Regioselective synthesis of substituted 1-indanols, 2,3-dihydrobenzofurans and 2,3-dihydroindoles by electrochemical radical cyclization using an arene mediator

Nobuhito Kurono,* Eiichi Honda, Fumikazu Komatsu, Kazuhiko Orito and Masao Tokuda
Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, kita-ku kital3 Nishi8, Sapporo 060-8628, Japan

Received 12 November 2003; revised 13 December 2003; accepted 15 December 2003

Abstract

Electrochemical reduction of haloarenes carrying 2-(1-hydroxybut-3-enyl), 2-allyloxy or N-allyl- N-methylamino group in the presence of phenanthrene as a mediator generated the corresponding aryl radicals and gave the corresponding 5-exo cyclization products in good yields. Higher regio- and stereoselectivities than those of usual radical cyclization using AIBN-Bu SnH^{2} were achieved. © 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Radical cyclization is a useful method for synthesizing cyclic compounds. Carbon radicals are usually generated by the reaction of organic halides with AIBN-organotin reagents such as tributyltin hydride $\left(\mathrm{Bu}_{3} \mathrm{SnH}\right) .{ }^{1}$ However, there are several drawbacks in this method, such as toxicity of tin compounds and difficulty in isolating products due to contamination of $\mathrm{R}_{3} \mathrm{SnX}$. Many methods ${ }^{2}$ have been reported to overcome the drawbacks. On the other hand, electrochemical reaction is an environmentally benign method for organic synthesis since it can be carried out under mild conditions by using electrons as clean reagents. Therefore, electrochemical generation of carbon radicals from the corresponding organic halides and its use in cyclization reactions would be of synthetic importance. However, usual electrochemical reduction of organic halides gives the corresponding carbanions by their preferential two-electron reduction and, finally, gives simple reduction products. ${ }^{3}$ Only a few methods for electrochemical generation of radicals to give cyclization products have been reported: i.e. direct electrochemical reduction of 2-halo- N-arylbenzamide derivatives ${ }^{4}$ and arenediazonium salts carrying prop-3-enylamino groups ${ }^{5}$ and electrochemical reduction of alkenyl and aryl halides using Ni (II) or $\mathrm{Co}(\mathrm{II})$ catalyst ${ }^{6}$ and of N -(2-iodophenyl)- N alkylcinnamides using an oxygen mediator. ${ }^{7}$

Recently, we developed an electrochemical method for the generation of aryl radicals from the corresponding aryl

[^0]halides by the use of arene as a single electron transfer mediator and reported in a communication that these aryl radicals could be used to intramolecular cyclization reaction. ${ }^{8}$ In this paper, we report the detailed results of the electrochemical generation of aryl radicals as well as its application to 5-exo radical cyclizations to give substituted 1 -indanols, 2,3-dihydrobenzofurans and 2,3-dihydroindoles. We also report that these cyclizations undergo in more regio- and stereoselective manner than that of usual radical cyclizations using AIBN-Bu $\mathrm{S}_{3} \mathrm{SnH}$. Similar electrochemical cyclization of N -allyl-2-chloroacetanilide using (E)-stilbene as an electron transfer agent was reported by Grimshaw et al. ${ }^{9}$

2. Results and discussion

2.1. Generation of aryl radicals

Electrochemical reduction of 1-(2-iodophenyl)-3-buten-1-ol (1a: $\mathrm{X}=\mathrm{I}, \mathrm{Y}=\mathrm{CH}(\mathrm{OH})$) in the presence of arene mediator generated the corresponding aryl radical (A) and gave the corresponding 5-exo cyclization product 2 a and simple reduction product (3a) (Scheme 1). This radical cyclization reaction was first examined under various conditions to optimize the reaction conditions. These results are summarized in Tables 1 and 2. Electrolysis was carried out at a constant current in an undivided cell equipped with a platinum cathode and a sacrificial anode. An anode material used as a sacrificial anode was very effective for the reactions. It was found that the use of Mg or Zn metal as an anode gave an exo-cyclized product 2a, although electrolysis using a Pt anode gave 2a only in 12% yield (Table 1). Therefore, a platinum cathode and a magnesium anode were

Scheme 1.

Table 1. Effect of anode materials on electrochemical cyclization of $\mathbf{1 a}{ }^{a}$

Entry	Anode (metal)	Yields (\%) $^{\text {b }}$	
		2a (syn:anti)	3a
1	Pt	$12(2.2: 1)$	18
2	Zn	$60(1.7: 1)$	28
3	Mg	$76(2.5: 1)$	14

${ }^{\text {a }}$ Electrolysis of $\mathbf{1 a}$ in $0.1 \mathrm{M} \mathrm{Et}_{4} \mathrm{NClO}_{4}$-DMF was carried out at $0{ }^{\circ} \mathrm{C}$ in the presence of 6 equiv. of naphthalene using a Pt cathode $\left(75 \mathrm{~mA} / \mathrm{cm}^{2}, 5 \mathrm{~F} /\right.$ mol).
${ }^{\mathrm{b}}$ Isolated yields.
${ }^{\text {c }}$ Isomer ratios of syn and anti were determined by ${ }^{1} \mathrm{H}$ NMR analysis.
used in the following electrolyses. The effect of current density was also examined, and the electrolysis of $\mathbf{1 a}$ at current densities of $45,60,75$ and $90 \mathrm{~mA} / \mathrm{cm}^{2}$ gave 2a in yields of $67,69,76$ and 58%, respectively. Electricity of $5 \mathrm{~F} / \mathrm{mol}$ was needed for complete consumption of $\mathbf{1 a}$.

Effects of various mediators and their amounts on the cyclization of 1a were also examined, and the results are summarized in Table 2. Electrolysis of 1a in the absence of any mediator gave the cyclization product $\mathbf{2 a}$ only in 11% yield (entry 1). Use of 6 equiv. of naphthalene gave 2 a in 76% yield (entry 2). When phenanthrene was used as a mediator, $\mathbf{2 a}$ was obtained in 73% yield even when 2 equiv. of phenanthrene was used (entry 5). When 9,10-diphenyl-
anthracene, 9-phenylanthracene or 9-cyanophenanthrene was used, the cyclized product was obtained in low to moderate yields (entries 8-10). Finally, all of the following electrolyses were carried out in a one-compartment cell equipped with a Pt cathode and an Mg anode in 0.1 M $\mathrm{Et}_{4} \mathrm{NClO}_{4}$-DMF solution containing a substrate and phenanthrene as a mediator at a current density of $75 \mathrm{~mA} /$ cm^{2}. Electricity of $5 \mathrm{~F} / \mathrm{mol}$ was passed (Scheme 1).

2.2. Synthesis of substituted 1-indanols

The present radical cyclization by electrolysis was applied to a synthesis of substituted 1 -indanols (2). Electrolysis of aryl iodide (1a), bromide (1b), or chloride (1c) in 0.1 M $\mathrm{Et}_{4} \mathrm{NClO}_{4}$-DMF containing 2.0 or 4.0 equiv. of phenanthrene at $75 \mathrm{~mA} / \mathrm{cm}^{2}$ using a Pt cathode and Mg anode gave the 5-exo cyclization product 2a having syn and antiisomers in yields of $62-80 \%$ (Table 3). Conventional radical cyclization of $\mathbf{1 c}$ using $\mathrm{AIBN}-\mathrm{Bu}_{3} \mathrm{SnH}$ gave no $\mathbf{2 a}$ and the starting $\mathbf{1 c}$ was recovered unreacted (Table 3, entry 8). Substituted indanols $2 \mathbf{2 b}$ and 2c, tricyclic indanol (2d) were also obtained in good yields. Cyclization of $\mathbf{1 g}$ having α, β-unsaturated ester group proceeded smoothly without the reduction of carbon-carbon double bond in the ester moiety. It has also been found that a higher diastereomeric ratio of syn- and anti- $\mathbf{2 a}{ }^{10}$ (2.3:1) was obtained in the electrochemical cyclization of $\mathbf{1 a}$ (Table 3, entries 1 and 2), although a similar cyclization using AIBN-Bu 3 SnH gave syn- and anti-2a in a ratio of 1.4:1 (entry 3). It is not clear about the reason why the difference of diastereoselectivity appeared in the present stage. However, various reaction conditions, such as mediator compounds or equivalents of mediator, affected on the diastereomeric ratio (Table 2). Particularly, remarkable effect of anode materials on the diastereomeric ratio of the electrochemical cyclization was observed. Electrolysis of $\mathbf{1 a}$ using an Mg anode gave the higher diastereomeric ratio of syn- and anti-2a (2.5:1) than that using a Zn anode (1.7:1) (Table 1 , entries 1 and 2).

2.3. Synthesis of substituted 2,3-dihydrobenzofurans

5-exo Cyclization of aryl radical proceeded efficiently by

Table 2. Effects of various polyaromatic compounds on electrochemical radical cyclization of $\mathbf{1 a}^{\mathrm{a}}$

Entry	Mediator	Reduction potential ${ }^{\text {b }}$ (V vs. $\mathrm{Ag} / \mathrm{Ag}^{+}$)	Equivalent ${ }^{\text {c }}$	Yield (\%) ${ }^{\text {d }}$		
				2a (syn:anti) ${ }^{\text {e }}$	3a	Recov. 1a
1	None	-	-	11 (1.7:1)	78	0
2	Naphthalene	-2.94	6.0	76 (2.5:1)	14	0
3	Naphthalene		2.0	59 (2.4:1)	8	18
4	Phenanthrene	-2.87	4.0	80 (2.3:1)	14	0
5	Phenanthrene		2.0	73 (2.3:1)	12	0
6	Phenanthrene		1.0	58 (2.2:1)	4	22
7	Phenanthrene		0.5	36 (2.5:1)	3	44
8	9,10-Diphenylanthracene	-2.27	2.0	48 (1.1:1)	8	23
9	9-Phenylanthracene	-2.31	2.0	30 (4.4:1)	15	21
10	9-Cyanophenanthrene	-2.22	2.0	47 (2.2:1)	4	22

[^1]Table 3. Synthesis of substituted 1-indanols by electrochemical radical cyclizations

Entry
${ }^{\text {a }}$ Equivalents of mediator to substrate.
${ }^{\mathrm{b}}$ Isolated yields. Diastereomer ratios were determined by ${ }^{1} \mathrm{H}$ NMR
${ }^{\text {c }}$ Reduction peak potentials of $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{1 c}$ were $-2.50,-2.96$ and -3.18 V vs. $\mathrm{Ag} / \mathrm{Ag}^{+}$, respectively.
${ }^{\mathrm{d}}$ Reaction of 1a or $\mathbf{1 c}(0.5 \mathrm{mmol})$ was carried out in toluene $(25 \mathrm{ml})$ under reflux by using 0.2 equiv. of AIBN and 1.1 equiv. of tributyltin hydride.
${ }^{\mathrm{e}}$ Four diastereomers were obtained. The ratios were not determined.
${ }^{\mathrm{f}}$ Two diastereomers were obtained. The ratios were estimated to be of $5.8: 1$ (entry 13) and $5.0: 1$ (entry 14), respectively, by ${ }^{1} \mathrm{H}$ NMR spectra.
using the electrochemical method and, therefore, this reaction was applied to a synthesis of benzofuran. Similar electrochemical reduction of allyl o-iodophenyl ethers using phenanthrene mediator gave the corresponding 2,3-dihydrobenzofurans $5 \mathbf{5 a}-\mathbf{d}$ and $\mathbf{6 a - c}$. The results are summarized in Table 4. The products carrying formyl group ($\mathbf{6 a - c}$) were also obtained in $20-27 \%$, when DMF was used as a solvent. The use of acetonitrile as a solvent in the electrochemical cyclization of $\mathbf{4 c}$ prevented the introduction of a formyl group and a cyclized product $5 \mathbf{c}$ was obtained as a sole product in 72% yield (Table 4, entry 4). Similarly, electrolysis of $\mathbf{4 d}$ and $\mathbf{4 e}$ in acetonitrile solvent gave the
cyclized products 5d and 5e in 64 and 69% yield, respectively, without a formation of the corresponding formylated products.

2.4. Synthesis of substituted 2,3-dihydroindoles

The results described above suggested that the electrolysis in acetonitrile gave the desired cyclization products in higher yields than those in DMF. Therefore, the following electrolyses were carried out in acetonitrile. Electrolysis of N-methyl-2-iodoanilines carrying various N-allyl substituents (7a-e) gave the corresponding substituted

Table 4. Synthesis of substituted 2,3-dihydrobenzofurans

Entry
${ }^{\text {a }}$ Isolated yields.

2,3-dihydroindoles ($\mathbf{8 a - 8 e}$) in $48-73 \%$ yields (Table 5). It is noteworthy that the electrolysis of 7 e provided the cyclized product $8 \mathbf{e}$ in 73% yield, although the electrolysis of similar substrate, N -cinnamyl-2-chloroacetanilide, using (E)-stilbene as a mediator was reported to give a low yield of the cyclization product along with a larger amount of decomposed product, 2-chloroacetanilide. ${ }^{7}$

2.5. Regioselective radical cyclization

Regioselectivity of the present electrochemical cyclization is interesting from a synthetic viewpoint. In carbon radical cyclizations, 6-endo cyclization preferentially occurs to give a six-membered ring when there are any substituents at the $\mathrm{C}-5$ position of 5-hexenyl radical. ${ }^{11}$ Conventional radical cyclization of $\mathbf{1 h}$ using $\mathrm{AIBN}-\mathrm{Bu}_{3} \mathrm{SnH}$ in refluxing toluene gave 5-exo (2f) and 6-endo cyclization products $(\mathbf{9 a})$ in a ratio of $45: 55$ (Table 6 , entry 3). It has been reported that the ratio in the 5-exo/6-endo cyclization varied depending on the reaction conditions. ${ }^{12}$ Effect of the reaction temperature was examined by the use of benzene as a solvent, $2 \mathbf{f}$ and $\mathbf{9 a}$ were obtained in the ratio of $48: 52$ (Table 6, entry 4). Effect of the concentration of $\mathrm{Bu}_{3} \mathrm{SnH}$ was also examined (Table 6, entries 3, 5 and 6). These results show that the ratio of 5-exo/6-endo was slightly affected by the reaction temperature and the concentration of $\mathrm{Bu}_{3} \mathrm{SnH}$. When the radical cyclizaions of $\mathbf{4 c}$ or 7 c using AIBN-Bu 3 SnH was carried out, the corresponding 6-endo cyclization products ($\mathbf{9 b}$ or $9 \mathbf{9}$) was also obtained (entries 5 and 7). However, the electrochemical cyclization of $\mathbf{1 h}$
preferentially gave 5-exo cyclization product $\mathbf{2 f}$ (entry 1). Similar electrochemical cyclization of 2-methallyloxyphenyl iodide (4c) and 2-iodo- N-methallyl- N-methylaniline (7c) gave exclusively 5-exo cyclization product $5 \mathbf{c}$ and $8 \mathbf{8 c}$, respectively (entries 4 and 6). 5-exo Cyclized product 5c was also obtained in the Ni-catalyzed electrochemical cyclization that was carried out at $20^{\circ} \mathrm{C} .{ }^{6 e, f}$ These higher regioselectivity are probably due to a lower reaction temperature in the present electrochemical radical cyclizations. Effect of the reaction temperature on a ratio of 5-exol 6 -endo in the radical cyclization reaction has been reported by Walling et al. ${ }^{13}$ In the present electrochemical radical cyclization, the electrolysis at higher temperature resulted in an increase of 6-endo cyclization although a total yield of two products was decreased (Table 6, entry 2).

2.6. Reaction pathways

One of the speculated reaction pathways are shown in Scheme 2. It has already been reported that the radical anion generated by electrochemical reduction of arene mediator can reduce aryl halides to give the corresponding aryl radicals or aryl anion. ${ }^{14}$ In the present electrochemical reaction, aryl radicals \mathbf{A} are also generated by a one-electron reduction of aryl halides with phenanthrene radical anions. This is supported by the result that a dark-blue color of the phenanthrene radical anion appeared on the surface of the platinum cathode. Two-electron reduction of aryl halides occurs preferentially in the absence of arene mediator to give the corresponding aryl anions which are protonated to

Table 5. Synthesis of substituted 2,3-dihydroindoles

Entry
${ }^{\text {a }}$ Isolated yields.
afford simple reduction products 3 (Table 2, entry 1). Dissolution of an Mg anode prevents a reoxidation of the radical anion. 5-exo Cyclization of \mathbf{A} to give cyclized radical \mathbf{B} proceeds faster than a further reduction of the aryl
radicals. Carbon radicals \mathbf{B} resulted from the radical cyclization are reduced to give anionic intermediates \mathbf{C} that finally afford 1-indanol, 2,3-dihydrobenzofuran or 2,3dihydroindole derivatives. Formylated products $\mathbf{6 a - c}$ are obtained by an attack of the anionic intermediates \mathbf{C} to DMF molecules (Table 2, entries 2, 3, 5). No formylated product was obtained in the electrolysis of $\mathbf{1 a}-\mathbf{h}$ even when DMF was used as a solvent (Table 3 and Table 6, entry 1). This is probably due to a ready protonation of anionic intermediates \mathbf{C} with a hydroxy group in the starting substrates $\mathbf{1 a}-\mathbf{h}$.

3. Conclusion

In conclusion, electrochemical reduction of halobenzenes carrying o-(1-hydroxy-3-butenyl), o-allyloxy or o-allylamino group in the presence of phenanthrene mediator generated the corresponding aryl radicals efficiently and gave various 5-exo cyclized products, substituted 1 -indanols, 2,3-dihydrobenzofurans or 2,3-dihydroindoles, in moderate to good yields. Higher regio- and stereoselectivities than those of usual radical cyclizations using AIBN- $\mathrm{Bu}_{3} \mathrm{SnH}$ were observed in the present electrochemical radical cyclization. Exclusive 5-exo cyclization proceeded to give substituted 1 -indanols, 2,3-dihydrobenzofurans and 2,3-dihydroindoles.

4. Experimental

4.1. General procedures

The NMR spectra were recorded on a JEOL JNM-EX270 $\left({ }^{1} \mathrm{H}, 270 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 67.8 \mathrm{MHz}\right)$ FT NMR spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Chemical shifts were represented as δ-values relative to the internal standard, tetramethylsilane. IR spectra were recorded on a JASCO IR-810 infrared spectrometer. High and low resolution mass spectra were determined with a JEOL JMS-AX500 or JEOL JMSSX102A spectrometer. Cyclic voltammetry was carried out with BAS-50W using Pt disc electrode $(1 \mathrm{~mm} \varnothing$ as a

Table 6. Regioselectivity in the electrochemical and the conventional radical cyclizations

Entry	Substrate	Conditions	Yield (\%) ${ }^{\text {a }}$	Product	Ratio (5-exo/6-endo) ${ }^{\text {b }}$
1	 4c	Electrolysis at $0^{\circ} \mathrm{C}$	68	2f/9a	78/22
2		Electrolysis at $100{ }^{\circ} \mathrm{C}$	27		64/36
3		AIBN-TBTH (0.022 M), toluene, reflux	71		45/55
4		AIBN-TBTH (0.022 M), benzene, reflux	76		48/52
5		AIBN-TBTN (0.05 M), toluene, reflux	63		52/48
6		AIBN-TBTH (0.5 M), toluene, reflux	33		55/45
7		Electrolysis at $0{ }^{\circ} \mathrm{C}$	79	5c/9b	100/0
8		AIBN-TBTH (0.022 M), toluene, reflux	56		82/18
9	7c	Electrolysis at $0^{\circ} \mathrm{C}$	51	8c/9c	100/0
10		AIBN-TBTH (0.022 M), toluene, reflux	68		51/49

[^2]

Scheme 2.
working electrode and Pt wire as a counter electrode in $0.1 \mathrm{M} \mathrm{Et}_{4} \mathrm{NClO}_{4}$-DMF solution $\left(\mathrm{Ag} / \mathrm{Ag}^{+}\right.$reference electrode). Thin-layer chromatography and column chromatography were carried out on a Merck Silica gel $60 \mathrm{PF}_{254}$. Anhydrous N, N-dimethylformamide (DMF) and tetraethylammonium perchlorate (TEAP) were commercially available and were used without further purification. Acetonitrile was freshly distilled under nitrogen from $\mathrm{P}_{2} \mathrm{O}_{5}$. Metal plates for electrodes are commercially available in more than 99.9% purities, and they were washed with 2 N HCl , methanol, and acetone and dried before electrolysis.

4.2. Preparation of 1-(2-halophenyl)-3-buten-1-ols

1-(2-Halophenyl)-3-buten-1-ol derivatives ($\mathbf{1} \mathbf{a}-\mathbf{h}$) were prepared by allylation of 2-halobenzaldehydes with the corresponding substituted allyl bromides using electrochemically generated reactive zinc (EGZn). ${ }^{15}$
4.2.1. 2-Iodobenzaldehyde. To a solution of pyridinium chlorochromate ($9.7 \mathrm{~g}, 45.0 \mathrm{mmol}$), silica gel (20 g) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{ml})$ were added 2-iodobenzyl alcohol $(7.03 \mathrm{~g}$, $30.0 \mathrm{mmol})$. The solution was stirred at room temperature for 4 h . The reaction mixture was filtrated and evaporated. The residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with water and brine, dried over MgSO_{4}. Concentration gave 6.80 g of the crude product, which was purified by recrystallization from hexane to give $5.91 \mathrm{~g}(85 \%)$ of 2-iodobenzaldehyde.

Mp $34^{\circ} \mathrm{C}$; IR (nujol) 2922, 1689, 1460, 1202, $1016 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.07(1 \mathrm{H}, \mathrm{S}), 7.96(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz})$, $7.88(1 \mathrm{H}, \mathrm{dd}, J=1.7,7.9 \mathrm{~Hz}), 7.47(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 7.29$ $(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz})$; EIMS m / z (relative intensity) 248 (100), 231 (62), 203 (18), 76 (29), 65 (25). Anal. calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{IO}$: C, 36.24; H, 2.17. Found: C, 36.12; H, 2.20.
4.2.2. 1-(2-Iodophenyl)-3-buten-1-ol (1a). $\mathrm{Mp} 42^{\circ} \mathrm{C}$; IR (nujol) 3368, 1640, 1462, 1436, $1011 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.80(1 \mathrm{H}, \mathrm{dd}, J=1.3,7.6 \mathrm{~Hz}), 7.52(1 \mathrm{H}, \mathrm{dd}$, $J=1.3,7.6 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{dt}, J=1.3,7.6 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{dt}$, $J=1.3,7.6 \mathrm{~Hz}), 5.90(1 \mathrm{H}, \mathrm{m}), 5.21(2 \mathrm{H}, \mathrm{m}), 4.93(1 \mathrm{H}, \mathrm{dt}$, $J=3.3,8.9 \mathrm{~Hz}), 2.62(1 \mathrm{H}, \mathrm{m}), 2.27(2 \mathrm{H}, \mathrm{m})$. Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{OI}: \mathrm{C}, 43.82$; H, 4.04; I, 46.30. Found: C, 43.90; H, 4.05; I, 46.57.
4.2.3. 1-(2-Bromophenyl)-3-buten-1-ol (1b). Bp $68^{\circ} \mathrm{C} /$ 0.5 mm Hg ; IR (neat) $3372,1640,1568,1467,1439$, $1023 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.55(2 \mathrm{H}, \mathrm{m}), 7.34(1 \mathrm{H}$, $\mathrm{dt}, J=1.7,6.9 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{dt}, J=1.7,6.9 \mathrm{~Hz}), 5.89(1 \mathrm{H}$, $\mathrm{m}), 5.16(3 \mathrm{H}, \mathrm{m}), 2.65(1 \mathrm{H}, \mathrm{m}), 2.36(1 \mathrm{H}, \mathrm{m}), 2.13(1 \mathrm{H}, \mathrm{d}$, $J=3.3 \mathrm{~Hz}$); HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrO}\left(\mathrm{M}^{+}-1\right)$. m / z 224.9915. Found m / z 224.9924. Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}$: C, $52.99 ; \mathrm{H}, 4.88$; Br, 35.18. Found: C, 52.74 ; H, 4.88 ; Br, 35.25.
4.2.4. 1-(2-Chlorophenyl)-3-buten-1-ol (1c). Bp $68^{\circ} \mathrm{C} /$ 0.27 mm Hg ; IR (neat) $3376,1641,1474,1439,1033 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.57(1 \mathrm{H}, \mathrm{dd}, J=1.7,7.6 \mathrm{~Hz}), 7.30(2 \mathrm{H}$, m), $7.20(1 \mathrm{H}, \mathrm{dt}, J=1.7,7.6 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{m}), 5.18(3 \mathrm{H}$, $\mathrm{m}), 2.64(1 \mathrm{H}, \mathrm{m}), 2.38(1 \mathrm{H}, \mathrm{m}), 2.13(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz})$. Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}: \mathrm{C}, 65.76 ; \mathrm{H}, 6.07 ; \mathrm{Cl}, 19.41$. Found: C, 65.69; H, 6.19; Cl, 19.29.
4.2.5. 1-(2-Bromophenyl)-2-methyl-3-buten-1-ol (1d). Bp $80^{\circ} \mathrm{C} / 0.2 \mathrm{~mm} \mathrm{Hg}$; IR (neat) $3410,1641,1568,1468,1440$, $1012 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.45(2 \mathrm{H}, \mathrm{m}), 7.33(1 \mathrm{H}, \mathrm{dt}$, $J=1.3,7.6 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{m}), 5.90(1 \mathrm{H}, \mathrm{m}), 5.20-4.91$ ($3 \mathrm{H}, \mathrm{m}$), 2.78-2.59 ($1 \mathrm{H}, \mathrm{m}$), 2.14 ($\operatorname{syn}, 1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}$), 1.94 (anti, $1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}$), 1.05 (syn, $3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$), 0.98 (anti, 3H, d, $J=6.9 \mathrm{~Hz}$); EIMS m / z (relative intensity) 242 ([M+2], 3), 187 (90), 185 (100), 159 (17), 157 (21), 105 (10), 77 (53). Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}$: C, 54.79; H, 5.43; Br, 33.14. Found: C, 54.67; H, 5.46; Br, 33.17 .
4.2.6. 1-(2-Bromophenyl)-2,2-dimethyl-3-buten-1-ol (1e). IR (neat) 3432, 1638, 1468, 1434, $1017 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.52(1 \mathrm{H}, \mathrm{dd}, J=1.3,7.9 \mathrm{~Hz}), 7.48(1 \mathrm{H}, \mathrm{dd}$, $J=1.3,7.9 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{dt}, J=1.3,7.9 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{dt}$, $J=1.3,7.9 \mathrm{~Hz}), 6.03(1 \mathrm{H}, \mathrm{dd}, J=10.9,17.5 \mathrm{~Hz}), 5.15-5.05$ $(3 \mathrm{H}, \mathrm{m}), 2.01(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz}), 1.27(3 \mathrm{H}, \mathrm{s}), 1.04(3 \mathrm{H}, \mathrm{s})$; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO} \mathrm{m} / \mathrm{z}$ 254.0306. Found m / z 254.0321. Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}: \mathrm{C}, 56.49 ; \mathrm{H}, 5.93$; Br , 31.32. Found: C, $56.56 ; \mathrm{H}, 6.00$; Br, 31.15 .
4.2.7. 2-Bromo- α-(2-cyclohexenyl)benzyl alcohol (1f). Mixture of diastereomers. IR (neat) 3404, 1650, 1469, 1437, $1017 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.54(2 \mathrm{H}, \mathrm{m}), 7.33$ $(1 \mathrm{H}, \mathrm{dt}, J=1.3,7.3 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{dt}, J=1.3,7.3 \mathrm{~Hz}), 5.94$ $(1 \mathrm{H}, \mathrm{m}), 5.67(0.15 \mathrm{H}, \mathrm{dd}, J=1.7,9.9 \mathrm{~Hz}), 5.52(0.85 \mathrm{H}$, dd, $J=1.7,9.9 \mathrm{~Hz}), 5.06(0.85 \mathrm{H}, \mathrm{m}), 4.92(0.15 \mathrm{H}, \mathrm{m}), 2.68$ $(1 \mathrm{H}, \mathrm{m}), 2.03(1 \mathrm{H}, \mathrm{m}), 1.92(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 1.78$ $(1 \mathrm{H}, \mathrm{m}), 1.60-1.44(3 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 142.4$, $141.4,132.8,132.6,131.2,130.4,128.7$ (two signals), $128.5,128.1,128.0,127.4,127.3,125.4,122.4,122.3$, $75.8,75.3,41.3,40.8,26.5,25.2$ (two signals), 22.7, 21.8, 21.3; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrO} \mathrm{m} / \mathrm{z} 266.0306$. Found m / z 266.0306. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrO}: \mathrm{C}$, 58.44; H, 5.66; Br, 29.91. Found: C, $58.61 ; \mathrm{H}, 5.76$; Br, 29.82.
4.2.8. Ethyl 5-(2-iodophenyl)-5-hydroxy-2-pentenoate (1g). IR (neat) $3450,1700,1655,1269,1043 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.81(1 \mathrm{H}, \mathrm{dd}, J=1.7,7.9 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{dd}$, $J=1.7,7.9 \mathrm{~Hz}), 7.39(1 \mathrm{H}, \mathrm{dt}, J=1.7,7.9 \mathrm{~Hz}), 7.05(1 \mathrm{H}, \mathrm{d}$, $J=15.8 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{td}, J=1.7,7.9 \mathrm{~Hz}), 5.97(1 \mathrm{H}, \mathrm{d}$, $J=15.8 \mathrm{~Hz}), 5.03(1 \mathrm{H}, \mathrm{dt}, J=3.6,8.6 \mathrm{~Hz}), 4.29(2 \mathrm{H}, \mathrm{q}$, $J=7.3 \mathrm{~Hz}), 2.70(1 \mathrm{H}, \mathrm{m}), 2.49(1 \mathrm{H}, \mathrm{m}), 2.13(1 \mathrm{H}, \mathrm{d}$, $J=3.6 \mathrm{~Hz}), 1.30(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 166.3, 145.1, 144.5, 139.4, 129.5, 128.7, 126.8, 124.2, 97.2 , $76.1,60.3,40.3,14.2$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{IO} \mathrm{m} / \mathrm{z}$ 346.0066. Found $m / z 346.0062$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{IO}$: C, 45.11; H, 4.37; I, 36.66. Found: C, 45.16; H, 4.27; I, 36.88 .

4.2.9. 1-(2-Bromophenyl)-3-methyl-3-buten-1-ol (1h).

 IR (neat) 3388, 1648, 1441, $1024 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.62(1 \mathrm{H}, \mathrm{dd}, \quad J=1.7,7.9 \mathrm{~Hz}), 7.52(1 \mathrm{H}$, dd, $J=1.7,7.9 \mathrm{~Hz}$), $7.34(1 \mathrm{H}, \mathrm{td}, J=1.7,7.9 \mathrm{~Hz}), 7.13$ $(1 \mathrm{H}, \mathrm{td}, J=1.7,7.9 \mathrm{~Hz}), 5.16(1 \mathrm{H}, \mathrm{dt}, J=2.6,9.9 \mathrm{~Hz})$, $4.96(1 \mathrm{H}, \mathrm{m}), 4.91(1 \mathrm{H}, \mathrm{s}), 2.60(1 \mathrm{H}, \mathrm{dd}, J=1.3,13.9 \mathrm{~Hz})$, $2.22(1 \mathrm{H}, \mathrm{d}, J=1.32 \mathrm{~Hz}), 2.20(1 \mathrm{H}, \mathrm{dd}, J=9.9,13.9 \mathrm{~Hz})$, $1.88(3 \mathrm{H}, \mathrm{s})$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO} \mathrm{m} / \mathrm{z} 240.0149$. Found m / z 240.0150. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}$: C , 54.79; H, 5.43; Br, 33.14. Found: C, 54.82; H, 5.43; Br, 33.29.
4.3. Typical procedure for preparation of allyl aryl ethers

Alk-2-enyl o-iodophenyl ethers ($\mathbf{4 a - e}$) were prepared according to literature. ${ }^{16}$ To a solution of 2-iodophenol (4 mmol), anhydrous potassium carbonate $(8 \mathrm{mmol})$ and DMF (10 ml) was added allyl bromide (6 mmol) at room temperature. The solution was stirred for 4 h at $70^{\circ} \mathrm{C}$. The reaction mixture was filtrated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined ether extracts were washed with water and brine, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by column or distillation.
4.3.1. Allyl \boldsymbol{o}-iodophenyl ether (4a). IR (neat) 1582, 1472 , 1276, 1248, 1018, $996 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.78(1 \mathrm{H}$, dd, $J=1.3,7.9 \mathrm{~Hz}), 7.28(1 \mathrm{H}, \mathrm{dt}, J=1.3,7.9 \mathrm{~Hz}), 6.81(1 \mathrm{H}$, dd, $J=1.3,7.9 \mathrm{~Hz}), 6.71(1 \mathrm{H}, \mathrm{dt}, J=1.3,7.9 \mathrm{~Hz}), 6.10(1 \mathrm{H}$, $\mathrm{m}), 5.52(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 5.31(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 4.60$ ($2 \mathrm{H}, \mathrm{dt}, J=1.7,4.6 \mathrm{~Hz}$), EIMS m/z (relative intensity) 260 (6), 133 (15), 105 (18), 92 (13), 77 (7), 63 (21), 50 (8), 41 (100), 39 (36); HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{IO} \mathrm{m} / \mathrm{z} 259.9698$. Found $m / z 259.9678$.
4.3.2. Prenyl \boldsymbol{o}-iodophenyl ether (4b). ${ }^{16}$ IR (neat) 1677 , 1471, 1241, $1017 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.77(1 \mathrm{H}, \mathrm{dd}$, $J=1.3,7.9 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{m}), 6.81(1 \mathrm{H}, \mathrm{dd}, J=1.3,7.9 \mathrm{~Hz})$, $6.69(1 \mathrm{H}, \mathrm{td}, J=1.3,7.9 \mathrm{~Hz}), 5.50(1 \mathrm{H}, \mathrm{m}), 4.58(2 \mathrm{H}, \mathrm{d}$, $J=6.6 \mathrm{~Hz}), 1.79(3 \mathrm{H}, \mathrm{s}), 1.74(3 \mathrm{H}, \mathrm{s})$.
4.3.3. Methallyl \boldsymbol{o}-iodophenyl ether (4c). ${ }^{17}$ IR (neat) 1660 , 1583, 1245, $1018 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.92(1 \mathrm{H}, \mathrm{dd}$, $J=1.7,7.9 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{m}), 6.80(1 \mathrm{H}, \mathrm{dd}, J=1.3,8.3 \mathrm{~Hz})$, $6.70(1 \mathrm{H}, \mathrm{dt}, J=1.3,7.9 \mathrm{~Hz}), 5.19(1 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz}), 5.02$ $(1 \mathrm{H}, \mathrm{t}, J=1.3 \mathrm{~Hz}), 4.48(2 \mathrm{H}, \mathrm{s}), 1.87(3 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz})$.
4.3.4. Crotyl \boldsymbol{o}-iodophenyl ether (4d). E and Z mixture. ${ }^{16}$ IR (neat) $1676,1582,1471,1244,1017 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.77(1 \mathrm{H}, \mathrm{dd}, J=1.7,7.9 \mathrm{~Hz}, E$ and $Z), 7.31-7.24$ $(1 \mathrm{H}, \mathrm{m}, E$ and $Z), 6.81(1 \mathrm{H}, \mathrm{dd}, J=1.7,7.9 \mathrm{~Hz}, E$ and $Z)$, $6.69(1 \mathrm{H}, \mathrm{dt}, J=1.7,7.9 \mathrm{~Hz}, E$ and $Z), 5.98-5.68(1 \mathrm{H}, \mathrm{m}, E$ and $Z), 4.66(1 \mathrm{H}, \mathrm{d}, J=4.3 \mathrm{~Hz}, Z), 4.52(1 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}$, $E), 1.87(3 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}, Z), 1.32(3 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}, E)$.
4.3.5. Cyclohex-2-enyl o-iodophenyl ether (4e). IR (neat) 1649, 1580, 1468, $1241 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.77$ ($1 \mathrm{H}, \mathrm{dd}, J=1.7,7.9 \mathrm{~Hz}$), $7.25(1 \mathrm{H}, \mathrm{m}), 6.88(1 \mathrm{H}, \mathrm{dd}, J=1.0$, $8.3 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{dt}, J=1.7,7.9 \mathrm{~Hz}), 6.02-5.95(1 \mathrm{H}, \mathrm{m})$, $5.93-5.87(1 \mathrm{H}, \mathrm{m}), 4.78(1 \mathrm{H}, \mathrm{m}), 2.24-2.03(2 \mathrm{H}, \mathrm{m}), 2.02-$ $1.85(3 \mathrm{H}, \mathrm{m}), 1.74-1.60(1 \mathrm{H}, \mathrm{m})$; EIMS m / z (relative intensity) 300 (5), 220 (11), 81 (58) 80 (100); HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{IO} \mathrm{m} / \mathrm{z}$ 300.0011. Found m / z 300.0009. Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{IO}: \mathrm{C}, 48.02$; H, 4.37; I, 42.28. Found: C, 48.19; H, 4.39; I, 42.32.

4.4. Preparation of N-alk-2-enyl- N-methyl-2iodoanilines (7a-7e)

N-Alk-2-enyl- N-methyl-2-iodoanilines (7a-e) were prepared by N-allylation of N-methyl-2-iodoaniline or N-methylation of N-allyl-2-iodoaniline. ${ }^{18,19}$
4.4.1. N-Methyl-2-iodoaniline. ${ }^{18} \mathrm{Bp} 68-72{ }^{\circ} \mathrm{C} / 0.6 \mathrm{~mm} \mathrm{Hg}$; IR (neat) $3400,1515,1316 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.65$
$(1 \mathrm{H}, \mathrm{dd}, J=1.3,7.6 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dt}, J=1.3,7.6 \mathrm{~Hz}), 6.55$ $(1 \mathrm{H}, \mathrm{dd}, J=1.3,7.6 \mathrm{~Hz}), 6.44(1 \mathrm{H}, \mathrm{dt}, J=1.3,7.6 \mathrm{~Hz}), 4.19$ $(1 \mathrm{H}, \mathrm{br}), 2.88(3 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 148.14$, 138.85, 129.45, 118.46, 109.97, 85.10, 30.96; EIMS m/z (relative intensity) 233 (100), 232 (37), 105 (23), 77 (22); HRMS calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NI} m / z$ 232.9702. Found m / z 232.9704.
4.4.2. $\quad N$-Allyl- N-methyl-2-iodoaniline (7a). ${ }^{20} \quad \mathrm{Bp}$ $90^{\circ} \mathrm{C} / 1.0 \mathrm{~mm} \mathrm{Hg} ; \quad$ IR (neat) 1643, 1580, 1470, $1348 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.85(1 \mathrm{H}, \mathrm{dd}, J=1.3$, $7.6 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{dt}, J=1.3,7.6 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{dd}, J=1.3$, $7.6 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{dt}, J=1.3,7.6 \mathrm{~Hz}), 5.88-6.03(1 \mathrm{H}, \mathrm{m})$, $5.15-5.29(2 \mathrm{H}, \mathrm{m}), 3.55(2 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 2.69(1 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.94,140.07,135.27,128.84$, 125.14, 121.82, 117.75, 98.26, 60.22, 41.03; EIMS m/z (relative intensity) 273 (49), 252 (37), 246 (33), 146 (100), 144 (36), 132 (34), 131 (32), 91 (32), 77 (34), 44 (38); HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NI} \mathrm{m} / \mathrm{z}$ 273.0015. Found m / z 273.0026.
4.4.3. N-Crotyl- N-methyl-2-iodoaniline (7b). Mixture of E and Z isomers (4.3:1). IR (neat) $1672,1357 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.85(1 \mathrm{H}, \mathrm{dd}, J=1.3,7.6 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{dt}$, $J=1.3,7.6 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{dd}, J=1.3,7.6 \mathrm{~Hz}), 6.77(1 \mathrm{H} ., \mathrm{dt}$, $J=1.3,7.6, \mathrm{~Hz}), 5.72-5.54(\mathrm{~m}, 2 \mathrm{H}), 3.60$ (minor, 1 H , dd, $J=0.7,5.6 \mathrm{~Hz}$), 3.46 (major, 1 H, dd, $J=0.7,5.4 \mathrm{~Hz}$), 2.70 (minor, $3 \mathrm{H}, \mathrm{s}$), 2.67 (major, $3 \mathrm{H}, \mathrm{s}$), 1.72 (major, 3 H , dd, $J=0.7,5.4 \mathrm{~Hz}$), 1.64 (minor, 3 H , dd, $J=0.7,5.6 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) (major isomer) δ 154.16, 140.04, 128.81, 127.92, 127.08, 124.96, 121.74, 98.24, 59.60, 40.68, 17.79 (minor isomer) $\delta 153.94,140.04,128.97,127.92,127.19$, 125.07, 121.82, 98.24, 53.41, 41.10, 13.12; EIMS m/z (relative intensity) 287 (42), 273 (32), 160 (100), 144 (71), 132 (67), 104 (20), 77 (22); HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NI} \mathrm{m} / \mathrm{z}$ 287.0171. Found m / z 287.0164. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NI}$: C, 46.01; H, 4.91; N, 4.88; I, 44.20. Found: C, 46.19; H, 4.87; N, 4.89, I, 44.37.
4.4.4. N-Methallyl- N-methyl-2-iodoaniline (7c). IR (neat) 1655, 1579, 1470, $1372 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.85$ $(1 \mathrm{H}, \mathrm{dd}, J=1.6,7.6 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{dt}, J=1.6,7.6 \mathrm{~Hz}), 7.09$ ($1 \mathrm{H}, \mathrm{dd}, J=1.6,7.6 \mathrm{~Hz}$), $6.78(1 \mathrm{H}, \mathrm{dt}, J=1.6,7.6 \mathrm{~Hz}), 5.00$ $(1 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz}), 4.9(1 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz}), 3.48(2 \mathrm{H}, \mathrm{s}), 2.61$ $(3 \mathrm{H}, \mathrm{s}), 1.82(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 154.50,142.75$, $140.00,128.95,125.32,122.10,113.30,98.65,63.02,42.18$, 20.74; EIMS m / z (relative intensity) 287 (48), 246 (100), 160 (88), 144 (26), 118 (25); HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NI} \mathrm{m} / \mathrm{z}$ 287.0171. Found $m / z 287.0170$.
4.4.5. N-Methyl- N-prenyl-2-iodoaniline (7d). IR (neat) 1671, 1580, 1469, $1359 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.85$ $(1 \mathrm{H}, \mathrm{dd}, J=1.3,7.6 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{dt}, J=1.3,7.6 \mathrm{~Hz}), 7.06$ ($1 \mathrm{H}, \mathrm{dd}, J=1.3,7.6 \mathrm{~Hz}$), $6.76(1 \mathrm{H}, \mathrm{dt}, J=1.3,7.6 \mathrm{~Hz}), 5.34$ $(1 \mathrm{H}, \mathrm{m}), 3.52(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 2.68(3 \mathrm{H}, \mathrm{s}), 1.74(3 \mathrm{H}, \mathrm{d}$, $J=1.3 \mathrm{~Hz}), 1.64(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 154.16$, 140.03, 135.34, 128.77, 124.94, 121.74, 121.27, 98.33, $54.88,40.86,25.86,18.02$; EIMS m / z (relative intensity) 301 (32), 286 (22), 233 (15), 175 (14), 174 (100), 132 (49); HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NI} \mathrm{m} / \mathrm{z}$ 301.0327. Found m / z 301.0323.
4.4.6. N -Cinnamyl- N -methyl-2-iodoaniline (7e). IR (neat) 1650, 1598, 1580, 1469, 1360, $1337 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}\right) \delta 7.87(1 \mathrm{H}, \mathrm{dd}, J=1.3,7.6 \mathrm{~Hz}), 7.42-7.20(6 \mathrm{H}$, $\mathrm{m}), 7.10(1 \mathrm{H}, \mathrm{dd}, J=1.3,7.6 \mathrm{~Hz}), 6.78(1 \mathrm{H}, \mathrm{dt}, J=1.3$, $7.6 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 6.35(1 \mathrm{H}, \mathrm{dt}, J=6.3$, $15.8 \mathrm{~Hz}), 3.70(2 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 2.74(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.96,140.13,137.00,132.78,128.91,128.52$ (two signals), 127.44, 126.97, 126.36 (two signals), 125.19, 121.82, 98.22, 59.79, 41.03; EIMS m/z (relative intensity) 349 (10), 233 (13), 222 (100), 144 (28), 132 (56), 117 (65), 115 (29), 91 (50), 77 (16); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NI} \mathrm{m} / \mathrm{z}$ 349.0328. Found $m / z 349.0326$.

4.5. Typical procedure for electrochemical radical cyclization. Cyclization of 1a

A mixture of $\mathbf{1 a}(0.5 \mathrm{mmol})$ and phenanthrene $(1 \mathrm{mmol})$ in $0.1 \mathrm{M} \mathrm{Et}_{4} \mathrm{NClO}_{4}$-DMF (10 ml) was electrolyzed at $0{ }^{\circ} \mathrm{C}$ with a Pt cathode and an Mg anode under nitrogen atmosphere. Electrolysis was carried out at $75 \mathrm{~mA} / \mathrm{cm}^{2}$, and an electricity of $5 \mathrm{~F} / \mathrm{mol}$ of substrate was passed. The reaction mixture was quenched with 2 N HCl and diluted with water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined ether extracts were washed with water and brine, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by TLC.
4.5.1. 3-Methylindan-1-ol (2a). Mixture of syn and anti diastereomers. ${ }^{10}$ IR (neat) 3316, 1609, 1477, 1459, 1330, 1088, $1057 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.31(4 \mathrm{H}, \mathrm{m}), 5.24$ (anti, 1H, m), 5.18 (syn, 1H, m), 3.45 (syn, 1H, sextet, $J=6.9 \mathrm{~Hz}), 3.05(\operatorname{syn}, 1 \mathrm{H}$, sextet, $J=6.9 \mathrm{~Hz}), 2.77(\operatorname{syn}, 1 \mathrm{H}$, $\mathrm{dt}, J=6.9,12.9 \mathrm{~Hz}$), 2.26 (anti, 1H, m), 1.97 (anti, 1H, dt, $J=6.9,12.9 \mathrm{~Hz}$), 1.82 (syn, 1H, br), 1.63 (anti, 1H, br), 1.44 (anti, 1H, m), 1.36 (anti, $3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$), 1.27 (syn, $3 \mathrm{H}, \quad \mathrm{d}, \quad J=6.9 \mathrm{~Hz}) ; \quad{ }^{13} \mathrm{C} \quad \mathrm{NMR} \quad\left(\mathrm{CDCl}_{3}\right) \quad \delta$ 148.63, 147.33, 145.00, 144.28, 128.72, 128.10, $126.83,126.74,124.40,123.76,123.61,123.31,75.13$, 45.70, 44.71, 36.66, 36.25, 20.25, 20.15; EIMS m/z (relative intensity) 148 (81), 147 (100), 133 (50), 131 (27), 130 (87), 129 (84), 128 (36), 127 (16), 116 (11), 115 (64), 105 (34), 103 (12), 91 (28), 79 (12), 77 (22), 64 (10), 51 (14); HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O} \mathrm{m} / \mathrm{z}$ 148.0888. Found m / z 148.0880 .
4.5.2. 2,3-Dimethylindan-1-ol (2b). Mixture of diastereoisomers. IR (neat) 3350, 1477, 1459, $1050 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.30(4 \mathrm{H}, \mathrm{m}), 5.05(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 4.94(1 \mathrm{H}$, d, $J=5.6 \mathrm{~Hz}), 4.79(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 4.68(1 \mathrm{H}, \mathrm{d}$, $J=6.3 \mathrm{~Hz}), 3.32-2.54(1 \mathrm{H}, \mathrm{m}), 2.34-1.80(2 \mathrm{H}, \mathrm{m}), 1.34-$ 0.92 ($6 \mathrm{H}, \mathrm{m}$); EIMS m/z (relative intensity) 162 (39), 161 (28), 147 (21), 144 (65), 143 (28), 133 (12), 129 (100), 128 (41), 127 (13), 119 (10), 115 (16), 105 (18), 91 (18), 77 (14); HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O} \mathrm{m} / \mathrm{z}$ 162.1045. Found m / z 162.1048.
4.5.3. 2,2,3-Trimethylindan-1-ol (syn-2c). Configuration of 2 c was determined by comparison of ${ }^{1} \mathrm{H}$ NMR and DIFNOE spectra of two isomers. IR (neat) 3258, $1058 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.36-7.13(4 \mathrm{H}, \mathrm{m}), 4.72$ $(1 \mathrm{H}, \mathrm{s}), 2.72(1 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}), 1.7(1 \mathrm{H}, \mathrm{s}), 1.22(3 \mathrm{H}, \mathrm{s})$, $1.21(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.11(3 \mathrm{H}, \mathrm{s}), 0.68(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 145.3,143.7,127.7,126.6,123.0,129.9,83.4$, 49.6, 45.8, 24.6, 14.6, 12.4; EIMS m/z (relative intensity) 176 (29), 158 (51), 143 (100), 133 (69), 128 (38), 115 (25),

105 (31) 91 (27), 77 (20); HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O} \mathrm{m} / \mathrm{z}$ 176.1201. Found m / z 176.1210.
4.5.4. 2,2,3-Trimethylindan-1-ol (anti-2c). IR (neat) 3268, $1056 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.39-7.15(4 \mathrm{H}, \mathrm{m}), 4.60$ $(1 \mathrm{H}, \mathrm{s}), 3.02(1 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}), 1.51(1 \mathrm{H}, \mathrm{s}), 1.16(3 \mathrm{H}, \mathrm{d}$, $J=7.3 \mathrm{~Hz}), 1.12(3 \mathrm{H}, \mathrm{s}), 0.87(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 147.7, 143.5, 128.5, 126.6, 124.7, 123.9, 82.9, 46.4, 46.0, 21.6, 21.2, 13.3; EIMS m / z (relative intensity) 176 (28), 158 (48), 143 (100), 133 (60), 128 (38), 115 (23), 105 (25) 91 (23), 77 (16); HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O} \mathrm{m} / \mathrm{z}$ 176.1201. Found m / z 176.1209.
4.5.5. 1,2,3,4,4a,9a-Hexahydrofluoren-9-ol (2d). Mixture of two diasteromers. Analytical data of one isomer; IR (neat) 3336, 1450, $1052 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.41$ ($1 \mathrm{H}, \mathrm{dd}, J=2.3,5.9 \mathrm{~Hz}$), $7.42-7.18$ ($4 \mathrm{H}, \mathrm{m}$), $5.15(1 \mathrm{H}, \mathrm{d}$, $J=5.6 \mathrm{~Hz}), 3.10(1 \mathrm{H}, \mathrm{m}), 2.61(1 \mathrm{H}, \mathrm{m}), 2.20(1 \mathrm{H}, \mathrm{m}), 1.83-$ $1.48(5 \mathrm{H}, \mathrm{m}), 1.20(2 \mathrm{H}, \mathrm{m}), 0.94(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 145.2,142.8,127.6,126.4,123.8,122.7,77.9$, 46.1, 40.3, 25.6, 24.3, 21.9, 21.3; EIMS m/z (relative intensity) 188 (100), 170 (62), 145 (22), 142 (52), 141 (42), 129 (33), 120 (21), 115 (20), 105 (20), 91 (25); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O} \mathrm{m} / \mathrm{z}$ 188.1201. Found $\mathrm{m} / \mathrm{z} 188.1214$.

Analytical data of another isomer; IR (neat) 3336, 1450, $1052 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.40(1 \mathrm{H}, \mathrm{dd}, J=2.3$, $5.9 \mathrm{~Hz}), 7.27-7.16(3 \mathrm{H}, \mathrm{m}), 4.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz}), 3.19$ $(1 \mathrm{H}, \mathrm{q}, J=6.3 \mathrm{~Hz}), 2.23(1 \mathrm{H}$, quint, $J=6.3 \mathrm{~Hz}), 1.86(2 \mathrm{H}$, $\mathrm{m}), 1.60(2 \mathrm{H}, \mathrm{m}), 1.51-1.36(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 147.2, 144.3, 128.1, 126.5, 124.7, 123.4, 77.7, 49.2, 41.4, 29.5, 24.9, 23.6, 22.8; EIMS m / z (relative intensity) 188 (100), 187 (68), 170 (80), 145 (27), 142 (61), 141 (49), 129 (33), 120 (22), 115 (21), 91 (22); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}$ m / z 188.1201. Found m / z 188.1206.
4.5.6. Ethyl (3-hydroxyindan-1-yl)acetate (syn-2e). Configurations of $\mathbf{2 e}$ was determined by the comparison of ${ }^{1} \mathrm{H}$ NMR and DIFNOE spectra of two isomers. IR (neat) 3362, $1732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.43(1 \mathrm{H}, \mathrm{m}), 7.30-7.19$ $(3 \mathrm{H}, \mathrm{m}), 5.20(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 4.16(2 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz})$, $3.48(1 \mathrm{H}, \mathrm{dt}, J=7.6,13.5 \mathrm{~Hz}), 2.92-2.77(2 \mathrm{H}, \mathrm{m}), 2.58(1 \mathrm{H}$, dd, $J=8.6,15.8 \mathrm{~Hz}), 2.15(1 \mathrm{H}, \mathrm{br}, \mathrm{s}), 1.69(1 \mathrm{H}, \mathrm{ddd}, J=5.9$, $7.3,13.5 \mathrm{~Hz}), 1.26(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $172.6,145.1,144.6,128.5,127.5,124.3,123.6,75.0,60.6$, 42.8, 40.3, 38.4, 14.3; EIMS m / z (relative intensity) 202 ($\mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 29$), 131 (27), 129 (49), 128 (100), 115 (20). Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$: C, 70.89; H, 7.32. Found: C, 71.18; H, 7.26.
4.5.7. Ethyl (3-hydroxyindan-1-yl)acetate (anti-2e). IR (neat) $3424,1736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.42(1 \mathrm{H}, \mathrm{m})$, $7.33-7.21(3 \mathrm{H}, \mathrm{m}), 5.28(1 \mathrm{H}, \mathrm{dd}, J=4.0,6.3 \mathrm{~Hz}), 4.18(2 \mathrm{H}$, q, $J=7.3 \mathrm{~Hz}), 3.83(1 \mathrm{H}$, quint, $J=5.9 \mathrm{~Hz}), 2.73(1 \mathrm{H}$, dd, $J=5.9,15.2 \mathrm{~Hz}), 2.41(1 \mathrm{H}, \mathrm{dd}, J=8.9,15.2 \mathrm{~Hz}), 2.31(1 \mathrm{H}$, ddd, $J=4.0,7.9,13.9 \mathrm{~Hz}), 2.16(1 \mathrm{H}, \mathrm{dt}, J=6.3,13.9 \mathrm{~Hz})$ $1.73(1 \mathrm{H}, \mathrm{br}, \mathrm{s}), 1.27(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $172.4,145.4,144.6,128.8,127.5,124.6,124.0,74.9,60.5$, 42.6, 40.2, 38.8, 14.2; EIMS m / z (relative intensity) 220 (8), 202 (72), 146 (33), 132 (96), 128 (100), 115 (18); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~m} / \mathrm{z}$ 220.1099. Found m / z 220.1107.
4.5.8. 3,3-Dimethylindan-1-ol (2f). IR (neat) 3332, 1455,
$1056 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.38(1 \mathrm{H}, \mathrm{dd}, J=1.3$, $5.9 \mathrm{~Hz}), 7.35-7.18(3 \mathrm{H}, \mathrm{m}), 5.26(1 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 2.38$ (1 H, dd, $J=6.9,12.9 \mathrm{~Hz}), 1.83(1 \mathrm{H}$, dd, $J=6.3,12.9 \mathrm{~Hz})$, $1.80(1 \mathrm{H}, \mathrm{br}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.22(3 \mathrm{H}, \mathrm{s}) ;$ EIMS m / z (relative intensity) 162 (38), 147 (100), 129 (56); HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O} m / z$ 162.1045. Found m / z 162.1062.
4.5.9. 1-Phenyl-3-buten-1-ol (3a). ${ }^{21}$ IR (neat) 3398, 1642 , $1494,1455 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.37-7.23(5 \mathrm{H}, \mathrm{m})$, $5.81(1 \mathrm{H}, \mathrm{m}), 5.19(2 \mathrm{H}, \mathrm{m}), 4.76(1 \mathrm{H}, \mathrm{m}), 2.51(1 \mathrm{H}, \mathrm{m}), 2.07$ $(1 \mathrm{H}, \mathrm{t}, J=2.6 \mathrm{~Hz})$.
4.5.10. 2-Methyl-1-phenyl-3-buten-1-ol (3b). ${ }^{21}$ IR (neat) 3404, 1640, 1604, 1495, 1455, 1020, $914 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.37-7.22(5 \mathrm{H}, \mathrm{m}), 5.78(1 \mathrm{H}, \mathrm{m}), 5.19(1 \mathrm{H}, \mathrm{m})$, $5.05(1 \mathrm{H}, \mathrm{m}), 4.60$ (anti, 1H, m), 4.35 (syn, 1H, m), 2.54 (1H, m), 2.16 (syn, 1H, m), 1.96 (anti, 1H, m), 0.99 (anti, $3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.87(s y n, 3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz})$; EIMS m / z (relative intensity) 162 (1), 145 (9), 129 (17), 107 (100), 79 (83), 51 (10).
4.5.11. 2,2-Dimethyl-1-phenyl-3-buten-1-ol (3c). ${ }^{21}$ IR (neat) 3452, 1730, 1639, 1495, $1026 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.34-7.28(5 \mathrm{H}, \mathrm{m}), 5.91(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz})$, $5.13(2 \mathrm{H}, \mathrm{m}), 4.43(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 2.00(1 \mathrm{H}, \mathrm{d}$, $J=2.0 \mathrm{~Hz}), 1.02(3 \mathrm{H}, \mathrm{s}), 0.96(3 \mathrm{H}, \mathrm{s})$.
4.5.12. α-(2-Cyclohexenyl)benzyl alcohol (3d). IR (neat) 3384, 1690, 1465, $1018 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.35-$ $7.23(5 \mathrm{H}, \mathrm{m}), 5.81(1 \mathrm{H}, \mathrm{m}), 5.38(1 \mathrm{H}, \mathrm{dd}, J=2.3,9.9 \mathrm{~Hz})$, $4.58(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 2.49(1 \mathrm{H}, \mathrm{m}), 1.99(2 \mathrm{H}, \mathrm{m}), 1.85-$ $1.66(2 \mathrm{H}, \mathrm{m}), 1.58-1.47(2 \mathrm{H}, \mathrm{m})$; EIMS m / z (relative intensity) 107 (100) 79 (33); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O} \mathrm{m} / \mathrm{z}$ 188.1201. Found m / z 188.1201.
4.5.13. 2,3-Dihydro-3-methylbenzofuran (5a). Bp $60^{\circ} \mathrm{C} /$ 5 mm Hg ; IR (neat) 1598, 1482, 1463, 1450, 1228, $967 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.11(2 \mathrm{H}, \mathrm{m}), 6.85(1 \mathrm{H}$, $\mathrm{dt}, J=1.0,7.9 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 4.66(1 \mathrm{H}, \mathrm{dd}$, $J=6.9,15.8 \mathrm{~Hz}), 4.06(1 \mathrm{H}, \mathrm{dd}, J=6.9,15.8 \mathrm{~Hz}), 3.54(1 \mathrm{H}$, sixt, $J=6.9 \mathrm{~Hz}$), $1.32(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz})$; EIMS m / z (relative intensity) 134 (85), 119 (100), 91 (64); HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O} \mathrm{m} / \mathrm{z}$ 134.0732. Found m / z 134.0726. Anal. calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}: \mathrm{C}, 80.56$; H; 7.51. Found: C, 80.31; H, 7.54.
4.5.14. 2,3-Dihydro-3-isopropylbenzofuran (5b). ${ }^{16}$ IR (neat) $1596,1484,1233 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.19-$ $7.09(2 \mathrm{H}, \mathrm{m}), 6.84(1 \mathrm{H}, \mathrm{dt}, J=1.0,7.3 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{d}$, $J=7.3 \mathrm{~Hz}), 4.51(1 \mathrm{H}, \mathrm{t}, J=8.9 \mathrm{~Hz}), 4.37(1 \mathrm{H}, \mathrm{dd}, J=5.3$, $8.9 \mathrm{~Hz}), 3.34(1 \mathrm{H}, \mathrm{dt}, J=5.3,8.9 \mathrm{~Hz}), 2.02-1.90(1 \mathrm{H}, \mathrm{m})$, $0.95(3 \mathrm{H}, \mathrm{d}, J=6.93 \mathrm{~Hz}), 0.87(3 \mathrm{H}, \mathrm{d}, J=6.60 \mathrm{~Hz})$.
4.5.15. 2,3-Dihydro-3,3-dimethylbenzofuran (5c). ${ }^{22}$ IR (neat) $1600,1480,1191 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 7.15-7.09$ $(2 \mathrm{H}, \mathrm{m}), 6.88(1 \mathrm{H}, \mathrm{td}, J=1.0,7.6 \mathrm{~Hz}), 6.79(1 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}), 4.23(2 \mathrm{H}, \mathrm{s}), 1.34(6 \mathrm{H}, \mathrm{s})$.
4.5.16. 3-Ethyl-2,3-dihydrobenzofuran (5d). ${ }^{23}$ IR (neat) 1597, 1482, $1229 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.19-7.09$ $(2 \mathrm{H}, \mathrm{m}), 6.85(1 \mathrm{H}, \mathrm{dt}, J=1.0,7.9 \mathrm{~Hz}), 6.79(1 \mathrm{H}, \mathrm{d}$, $J=7.9 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{t}, J=8.9 \mathrm{~Hz}), 4.21(1 \mathrm{H}, \mathrm{dd}, J=6.6$, $8.9 \mathrm{~Hz}), 3.37(1 \mathrm{H}, \mathrm{m}), 1.86-1.73(1 \mathrm{H}, \mathrm{m}), 1.68-1.52(1 \mathrm{H}$, m), $0.97(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz})$.
4.5.17. 1,2,3,4,4a,9b-Hexahydrodibenzofuran (5e). Configurations of $\mathbf{5 e}$ was determined by DIFNOE spectrum. IR (neat) $1596,1474,1226 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.16-$ $7.08(2 \mathrm{H}, \mathrm{m}), 6.87(1 \mathrm{H}, \mathrm{dd}, J=1.0,7.6 \mathrm{~Hz}), 6.80(1 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}), 4.67(1 \mathrm{H}, \mathrm{dt}, J=5.0,7.3 \mathrm{~Hz}), 3.19(1 \mathrm{H}, \mathrm{q}$, $J=7.3 \mathrm{~Hz}), 2.04-1.75(3 \mathrm{H}, \mathrm{m}), 1.62-1.44(4 \mathrm{H}, \mathrm{m}), 1.42-$ 1.26 ($1 \mathrm{H}, \mathrm{m}$); EIMS m/z (relative intensity) 174 (100), 159 (33), 145 (56), 131 (84), 120 (36), 91 (21); HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O} m / z$ 174.1045. Found m / z 174.1048. Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 82.72$; H, 8.10. Found: C, 82.50; H, 8.01.
4.5.18. 2,3-Dihydro-3-(1-formyl-1-methylethyl)benzofuran (6a). IR (neat) $1723,1594,1484,1460,1232 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.56(1 \mathrm{H}, \mathrm{s}), 7.15(2 \mathrm{H}, \mathrm{m}), 6.86(1 \mathrm{H}, \mathrm{dd}$, $J=1.0,7.6 \mathrm{~Hz}), 6.80(1 \mathrm{H}, \mathrm{m}), 4.56(1 \mathrm{H}, \mathrm{dd}, J=4.0,9.2 \mathrm{~Hz})$, $4.38(1 \mathrm{H}, \mathrm{dd}, J=4.0,9.2 \mathrm{~Hz}), 3.66(1 \mathrm{H}, \mathrm{dd}, J=4.0,9.2 \mathrm{~Hz})$, $1.12(3 \mathrm{H}, \mathrm{s}), 1.03(3 \mathrm{H}, \mathrm{s})$; EIMS m/z (relative intensity) 190 (17), 119 (100), 91 (78); HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}$ 190.0994. Found m / z 190.0986. Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 75.76; H, 7.42. Found: C, 75.54; H, 7.42.
4.5.19. 2,3-Dihydro-3-formylmethyl-3-methylbenzofuran (6b). ${ }^{24}$ IR (neat) 1722, 1598, 1481, 1460, $1243 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.70(1 \mathrm{H}, \mathrm{dd}, 1.7$, $2.3 \mathrm{~Hz}), 7.16(2 \mathrm{H}, \mathrm{m}), 6.91(1 \mathrm{H}, \mathrm{dt}, J=1.0,8.3 \mathrm{~Hz}), 6.81$ $(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 4.44(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 4.35(1 \mathrm{H}, \mathrm{d}$, $J=9.2 \mathrm{~Hz}), 4.34(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 2.85(1 \mathrm{H}, \mathrm{dd}, J=2.3$, $16.8 \mathrm{~Hz}), 2.72(1 \mathrm{H}, \mathrm{dd}, J=1.7,16.8 \mathrm{~Hz}), 1.46(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 200.8,159.0,133.8,128.7,122.8,120.9$, 120.7, 110.1, 82.2, 53.5, 25.3; EIMS m/z (relative intensity) 176 (66), 133 (100), 105 (53), 77 (26); HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}$ 176.0837. Found m / z 176.0835.
4.5.20. 3-(1-Formylethyl)-2,3-dihydrobenzofuran (6c). IR (neat) 1723, 1596, 1483, 1461, 1230, $1017 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.76(0.4 \mathrm{H}, \mathrm{s}), 9.72(0.6 \mathrm{H}, \mathrm{s}), 7.15(2 \mathrm{H}, \mathrm{m})$, 6.93-6.79 ($2 \mathrm{H}, \mathrm{m}$), $4.62(1 \mathrm{H}, \mathrm{m}), 4.30(1 \mathrm{H}, \mathrm{m}), 3.94(0.4 \mathrm{H}$, $\mathrm{m}), 3.83(0.6 \mathrm{H}, \mathrm{m}), 2.84(0.4 \mathrm{H}, \mathrm{m}), 2.70(0.6 \mathrm{H}$, quint, $J=7.3 \mathrm{~Hz}), 1.14(1.8 \mathrm{H}, \mathrm{d}, \quad J=7.3 \mathrm{~Hz}), 1.06(1.2 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 203.4,160.4,128.8$, 126.9, 125.4, 120.5, 109.7, 75.0, 50.4, 41.9, 10.4; EIMS m/z (relative intensity) 176 (35), 119 (100), 91 (98); HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}$ 176.0837. Found m / z 176.0843.
4.5.21. 2,3-Dihydro-1,3-dimethylindole (8a). IR (neat) 3048, 1610, 1492, $1462 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.08$ $(2 \mathrm{H}, \mathrm{m}), 6.70(1 \mathrm{H}, \mathrm{dt}, J=0.7,7.6 \mathrm{~Hz}), 6.49(1 \mathrm{H}, \mathrm{dd}, J=0.7$, $7.6 \mathrm{~Hz}), 3.52(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}), 3.27(1 \mathrm{H}, \mathrm{m}), 2.79(1 \mathrm{H}, \mathrm{t}$, $J=8.3 \mathrm{~Hz}), 2.74(3 \mathrm{H}, \mathrm{s}), 1.31(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.88,135.31,127.42,122.91,117.93,107.35$, 64.13, 36.23, 35.31, 18.22; EIMS m / z (relative intensity) 147 (62), 146 (16), 143 (15), 132 (100), 131 (16), 117 (34); HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N} \mathrm{~m} / \mathrm{z}$ 147.1048. Found m / z 147.1041.
4.5.22. 3-Ethyl-2,3-dihydro-1-methylindole (8b). IR (neat) 3046, 1609, 1492, $1461 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.07(2 \mathrm{H}, \mathrm{m}), 6.58(1 \mathrm{H}, \mathrm{dt}, J=0.7,7.6 \mathrm{~Hz}), 6.48(1 \mathrm{H}, \mathrm{dd}$, $J=0.7,7.6 \mathrm{~Hz}), 3.38(1 \mathrm{H}, \mathrm{t}, J=8.3 \mathrm{~Hz}), 3.11(1 \mathrm{H}, \mathrm{m}), 2.92$ $(1 \mathrm{H}, \mathrm{t}, J=8.3 \mathrm{~Hz}), 2.74(3 \mathrm{H}, \mathrm{s}), 1.88(1 \mathrm{H}, \mathrm{m}), 1.55(1 \mathrm{H}, \mathrm{m})$ $1.00(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.19,134.05$, 127.48, 123.43, 117.61, 107.21, 61.89, 42.37, 36.17, 26.65, 11.93; EIMS m / z (relative intensity) 161 (32), 133 (11), 132
(100), 131 (10), 130 (11), 117 (37), 40, (21); HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N} \mathrm{~m} / \mathrm{z}$ 161.1204. Found m / z 161.1221.
4.5.23. 2,3-Dihydro-1,3,3-trimethylindole (8c). ${ }^{25}$ IR (neat) 3022, 1608, 1491, $1462 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 7.09(1 \mathrm{H}$, $\mathrm{dt}, J=1.3,7.6 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{dd}, J=1.3,7.6 \mathrm{~Hz}), 6.70(1 \mathrm{H}$, $\mathrm{dt}, J=1.3,7.6 \mathrm{~Hz}), 6.49(1 \mathrm{H}, \mathrm{dd}, J=1.3,7.6 \mathrm{~Hz}), 3.06(2 \mathrm{H}$, s), $2.75(3 \mathrm{H}, \mathrm{s}), 1.30(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 151.97$, $139.21,127.42,121.49,117.82,107.29,70.30,40.23,35.97$, 27.37 (two signals).
4.5.24. 3-Isopropyl-2,3-dihydro-1-methylindole (8d). IR (neat) $3046,1609,1491,1458 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.09(2 \mathrm{H}, \mathrm{m}), 6.66(1 \mathrm{H}, \mathrm{dt}, J=0.7,7.3 \mathrm{~Hz}), 6.46(1 \mathrm{H}, \mathrm{dd}$, $J=0.7,7.3 \mathrm{~Hz}), 3.30(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 3.12(2 \mathrm{H}, \mathrm{m}), 2.73$ $(3 \mathrm{H}, \mathrm{s}), 2.02(1 \mathrm{H}, \mathrm{m}), 0.99(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.88(3 \mathrm{H}, \mathrm{d}$, $J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.91,132.85,127.71$, $124.60,117.50,107.21,58.55,47.35,36.35,30.73,20.83$, 19.10; EIMS m/z (relative intensity) 175 (23), 158 (19), 133 (11), 132 (100), 117 (30); HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N} \mathrm{~m} / \mathrm{z}$ 175.1361. Found $m / z 1751355$.
4.5.25. 3-Benzyl-2,3-dihydro-1-methylindole (8e). IR (neat) $3026,1607,1492,1460 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.34-7.21(5 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{dt}, J=0.7,7.6 \mathrm{~Hz}), 6.93(1 \mathrm{H}$, dd, $J=0.7,7.3 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{dt}, J=0.7,7.3 \mathrm{~Hz}), 6.51(1 \mathrm{H}$, dd, $J=0.7,7.3 \mathrm{~Hz}$), $3.49(1 \mathrm{H}, \mathrm{m}), 3.28(1 \mathrm{H}, \mathrm{t}, J=8.6 \mathrm{~Hz})$, $3.11(1 \mathrm{H}, \mathrm{dd}, J=6.0,13.5 \mathrm{~Hz}), 3.02(1 \mathrm{H}, \mathrm{dd}, J=6.6,8.6 \mathrm{~Hz})$, $2.78(1 \mathrm{H}, \mathrm{dd}, J=9.6,13.5 \mathrm{~Hz}), 2.73(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \quad \delta \quad 153.14, \quad 140.20, \quad 133.30, \quad 128.97$ (two signals), 128.39 (two signals), 127.78, 126.15, 123.65, 117.68, 107.37, 61.69, 42.37, 60.06, 36.08; EIMS m/z (relative intensity) 223 (12), 132 (100), 117 (25), 91 (10); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N} \mathrm{~m} / \mathrm{z}$ 223.1361. Found m / z 223.1361.
4.5.26. 3-Methy-1,2,3,4-tetrahydro-1-naphthol (9a). ${ }^{26}$ IR (neat) $3332,1455,1056 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.35-$ $7.18(4 \mathrm{H}, \mathrm{m}), 2.80(1 \mathrm{H}, \mathrm{m}), 2.41(1 \mathrm{H}, \mathrm{m}), 2.19(1 \mathrm{H}, \mathrm{m}), 1.88$ $(2 \mathrm{H}, \mathrm{m}), 1.08(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz})$.
4.5.27. 3-Methychroman (9b). ${ }^{27}$ IR (neat) 2922, 1734, $1456,1261 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.7-7.2(4 \mathrm{H}, \mathrm{m})$, $4.17(1 \mathrm{H}, \mathrm{ddd}, J=2.0,5.6,10.6 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{t}, J=9.6 \mathrm{~Hz})$, $2.83(1 \mathrm{H}$, ddd, $J=2.0,5.6,16.2 \mathrm{~Hz}), 2.44(1 \mathrm{H}, \mathrm{dd}, J=9.6$, $16.2 \mathrm{~Hz}), 2.15(1 \mathrm{H}, \mathrm{m}), 1.04(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz})$.
4.5.28. 1,3-Dimethy-1,2,3,4-tetrahydroquinoline (9c). ${ }^{28}$ IR (neat) $3024,1605,1492,1459 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.07(1 \mathrm{H}, \mathrm{t}, J=9.8 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz})$, $6.59(2 \mathrm{H}, \mathrm{m}), 3.15(1 \mathrm{H}$, ddd, $J=2.0,4.2,11.0 \mathrm{~Hz}), 2.88(3 \mathrm{H}$, s), 2.72-2.79 ($2 \mathrm{H}, \mathrm{m}$), $2.41(1 \mathrm{H}, \mathrm{dd}, J=10.7,15.8 \mathrm{~Hz}), 2.12$ $(1 \mathrm{H}, \mathrm{m}), 1.03(3 \mathrm{H}, \mathrm{d} J=6.5 \mathrm{~Hz})$.

4.6. Typical procedure for radical cyclization using $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN

To a solution of substrate (0.5 mmol) and toluene (25 ml) was added $n-\mathrm{Bu}_{3} \mathrm{SnH}(0.55 \mathrm{mmol})$ and $\operatorname{AIBN}(0.1 \mathrm{mmol})$ at room temperature. The solution was heated under reflux for 4 h . The solvent was evaporated and diluted with hexane. The solution was extracted with $\mathrm{CH}_{3} \mathrm{CN}$. The combined $\mathrm{CH}_{3} \mathrm{CN}$ extracts were washed with hexane, dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by TLC.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (B) (No. 11450342) from The Ministry of Education, Culture, Sports, Science and Technology of Japan.

References and notes

1. Neumann, W. P. Synthesis 1987, 665-683.
2. (a) Baguley, P. A.; Walton, J. C. Angew. Chem., Int. Ed. 1998, 37, 3072-3082. (b) Studer, A.; Amrein, S.; Schleth, F.; Schulte, T.; Walton, J. C. J. Am. Chem. Soc. 2003, 125, 5726-5733. (c) Studer, A.; Amrein, S. Angew. Chem., Int. Ed. 2000, 39, 3080-3082. (d) Takami, K.; Mikami, S.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. Tetrahedron 2003, 59, 6627-6635. (e) Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. C. J. Org. Chem. 1993, 58, 6838-6842. (f) Graham, S. R.; Murphy, J. A.; Coates, D. Tetrahedron Lett. 1999, 40, 2415-2416. (g) Yorimitsu, H.; Shinokubo, H.; Oshima, K. Bull. Chem. Soc. Jpn 2001, 74, 225-235. (h) Nakao, J.; Inoue, R.; Shinokubo, H.; Oshima, K. J. Org. Chem. 1997, 62, 1910-1911. (i) Inoue, R.; Nakao, J.; Shinokubo, H.; Oshima, K. Bull. Chem. Soc. Jpn 1997, 70, 2039-2049. (j) Clark, A. J.; Davies, D. I.; Jones, K.; Millbanks, C. J. Chem. Soc., Chem. Comтии. 1994, 41-42.
3. Fry, A. J. Synthetic organic electrochemistry; Wiley: New York, 1989; pp 136-156.
4. Generation of aryl radicals by the direct electrochemically reduction of aryl halides has been reported. Yields of the corresponding simple reduction products and cyclized products were dependent on the structure of the substrates and the electrochemical conditions. (a) Grimshaw, J.; TrochaGrimshaw, J. Tetrahedron Lett. 1974, 12, 993-996. (b) Grimshaw, J.; Haslett, R. J.; Trocha-Grimshaw, J. J. Chem. Soc., Perkin Trans. 1 1977, 2448-2455. (c) Grimshaw, J.; Mannus, D. J. Chem. Soc., Perkin Trans. 1 1977, 2456. (d) Donnelly, S.; Grimshaw, J.; TrochaGrimshaw, J. J. Chem. Soc., Chem. Commun. 1994, 2171-2172.
5. LeStrat, F.; Murphy, J. A.; Hughes, M. Org. Lett. 2002, 4, 2735-2738.
6. (a) Ozaki, S.; Matsushita, H.; Ohmori, H. J. Chem. Soc., Chem. Commun. 1992, 1120-1122. (b) Ozaki, S.; Matsushita, H.; Ohmori, H. J. Chem. Soc., Perkin Trans. 1 1993, 2339-2344. (c) Ozaki, S.; Horiguchi, J.; Matsushita, H.; Ohmori, H. Tetrahedron Lett. 1994, 35, 725-728. (d) Ihara, M.; Katsumata, A.; Setsu, F.; Tokunaga, Y.; Fukumoto, K. J. Org. Chem. 1996, 61, 677-684. (e) Sandra, O.; Clinet, J. C.; Duñach, E. Tetrahedron Lett. 1995, 36, 4429-4432. (f) Clinet, J. C.; Duñach, E. J. Organomet. Chem. 1995, 503, C48-C50. (g) Gómez, M.; Muller, G.; Penyella, D.; Rocamora, M. Organometallics 1997, 16, 5900-5908. (h) Sandra, O.; Rolland, J-P.; Duñach, E. Organometallics

1998, 17, 3747-3753. (i) Torii, S.; Inokuchi, T.; Yukawa, T. J. Org. Chem. 1985, 50, 5875-5877.
7. Munusamy, R.; Dhathathreyan, K. S.; Balasubramanian, K. K.; Venkatachalam, C. H. J. Chem. Soc., Perkin Trans. 2 2001, 1154-1166.
8. Kurono, N.; Honda, E.; Komatsu, F.; Orito, K.; Tokuda, M. Chem. Lett. 2003, 32, 720-721.
9. Dias, M.; Gibson, M.; Grimshaw, J.; Hill, I.; TrochaGrimshaw, J.; Hammerich, O. Acta Chem. Scand. 1998, 52, 549-554.
10. Clerici, A.; Pastori, N.; Porta, O. Eur. J. Org. Chem. 2001, 2235-2243.
11. (a) Rigollier, P.; Young, J. R.; Fowley, L. A.; Still, J. R. J. Am. Chem. Soc. 1990, 112, 9441-9442. (b) Miura, K.; Ichinose, Y.; Nozaki, K.; Fugami, K.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn 1989, 62, 143-147.
12. Abeywickrema, A. N.; Beckwith, A. L. J.; Gerba, S. J. Org. Chem. 1987, 52, 4072-4078
13. Walling, C.; Cioffari, A. J. Am. Chem. Soc. 1972, 94, 6059-6064.
14. Peters, D. G. Halogenated organic compounds. In Organic electrochemistry; Lund, H., Baizer, M. M., Eds.; Marcel Dekker: New York, 1991; pp 390-392.
15. (a) Tokuda, M.; Kurono, N.; Mimura, N. Chem. Lett. 1996, 1091-1092. (b) Kurono, N.; Sugita, K.; Takasugi, S.; Tokuda, M. Tetrahedron 1999, 55(19), 6097-6108. (c) Jalil, A. A.; Kurono, N.; Tokuda, M. Synlett 2001(12), 1944-1946. (d) Jalil, A. A.; Kurono, N.; Tokuda, M. Tetrahedron 2002, 58, 7477-7484. (e) Jalil, A. A.; Kurono, N.; Tokuda, M. Synthesis 2002(18), 2681-2686.
16. Curran, D. P.; Totleben, M. J. J. Am. Chem. Soc. 1992, 114, 6050-6058.
17. Casaschi, A.; Grigg, R.; Sansano, J. M. Tetrahedron 2000, 56, 7553-7560.
18. Larock, R. C.; Yum, E. K.; Refvik, M. D. J. Org. Chem. 1998, 63, 7652-7662.
19. Stevens, R. V.; Bisacchi, G. S.; Goldsmith, L.; Strouse, C. E. J. Org. Chem. 1980, 45, 2709-2710.
20. Beckwith, A. L. J.; Gara, W. B. J. Chem. Soc., Perkin Trans. 2 1975, 795-802.
21. Hosomi, A.; Kohra, S.; Ogata, K.; Yanagi, T.; Tominaga, Y. J. Org. Chem. 1990, 55, 2415-2420.
22. Janusz, J. M.; Young, P. A.; Scherz, M. W.; Enzweiler, K.; Wu, L. I.; Gan, L.; Pikul, S.; McDow-Dunham, K. L.; Johnson, C. R.; Senanayake, C. B.; Kellstein, D. E.; Green, S. A.; Tulich, J. L.; Rosario-Jansen, T.; Magrisso, I. J.; Wehmeyer, K. R.; Kuhlenbeck, D. L.; Eichhold, T. H.; Dobson, R. L. M. J. Med. Chem. 1998, 41, 1124-1137.
23. Rajesh, C. S.; Thanulingam, T. L.; Das, S. Tetrahedron 1997, 53, 16817-16834.
24. Brown, S.; Clarkson, S.; Grigg, R.; Thomas, W. A.; Sridharam, V.; Wilson, D. M. Tetrahedron 2001, 57, 1347-1359.
25. Nishio, T.; Okuda, N.; Kashima, C. Helv. Chim. Acta 1990, 73, 1719-1723.
26. Mitsui, S.; Kasahara, A.; Hanaya, K. Bull. Chem. Soc. Jpn 1968, 41, 2526-2527
27. Wipf, P.; Ribe, S. Org. Lett. 2001, 3, 1503-1505.
28. Katritzky, A. R.; Rachwal, B.; Rachwal, S. J. Org. Chem. 1995, 60, 7631-7640.

[^0]: Keywords: Electrolysis; Radical cyclization; 5-exo Cyclization; Arene mediator; Regioselectivity.

 * Corresponding author. Tel.: +81-11-706-6601; fax: +81-11-706-6598; e-mail address: chlono@org-mc.eng.hokudai.ac.jp

[^1]: ${ }^{\text {a }}$ Electrolysis of $\mathbf{1 a}$ in $0.1 \mathrm{M} \mathrm{Et}_{4} \mathrm{NClO}_{4}$-DMF was carried out at $0{ }^{\circ} \mathrm{C}$ with a constant current of $75 \mathrm{~mA} / \mathrm{cm}^{2}(5 \mathrm{~F} / \mathrm{mol})$ in a one-compartment cell equipped with a Pt cathode and Mg anode.
 ${ }^{\mathrm{b}}$ Reduction potentials of $\mathbf{1 a}$ and arene compounds were measured by cyclic voltammetry in $0.1 \mathrm{M} \mathrm{Et}_{4} \mathrm{NClO}_{4}-\mathrm{DMF}$ using $\mathrm{Ag} / \mathrm{Ag}^{+}$reference electrode. Reduction potential of $\mathbf{1 a}$ was -2.50 V vs. $\mathrm{Ag} / \mathrm{Ag}^{+}$.
 ${ }^{c}$ Equivalents of mediator to 1a.
 ${ }^{\mathrm{d}}$ Isolated yields.
 ${ }^{\mathrm{e}}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis.

[^2]: ${ }^{\text {a }}$ Isolated yields.
 ${ }^{\mathrm{b}}$ Ratios of regioisomers were determined by ${ }^{1} \mathrm{H}$ NMR.

