readily be separated, and their yields also depended on the concentration of bromine. The

mechanism of the formation of (2) and (3) is uncertain. However, (1) appears to be readily hydrolysed to give acetone^{1,6} which then undergoes bromination to yield (4) and (5).

The authors are grateful to the Research Institute for Basic Sciences, Seoul National University, for financial support.

Received, 9th April 1986; Com. 469

References

- 1 J. M. Lee, K. Kim, and J. H. Shin, Bull. Korean Chem. Soc., 1985, 6, 358.
- 2 J. M. Brittain and P. B. D. de la Mare; M. Hudlicky and T. Hudlicky, Supplement D, 'The Chemistry of Halides, Pseudo-halides and Azides,' Part 1, ed. S. Patai and Z. Rapport, Wiley, New York, 1983, ch. 12, p. 481; ch. 22, p. 1102.
- 3 R. C. Huston and M. M. Ballard, Org. Synth., 1943, Coll. Vol. 2, 97, and references cited therein.
- 4 D. E. Pearson, R. D. Wysongs, and C. V. Breder, J. Org. Chem., 1967, 32, 2358.
- 5 F. Weygand and V. Schmied-Kowarzik, Chem. Ber., 1949, 82, 335.
- 6 E. Benzig, Liebigs Ann. Chem., 1960, 631, 1.