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Adaptive Diurnal Prediction 
of Ambient Dry-Bulb Temperature 

and Solar Radiation

M.J. Ren J.A. Wright
Member ASHRAE

This paper presents a new adaptive weather-prediction model that can be used for on-line con-
trol of HVAC and thermal storage systems. The model can predict external dry-bulb tempera-
ture and solar radiation over the next 24 h. Because a building with a fabric thermal storage
system has a slow response to thermal loads, a predictive controller is essential to operate the
building and associated plant installation to respond effectively to external climatic conditions
ahead of time. Three prediction methods are investigated in the paper: a pure stochastic
method, a combined deterministic-stochastic method, and an expanded method for short-term
temperature forecast. It has been found that the combined deterministic-stochastic method is
simpler and gives the smallest prediction errors. For the prediction of solar radiation, a deter-
ministic model is proposed. The proposed prediction algorithms for temperature and radiation
are simple and efficient to conduct on a supervisory PC to predict hourly temperature and radi-
ation profiles over the next 24 h. Updating temperature forecasts using observations available
with time is also investigated in this paper.

INTRODUCTION
Current trends toward energy-efficient buildings have led to research into the optimum con-

trol of HVAC systems that use the building fabric as a thermal store. Two systems have been
investigated: one for conventional air-conditioned buildings where fabric thermal storage is
achieved by exposing the building fabric to the internal environment (Keeney and Braun 1997),
and the other for buildings that use ventilated floor slabs, the ventilation air providing greater
thermal coupling with the building fabric (Ren 1997). In both systems, the schedule of control
set points is predicted to give the optimum system performance with minimized energy cost
over a period of 24 h. To schedule the control set points to make use of free night cooling and
lower electricity costs, it is necessary to predict the weather conditions over the next 24 h. The
performance of such a control optimizer has been investigated (Ren 1997). This paper presents
an approach to predicting the hourly ambient dry-bulb temperature and solar radiation condi-
tions over a 24 h period. The predicted weather information is then used as the basis for the
building simulation and optimization of control set-point scheduling. An application of the
weather prediction model in a predictive controller was described in Ren and Wright (1997).
Updating weather prediction hourly is also investigated in this paper.

BACKGROUND
External climatic conditions such as outdoor air temperature and solar radiation vary with

time, which results in fluctuating heating and cooling loads in the building space. Most previous

Mei J. Ren is a senior specialist engineer with Buro Happold Engineering, Manchester, United Kingdom. Jonathan
A. Wright is a senior lecturer in the Department of Civil and Building Engineering, Loughborough University, United
Kingdom.
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384 HVAC&R RESEARCH

research requiring weather modeling has focused on the development of predictive algorithms
for heating and cooling loads directly rather than the ambient weather conditions (Ferrano and
Wong 1990; Forrester and Wepfer 1984; MacArthur et al. 1989; Rupanagunta et al. 1995; Seem
and Braun 1991). In particular, Kawashima et al. (1995) compared autoregressive integrated
moving average (ARIMA), exponential weighted moving average (EWMA), linear regressive
(LR), and artificial neural network (ANN) models in prediction of thermal loads over 24 h; the
results indicated that the ANN model produced the lowest prediction errors. Weather models for
use in building design load analysis have also been investigated. Jiang and Hong (1993) used a
stochastic weather model to obtain diurnal changes in the climatic variables and shape factors to
estimate the hourly values. Yoshida and Terai (1992) used an autoregressive moving average
(ARMA) model, which took account of the deterministic annual and diurnal periodicity and the
stochastic variations in the climatic variables, including the ambient air temperature, solar radia-
tion, and absolute humidity. Among the methods investigated for predicting weather conditions
for use in predictive control are stochastic dynamic models (Holst et al. 1987), sinusoidal func-
tions (Athienitis 1988), and shape factors and look-up tables (Chen and Athienitis 1996).

Although much research has focused on weather prediction, or on the result of climatic condi-
tions on building thermal loads, no research has been conducted addressing the prediction of
ambient conditions for use in set-point scheduling control. The requirement and assumption
made of such a prediction algorithm are that the climatic conditions relating to the buildings are
measured hourly and are available to update the model prediction. The model is required only to
predict the ambient conditions for the next 24 h. The model need not address the annual period-
icity or seasonal effect separately, because the forecasting is to be conducted daily, wherein the
parameters of the model are updated to include the effect of the measured data from the previous
24 h. Three adaptive models for the diurnal prediction of ambient temperature and solar radia-
tion are examined here, each candidate model having been selected through an understanding of
the properties of ambient temperature and solar radiation time series.

In this paper, two sets of weather data have been selected to analyze the performance of the
prediction models. The U.K. Chartered Institution of Building Services Engineers (CIBSE)
example weather year, measured in London, U.K., from October 1964 to September 1965, and
the data measured in Garston, U.K., during 1994 were used. The CIBSE example year is consid-
ered suitable for use in predicting average building energy consumption, whereas the data from
1994 are useful for predicting the potential overheating risk in low-energy buildings. Clearly,
these data are for a temperate climate, but one that can be subject to significant stochastic
changes in climate, and therefore is potentially challenging to model. 

A weather model is complicated by the fact that the climatic variables are correlated to each
other. Yoshida and Terai (1990-1991) suggested that the model could be simplified if it is
assumed that temperature is only correlated to solar radiation, but that solar radiation is not cor-
related to any other variables.

Figure 1 shows the profiles for the hourly mean and standard deviation of global radiation for
the CIBSE example year and 1994 (diffuse and direct radiation have also been considered, but
are not presented here). It is observed that the properties of the radiation data are time dependent
and thus are a nonstationary stochastic time series. The global radiation has a strong periodicity;
the radiation at night is deterministically zero, reaching the peak in the middle of the day. The
standard deviations indicate a high variation of the hourly global radiation in the middle of day,
the highest variation being 218 W/m2, 68.5% of the highest mean radiation 318 W/m2. This
implies a significant change in the hourly radiation throughout an entire year. 

Figure 2 shows the profiles for the hourly mean and standard deviation of the ambient temper-
ature for the CIBSE example year and 1994. It is observed that the temperature series are also
time dependent and thus are a nonstationary stochastic time series.
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The correlation between the ambient dry-bulb temperature and solar radiation (and the need
to consider this in any modeling) has been investigated through the daily average temperature
and daily total global radiation for the hourly example data. It was found that, over the entire
year, there is a strong correlation between the two variables, with ρxy

8 = 0.5 ~ 0.6 (correlation
coefficient of x and y, where 0 = no correlation, 1 = complete correlation) from the two sets of
weather data. However, there is a much weaker correlation between the two variables when

Figure 1. Hourly Mean and Standard Deviation of Global Radiation

Figure 2. Hourly Mean and Standard Deviation of Ambient Temperature
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386 HVAC&R RESEARCH

calculated for each month, which varies (ρxy = 0.08 ~ 0.6) depending on the month. This reflects
the randomness of the two variables, especially the total solar radiation, which is greatly affected
by cloudiness.

The high degree of randomness in the solar radiation data suggests that it may not be neces-
sary to consider their correlation for short-term weather prediction when using recent historical
data, as the influence of the solar radiation on the ambient temperature may have been reflected
in the historical temperature itself. Therefore, the solar radiation and ambient temperature can be
calculated independently. This will be justified further in the following investigation on the
methods for modeling the temperature data. For a long-term weather prediction model, the influ-
ence of global solar radiation on the dry-bulb temperature may need to be taken into account, as
in the method used by Yoshida and Terai (1990-1991).

MODELING APPROACH
Both the temperature and solar radiation data are nonstationary time series. Pandit and Wu

(1983) claimed that an ARMA system can sufficiently model nonstationary time series if the
model parameters are selected correctly, with the trend or periodicity exhibited in the data
reflected in the roots of the parameters. However, by making the raw temperature time series
stationary, the number of parameters of the ARMA model can be substantially reduced. This can
be achieved by subtracting the deterministic component from the raw data using a deterministic
model. The modeling methods used here to investigate the modeling of solar radiation and tem-
perature time series include the following:

• Stochastic models comprised of single-variable ARMA models and multivariable autoregres-
sive moving average with exogenous variables (ARMAX) models

• Deterministic models comprised of EWMA models and sinusoidal functions

The single-variable ARMA model has been applied to ambient temperature prediction, as has
a combined deterministic and ARMA model (using both the EWMA and sinusoidal determinis-
tic models). The multivariable ARMAX model has been used to investigate the need to include
the solar radiation in the ambient temperature prediction. Prediction of solar radiation has been
investigated using the combined stochastic-deterministic models and the deterministic models
alone. Because this paper is concerned with the adaption of such models at least once a day,
updating the model parameters is also discussed.

In most cases, hourly time step is used to forecast temperature and solar radiation profiles;
the expanded combined stochastic-deterministic model, however, uses daily time step to pre-
dict the daily mean ambient temperature by using the daily total global radiation as one of the
input data.

Hourly time step is adequate for supervisory control of a fabric thermal storage system, which
is the main application of the weather prediction models investigated here. A time step shorter
than an hour is unnecessary because of the thermal inertial of the system. For applications that
may require shorter time intervals, such as 15 min or less, much simpler methods can be used
such as simply using the previous temperature observations as the forecast for the present time
step.

Four modeling errors have been used to evaluated the performance of the weather forecast
models: the root mean square error (RMSE), the mean error (ME), the mean absolute error
(MAE), and the maximum absolute error (MAXAE).

ARMA Model
An ARMA model uses stochastic linear difference equations to model the dependence of the

data (Pandit and Wu 1983). The model can then be used to forecast the behavior of the system
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described by the data. Because the climatic data considered here are dependent or correlated
between the observations, an ARMA model can be used to describe the dependence. The basic
formula of an ARMA model is

(1)

where Xt–i is the data observation at i time step prior to time t, i = 0, 1, ..., n; at– j is the
sequence of uncorrelated Gaussian white noise, j = 0, 1, ..., m; φi are autoregressive parame-
ters with the order of n, i = 1, 2, ..., n; and θj are moving average parameters with the order of
m, j = 1, 2, ..., m.

The parameters (φ, θ) are determined so as to minimize the residuals J based on the least-
squares criterion for the number of N data inputs, min J(φ, θ) = . 

The Marquardt nonlinear regression method has been used here to estimate the ARMA model
parameters (Pandit and Wu 1983). Two weeks of weather data have been used as historical obser-
vations to estimate the ARMA model parameters. One week may be too short a period to contain
a sufficient variety of weather condition patterns. A period longer than two weeks could be used,
but the results of this study showed no significant improvement in the model accuracy, whereas
the computational intensity for estimating the model parameters was increased.

The order of an ARMA model can be identified using two criTerai (Pandit and Wu 1983).
The first is the F-criterion, which indicates the improvement in the sum of squares of residuals

, in going from the lower-order ARMA (2n, 2n – 1) to the higher-order ARMA (2n + 2, 2n
+ 1). The second criterion ensures accuracy of the ARMA model by checking that the autocorre-
lations of the residual values of at are within the ± band. Under this condition, there is a
95% confidence level that the expected value of the residual autocorrelations is zero, which
ensures that the values of at are independent of each other. The most appropriate order of the
ARMA model for modeling temperature and solar radiation is discussed later in this paper.

The principal difference of ARMA models from the ordinary regression models is that the
ARMA models have memory of the disturbance entering the system before the present time. The
dynamics or the memory of an ARMA model can be described by two functions. The first is
Green’s function Gr, which imposes a stability restriction on the model. The second is the
inverse function I. The stability and invertibility are checked each time the parameters are esti-
mated for the ARMA model.

ARMAX Model

To model the influence of solar radiation on the ambient temperature, a multivariable autore-
gressive moving average vectors system (ARMAV) model has been proposed in this paper. The
model formula and associated vectors are

(2)

where

X̂ t φ1Xt 1Ó φ2Xt 2Ó
… φnXt nÓ at θ1at 1ÓÓ θ2at 2ÓÓ …Ó θmat mÓÓH H H HZ

∑ t=1
N at

2

at
2∑

2/ N

Φ0Yt Φ1Yt 1Ó Φ2Yt 2Ó
… ΦnYt nÓ et Θ1et 1ÓÓ Θ2et 2ÓÓ …Ó Θmet mÓÓH H H HZ

Yt 1Ó
Td iÓ

Gd iÓ

Z     i 0 1 … n, , ,Z    et jÓ
at jÓ

bt jÓ

     j 0 1 … m,, , ,Z,Z, ,
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388 HVAC&R RESEARCH

In this model, a daily time step is applied.  and  are the daily average temperature and
the normalized daily total global radiation of day d. φi1, i = 1, 2, ..., n are the autoregressive
parameters for the temperature . ϕ0 and ϕi2, i = 1, 2, ..., n are the parameters of the exogenous
input variable  for modeling the temperature  [see Equation (3)]. ϕi1, i = 1, 2, ..., n are the
autoregressive parameters for modeling the global radiation . θj and ψj, j = 1, 2, ..., m are the
moving average parameters for the temperature  and the radiation , respectively. Equation
(2) is formed under the assumption that the global radiation is an independent time series and
that the temperature depends on the global radiation (Yoshida and Terai 1990-1991). The Gaus-
sian noises at–j and bt– j for the two stochastic processes must also be independent (this is in fact
a common assumption for modeling multivariable control systems) (Pandit and Wu 1983).

The parameter estimation of Equation (2) can be accomplished sequentially using an ARMA
model for the solar radiation , then the temperature  by an ARMAX model using the past
observations of the temperature and the previous and present radiation data as exogenous vari-
ables. Equation (3) indicates the ARMAX model for the temperature, derived from Equation (2):

(3)

The parameter identification for an ARMAX model is the same as that described for the
ARMA model.

Deterministic EWMA Model

An EWMA model has also been used to investigate modeling of both the ambient tempera-
ture and global solar radiation. This model is used to remove the deterministic trend of the data.
An EWMA model is a special case of the ARMA (1, 1) model with φ1 = 1, θ1 = 1 – λ. It can also
be represented by

(4)

Equation (4) shows that the forecast  can be simply computed from and the observa-
tion Xt–1 without needing to store the past observations at time t. For the deterministic forecast
of temperature and solar radiation required in this paper, a clockwise formulation of the EWMA
model has been used:

(5)

where  is the deterministic forecast for the next day d + 1 at time t;  is the determin-
istic forecast for the previous 24 h, day d at time t; and Xt,d is the temperature or global solar
radiation observations for the previous 24 h, day d at time t.

Φ0
1 ϕ0Ó

0 1
Z     Φi

φi1 ϕi2

0 ϕi1

Z    i 1 2 … n,, , ,Z, ,

and Θj
θj 0

0 ψj

Z     j 1 2 … m, , ,Z,

Td Gd

Td
Gd Td

Gd
Td Gd

Gd Td

Td φ11Td 1Ó φ21Td 2Ó … φn1Td nÓ ϕ0Gd ϕ12Gd 1Ó ϕ22Gd 2Ó  H H H H H HZ

   … ϕn2Gd nÓ at θ1at 1ÓÓ … θmat mÓÓÓH H H

X̂ X̂t 1Ó λ Xt 1Ó X̂t 1ÓÓ( )HZ

X̂t X̂t 1Ó

D̂t d+1I
D̂t dI λ Xt dI D̂t dIÓ( )       t 1 2 … 24 (hourly), , ,Z,HZ

D̂t d+1I
D̂t dI
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The only parameter to be determined in the EWMA model for calculating the deterministic
element of the data series is the exponential smoothing constant λ. The smoothing constant λ is
used to weight the past data. As λ increases, greater influence from the more recent observation
is given to the model. A large λ can result in a rapid response not only to the weather changes,
but also to the irregular movements in the time series. However, too small a λ may fail to follow
the trend of the temperature variations and result in a slow response to changes in the ambient
temperature (Abraham and Ledolter 1983). These effects are apparent in Table 1, which illus-
trates the influence of λ on the modeling errors for ambient temperature in September 1994. The
lowest value of λ results in a prediction that tends to smooth out the extreme errors, and hence a
lower MAXAE than for higher values of λ. However, the low λ reduces the ability of the model
to follow the general trend of the temperature variations, resulting in a higher ME and MAE.
The higher λ of 0.6 has an opposite effect, giving the highest MAXAE and RMSE, while the
lowest ME and lower MAE. A λ = 0.45 is a good compromise of weighting the historical data,
while still providing relatively small modeling errors. Note also that the prediction errors are not
sensitive to small changes in λ. A λ = 0.45 has therefore been adopted in this paper for modeling
both the ambient temperature and global solar radiation. 

Deterministic Model Based on Sinusoidal Functions

Modeling the deterministic component of the weather data by sinusoidal functions has also
been investigated. Pandit and Wu (1983) suggested that the sinusoidal functions can be used to
model the trend and periodicity of a data series:

(6)

where Bj, bj, Cj, rj, and Rj are parameters to be estimated. For the temperature data, ω = 2π/24.
For the radiation data, because the radiation at night is deterministically zero, in order to reduce
prediction errors, ω = 2π/17 is applied. The time of sunrise and sunset is site dependent, and a
different cycle or ω value for modeling solar radiation using sinusoidal functions may be used
for other climate types. The raw radiation data are used here and Equation (6) is applied to find
the best fit of the data using sinusoidal functions. Solar radiation data can also be normalized
before applying Equation (6). It is anticipated that using daily total radiation to normalize the
hourly radiation data would not eliminate the site dependence of the data. Other methods, such
as normalizing the radiation data using theoretical calculations of hourly radiation for a particu-
lar site, have not been investigated in this paper.

The Marquardt nonlinear estimation routine has been used to calculate Rj and rj ( j = 1, 2, ..., l),
and Bj, bj, and Cj ( j = 1, 2, ..., n). It was found that the exponential growth trend in the temperature
and radiation was very small and could be neglected, l = 1, r1 = 0, and the third order (n = 3) of peri-
odic trend is sufficient for modeling the temperature data. Table 2 gives an example of the values
for Bj, bj, and Cj ( j = 1, 2, 3) and R1 of the third-order model using the temperature observations in
March of the CIBSE example weather year. The parameters of the model can also be updated daily.

Table 1. Effect of λ in EWMA Model

λ RMSE, K MAE, K ME, K MAXAE, K

0.3 1.91 1.52 0.19 5.86

0.45 1.90 1.48 0.11 6.19

0.6 1.92 1.48 0.07 6.62

D̂t d+1I
Rj exp rj t( )

j=1

l

∑ Bj exp bj t( )

j=1

n

∑ Cj sin jωt( ) 1 Cj
2

Ó cos jωt( )H[ ]HZ
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TEMPERATURE PREDICTION
Three methods of using ARMA models have been investigated here. The first approach, the

stochastic method (SM), is to model the nonstationary temperature time series, using the raw
temperature data to estimate the parameters of the ARMA model. In the second approach, the
deterministic-stochastic method (DSM), the stationary stochastic time series is modeled by sub-
tracting the deterministic component out of the raw temperature data so that the stochastic ele-
ment can be calculated by a reduced order of the ARMA model. The deterministic component
represents the periodicity and trend of the hourly ambient temperature. The third method
expands on the DSM to include the effect of global solar radiation on the temperature prediction,
and has therefore been called the expanded deterministic-stochastic method (EDSM).

Stochastic Method
In SM, the next day’s temperature profile is predicted using only the ARMA model of Equa-

tion (1). Using the ambient temperature data for July of the CIBSE example year, the results
indicated that, to meet the F-criterion, a high order of ARMA(26, 25) was required. Because the
ambient temperature changes in a diurnal cycle of 24 h randomly hour by hour, the hourly sam-
pled data may be represented by an ARMA model of an approximate order of (n × 24), with the
exact value of periodicity of the model varying marginally with different periods of temperature
sampled [in this case, ARMA(26, 25)]. If the moving average parameters are removed and an
AR model is used, a higher number of parameters of AR(2n) is required. In this instance an
AR(36) results in a similar value of  to an ARMA(26, 25). It can be concluded that,
although the ARMA model is simple in structure, a high order of the parameters is required to
model the diurnal ambient temperature series.

Deterministic-Stochastic Method
It is likely that the order of an ARMA model can be reduced by separately modeling the deter-

ministic periodicity of the ambient temperature time series. The procedure for establishing the
combined model is in three steps:

1. Predict the deterministic part  of the time series using either the EWMA model, Equa-
tion (5), or the sinusoidal function, Equation (6).

2. Calculate the stochastic part of the time series St from the errors in the deterministic predic-
tions for the previous N data samples, St = Tt – , t = 1, 2, ..., N (N being equal to 14 days of
hourly sampled data in this case).

3. Predict the stochastic element of the time series , using an ARMA model, Equation (1).

The temperature forecasts  (t = 1, 2, ..., 24) are then given by combining the predictions
for the deterministic and stochastic elements: 

(7)

The results indicate that an AR(4) is adequate to model the stochastic element of the time series.

Table 2. Example of Parameters Fitted for Sinusoidal Functions

Number Order B b c R

First –3.56 –0.01 0.86 8.78

Second 8.56 –0.34 0.99 —

Third –4.61 –0.33 1.00 —

at
2∑

D̂t d+1I

D̂t

Ŝt

T̂t d+1I

T̂t d+1I
D̂t d+1I

Ŝt d+1I
   t 1 2 … 24, , ,Z( )HZ
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The performance of the EWMA model and sinusoidal functions in modeling the determin-
istic element of the time series are compared in Table 3 for April of the CIBSE weather year.
The relative performance is also illustrated in Figure 3 (the lower graph illustrates the data
from April 17 to 23). It can be observed that the sinusoidal functions do not adapt effectively
to the varying trend of the temperature, even though the parameters of the functions are
updated each day. This results in the sinusoidal function giving higher RMSE and MAE, but a
smaller MAXAE than the EWMA model. The EWMA model predicts the temperature series
without bias and has smaller errors than the sinusoidal function, except for the MAXAE, this
being 0.4 K higher than the sinusoidal method. In effect, using sinusoidal functions results in
a similar performance to the EWMA model having a lower λ. It was also found that the shape
of diurnal temperature variations affects the performance of the sinusoidal functions. For
instance, in July, when the amplitude of diurnal temperature is large and the cycle of the diur-
nal variation is clearly defined, the sinusoidal functions give a more accurate prediction than
for April or the winter months. 

In comparison to the EWMA model, the sinusoidal function model has the disadvantage of
using a computationally intensive nonlinear parameter estimation method. Therefore, consider-
ing the relative accuracy of the two methods, the combined deterministic-stochastic model
adopted in the reminder of this study is an EWMA (with λ = 0.45) for the deterministic compo-
nent, combined with an AR(4) for the stochastic component. 

Table 3. Comparison of Sinusoidal Functions and EWMA Model

Methods RMSE, K MAE, K ME, K MAXAE, K

Sinusoidal 2.35 1.86 0.31 6.73

EWMA 2.10 1.53 0.00 7.13

Figure 3. Comparison Between Sinusoidal Functions and EWMA in
Modeling Deterministic Element of Temperature Profile
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The influence of the daily total global radiation on the ambient temperature prediction has
been examined by expanding the deterministic-stochastic model to include the total daily global
radiation as an exogenous variable. The expanded model is formed in two parts:

1. Daily average temperature,  is predicted using the ARMAX model [Equation (3)], with 
the total global radiation  as the exogenous variable;

2. Hourly sampled temperature data are then subtracted from the daily average temperature and
the remaining time series modeled by the DSM [Equations (5) and (1), with λ = 0.45 EWMA
for the deterministic part and a AR(2) for the stochastic part].

The temperature forecasts  (t = 1, 2, ..., 24) are then given by combining the predictions
for the daily average temperature with the deterministic and stochastic predictions for the
remaining time series:

(8)

The daily total global radiation is normalized , where Gd is the daily total
global radiation received on the horizontal surfaces and Ho is extraterrestrial daily insolation on
the horizontal surfaces (Liu and Jordan 1960). The normalization has the effect of exaggerating
the local climatic effects, such as cloud cover, on the total global radiation received at the earth’s
surface. Ho is calculated by

(9)

where L, γ, and ωs are latitude, solar declination, and sunset hour angle respectively (radians).
r is ratio of solar radiation intensity (at normal incidence to the outside of the atmosphere of
the earth) to the solar constant, (dimensionless); r depends on the distance between the earth
and the sun. Isc is the solar constant. Ho has little variation within a given month (Liu and Jor-
dan 1960). 

One month of daily average sampled temperature data has been used to estimate the parame-
ters of the ARMAX model for the daily average temperature [Equation (3)]. This gave greater
accuracy than the two weeks of weather data used for the DSM, but without imposing an exces-
sive computational penalty. An AR(2) ARMA model was identified as providing suitable accu-
racy for predicting the daily global radiation . An ARMAX model of order ARX(2) also
proved to have sufficient accuracy to model the daily average temperature.

Three investigations of the accuracy of the temperature prediction models have been car-
ried out:

• Comparison of temperature prediction from stochastic and deterministic-stochastic models
• Investigation into the effect of global solar radiation on daily average temperature prediction
• Comparison of expanded-deterministic-stochastic model prediction with the deterministic-

stochastic model prediction

Four conventional error measures have been used to compare the prediction from the SM,
[Equation (1)], with the DSM [Equation (7)]. Table 4 gives the comparison in July of the
CIBSE year between the SM and the DSM. The DSM gives smaller RMSE, MAE, and
MAXAE, while having a small positive bias ME. A comparison has also been conducted on
the temperature prediction for all other months of the CIBSE year and 1994, with a similar
result. The DSM is simpler, less computationally intensive, and generally results in smaller
prediction errors than the SM.  

T d+1

)

Gd+1

T̂t d+1I

T̂t d+1I
T d+1 D̂t d+1I

Ŝt d+1I
   t 1 2 … 24, , ,Z( )H HZ

)

Gd Gd Gd/Ho.Z

Ho
24
π
------rIsc cos L cos γ sin ωs ωs sin L sin γH( )Z

Gd
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The prediction errors from the DSM for the CIBSE year and 1994 are given in Table 5.
Although the MAXAE are large because of the random variations in temperature, the average
RMSE and MAE are acceptable for the two sets of weather data and have little or no bias ME.
The small average errors indicate that this method can follow the general trend of ambient tem-
perature variations. 

Figure 4 shows the ambient temperature prediction for July of the CIBSE year and Figure 5
for September of 1994 using the DSM. The model is able to follow the pattern of temperature
change, although when a sudden change in weather occurs, the model can take one or two days
to realign with the new pattern. For instance, on July 15 (Figure 6), there was a sudden drop in
temperature of approximately 8.3 K, which inevitably leads to larger prediction errors. How-
ever, by the next day the model realigns with the new pattern.

To justify the influence of the solar radiation on the daily average temperature,  has been
modeled by two methods: (1) a standard AR(2), modeling the temperature independently and ignor-
ing the correlation to the daily total radiation; and (2) an ARX(2) to include the effect of solar radi-
ation [Equation (3)]. The accuracy of the two methods is compared in Table 6 for September 1994.

Table 4. Performance Comparison of Stochastic and Deterministic-Stochastic Methods

Methods RMSE, K MAE, K ME, K MAXAE, K

SM 2.07 1.50 –0.01 8.04

DSM 1.88 1.41 0.13 6.62

Table 5. Prediction Errors for CIBSE Year and 1994 from
Combined Deterministic-Stochastic Method

Periods RMSE, K MAE, K ME, K MAXAE, K

CIBSE year 2.14 1.58 0.01 10.40

1994 2.46 1.81 –0.02 14.25

Figure 4. Ambient Temperature Prediction Profile for July of CIBSE Year

Td
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394 HVAC&R RESEARCH

Table 6. Influence of Solar Radiation on Prediction of Daily Average Temperature

Methods RMSE, K MAE, K ME, K MAXAE, K

Independent, AR(2) 1.38 1.11 0.66 3.01

Correlated, ARX(2) 1.47 1.15 0.76 3.31

Figure 5. Ambient Temperature Prediction Profile for September 1994

Figure 6. Ambient Temperature Prediction Profile for July 14 to 17 of CIBSE Year
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All the errors from the independent model are smaller for the September data. Because of the
highly random behavior of the global radiation, the correlation between the daily average
temperature and the total radiation during each month is uncertain. The correlation for Septem-
ber 1994 is approximately equal to the average value of the monthly calculated correlations,
ρxy = 0.2. This study indicates that the error differences between the two methods did not change
significantly with the correlation for other months, including those with a higher correlation
between global radiation and ambient temperature. Therefore, it can be concluded that the daily
average temperature can be modeled with sufficient accuracy by its past observations, without
reference to global radiation.

The ARX-EWMA-AR method and the EWMA-AR methods were compared using the pre-
dictions for the daily average ambient temperature T and the amplitude of the temperature varia-
tions ∆T. In the ARX-EWMA-AR method, the ambient temperature is modeled in two parts: the
daily average temperature is calculated by an AR(2), and the amplitude of hourly temperature
variations by the same procedure as for the DSM. In the EWMA-AR method, the daily average
temperature T and amplitude ∆T are not modeled separately, so they have been calculated from
the predicted temperature T for comparison purposes. 

The results from the expanded method are displayed in Table 7, where the forecast errors of
daily average temperature T, amplitude of the temperature variations ∆T, and ambient tempera-
ture T(T = T + ∆T ) are compared with those from the combined method. 

In Table 7, the subscripts 7 and 9 have been added to denote the errors for July of the CIBSE
year and September of 1994. Most errors from the combined method are smaller than those from
the expanded method. Although the prediction error MAXAE of the daily average temperature
for July is 0.4 K larger and has more bias (ME) from the combined method, the average errors
RMSE and MAE are both smaller. It also better predicts the amplitude of the temperature varia-
tions. The errors for September indicate that all the errors from the combined method are smaller
than those from the expanded method. The comparison of the temperature prediction for other
periods illustrates that the two methods result in a similar range of errors; however, the com-
bined method is slightly more accurate and much simpler in structure and operation. 

From the investigation on the performance of the pure SM, the combined DSM, and the
expanded combined method (Tables 4 and 7), it is justified that the combined DSM is competent
in accuracy and simplicity for short-term forecasting of temperature, and it has therefore been
adopted to model and forecast the ambient temperature for the predictive control of thermal stor-
age systems.

In the three prediction methods, the ambient temperature is predicted for the next 24 h only
once at the end of every day, the information being used to calculate the optimum control strat-
egy for the next 24 h. It is, however, possible to improve the temperature prediction for the
future hours of the day by the use of observations of the past hours. 

Table 7. Performance Comparison of Two Combined Methods

RMSE, K MAE, K ME, K MAXAE, K

Expanded Combined Expanded Combined Expanded Combined Expanded Combined

T7 1.49 1.43 1.22 1.09 0.08 0.13 3.86 4.27

∆T7 1.36 1.22 1.07 0.96 0.01 0.00 5.23 4.37

T7 1.94 1.88 1.50 1.41 0.08 0.13 6.30 6.62

T9 1.38 1.09 1.11 0.94 0.66 –0.05 3.01 2.40

∆T9 1.25 1.16 0.98 0.88 0.02 0.00 4.42 4.06

T9 1.94 1.79 1.41 1.24 0.67 –0.05 6.07 5.41
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396 HVAC&R RESEARCH

For forecasting a longer lead time using an ARMA model, the temperature prediction error is
inevitably larger later in the day than in the early morning. With the new temperature observa-
tions of the following day being available, the parameters of the ARMA model and the forecast
can be updated to improve the accuracy by re-estimating the parameters of the ARMA model or
simply by using Green’s function (Pandit and Wu 1983).

Let  be a forecast for a lead time i at time t, and Xt+i be the observation at time t + i. In
this weather prediction model, the forecast for the lead time from i = 1 to 24 h of the next day is
required at the end of every day. The updating can be achieved by Green’s function,

(10)

This equation states that at time t + 1, the updated forecast  of the observation Xt+1+i is
obtained from the old forecast  at time t simply by adding Gri times the new shock

, which becomes known once Xt+1 is known.
The performance of adapting to the new observations by re-estimating the ARMA model

parameters has been compared with using Green’s function. It was found that the two methods
have similar performance, although Green’s function gives a slightly quicker response to the
new temperature observations. 

Updating the temperature forecast by using Green’s function is simple and efficient, but only
in improving the forecast accuracy for a short lead time. Because of the randomness of tempera-
ture variations, the updated profile of temperature prediction during the daytime may be less
accurate than one not updated. For instance, as illustrated in Figure 7, if the updating is under-
taken at 2:00 A.M., the forecast for 3:00 A.M. and 4:00 A.M. can be improved. However, because
the observed temperatures at 2:00 A.M. and 1:00 A.M. are lower than the original predictions,
updating the prediction at 2:00 A.M. lowered the predicted temperatures for the rest of the day,
which resulted in higher prediction errors during the occupied period (Figure 7). Furthermore,
the temperature prediction errors are small during the night because the lead time is short. It can
therefore be concluded that updating the prediction profile according to the observations during
the night hours is not efficient in improving the forecasting of the daytime temperatures. 

Updating the prediction at the beginning of the occupancy period can improve the tempera-
ture prediction for the occupancy period (Figure 7, updating at 8:00 A.M.). This may be useful
for applications such as hourly predictive control using a local loop controller (Holst et al.
1987). However, for predictive control of thermal storage, this procedure loses its significance
because the time for planning to use the potential of the plant night operation to offset the day-
time thermal loads has passed. Therefore, the control strategy optimization is only conducted
once, at the beginning of the day, and the temperature updating can be used to improve hourly
plant operation during the daytime. 

The temperature prediction can also be corrected by the forecast daily maximum and mini-
mum temperatures obtained from a local weather station. Supposing that  and  and
the variation are calculated from the predicted temperature profile, and
Tmax, Tmin, and the variation are provided by the forecast from the local
weather station, the corrected  at time t can be calculated by

(11)

If the forecast of the daily maximum and minimum temperatures from the weather station is
accurate, the corrected profile significantly improves the temperature prediction during the day-

X̂t i( )

X̂t+1 i( ) X̂t+1 i 1H( ) Gri Xt+1 X̂t i( )Ó[ ]HZ

X̂t+i
X̂t i 1H( )

Xt+1 X̂t i( )Ó[ ]

T̂max T̂min
δ̂ δ̂ T̂max T̂minÓZ( )

δ δ Tmax TminÓZ( )

T̃t

T̃t
δ

δ̂
-- T̂t T̂minÓ( ) TminHZ
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time. However, results show that this correction procedure, in effect, enlarges or contracts the
predicted temperature profile according to the input of daily maximum and minimum tempera-
tures. Because the prediction errors are usually small during the night and early morning (the
lead time is short), the correction is likely to increase the errors for this period by enlarging or
contracting the profile.

The updating is effective in improving temperature predictions for the short lead time and the
correction for the daytime profile, so it is possible to combine the use of temperature observa-
tions to update the forecast of adjacent future hours and the correction of the temperature profile
predictions for the daytime.

RADIATION PREDICTION
Like ambient temperature, solar radiation is a nonstationary stochastic data series. The hourly

sampled radiation data (global, diffuse and direct) exhibit even more random behavior than the
temperature data. The global, diffuse, and direct radiation are all modeled, but only the global
radiation is taken as the example here to illustrate the prediction model. 

In order to apply a stochastic model to the radiation data series, the series has been recon-
structed to a 17 h periodicity instead of 24 h, (from 5:00 A.M. to 9:00 P.M. when there is notice-
able incidence of solar radiation on the earth; shorter hours of periodicity can be used for the
winter period). Although the periodicity of solar radiation depends on the site and climate type,
it will be seen from the following investigation that a solely deterministic model is required for
predicting solar radiation; a stochastic model could not sufficiently reduce the prediction errors.
Therefore, the recommended prediction model for solar radiation does not require reconstruct-
ing a radiation data series to a specific cycle.

The solar radiation can be modeled independently. Similar to the temperature prediction mod-
els, the ARMA model and two deterministic models have been used in this paper to investigate
the radiation prediction. From the results of the temperature model comparisons, the combined

Figure 7. Updating Temperature Profile for May 9, 1994
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398 HVAC&R RESEARCH

DSM has been shown to accurately model the nonstationary temperature data series. This
method can also be used to predict the solar radiation, because the ambient temperature and
solar radiation have similar deterministic and stochastic properties. 

In the combined radiation method, the radiation data are divided into two parts, deterministic
and stochastic. The stochastic part is modeled by the ARMA time-series technique, the deter-
ministic part by either the EWMA model or the sinusoidal functions. 

As in the temperature prediction, EWMA model is applied to the global radiation data, with
λ = 0.45. For the sinusoidal function method, Equation (6) is used. Table 8 compares the perfor-
mance between the EWMA and the sinusoidal function method for July of the CIBSE year. The
prediction errors from the EWMA model are all much smaller, with nearly no bias (ME) and
smaller average errors (RMSE and MAE) and MAXAE. The EWMA model has, therefore, been
used for modeling the deterministic part of the solar radiation. The EWMA model can also elim-
inate the need for constructing the solar radiation data series to a specific periodicity according
to a site.

The stochastic part, comprised of the errors in the deterministic prediction of the radiation
data, still appears to be nonstationary, with a much higher mean and standard deviation in the
middle of the day than during the morning and evening hours. The periodicity of the stochastic
part is unstable because of the dramatic variations in amplitude (hourly variations of the global
radiation indicate a frequent and sharp increase or decrease in some consecutive hours of one
day). It has been found that the ARMA model fails to model the stochastic part: the solar radia-
tion varies randomly with such high frequency and large amplitude (Figure 8) that the prediction
from the ARMA model appears to be a filtered response to a high-frequency disturbance, which
is in fact the prediction error from the deterministic model. By including the stochastic part, the
error in modeling the global radiation is not significantly reduced from that using the determin-
istic prediction only. The purely deterministic, clockwise EWMA model has, therefore, been
adopted here to model the solar radiation. This method also removes the need for reconstructing
solar radiation data series to a specific periodicity. 

Figure 9 gives an example of a 1 week prediction of the global radiation from September 17
to 23, 1994. The EWMA model gives reasonable accuracy in forecasting the highly stochastic
solar radiation. 

Hourly observations of solar radiation are not always measured by building control systems,
but the daily total global radiation can be obtained from a local weather station or by prediction.
In this case, an empirical ratio can be used to transfer the daily sampled data to hourly values
(Liu and Jordan 1960). Duffie and Beckman (1974) demonstrated the use of the ratio of hourly
average radiation to daily average radiation to estimate the hourly value from daily data. The
solar altitude was also used to calculate the radiation in each hour received on the horizontal
surfaces (Yoshida and Terai 1992). If either the diffuse or direct radiation is not available, the
interrelationship between the different radiation data can be calculated (Liu and Jordan 1960).
This approach has not been investigated further here.

CONCLUSIONS
Three temperature prediction methods have been investigated: the pure SM, the combined

DSM, and the expanded method for short-term temperature forecast. It has been found that the

Table 8. Performance Comparison

Methods RMSE, W/m2 MAE, W/m2 ME, W/m2 MAXAE, W/m2

EWMA 116.08 68.69 3.50 473.38

Sinusoidal 155.00 111.37 29.14 554.23
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combined DSM is simpler and most likely provides smaller prediction errors. The investigation
of the influence of correlation between the solar radiation and the temperature has indicated that
it is not necessary to consider the influence of the daily total solar radiation on the daily average
temperature for the short-term temperature forecast. Further, the daily average temperature does
not need to be modeled separately. The combined DSM can provide an acceptable accuracy in

Figure 8. Modeling of Stochastic Element of Global Radiation

Figure 9. Prediction Profile of Global Radiation from September 17 to 23, 1994

Wright.fm  Page 399  Tuesday, September 17, 2002  9:02 AM

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

ee
ds

] 
at

 2
3:

17
 0

4 
Ju

ne
 2

01
6 



400 HVAC&R RESEARCH

predicting the daily average, amplitude of temperature variations, and ambient temperature. In
addition, the investigation of updating the weather prediction within a day has shown that it is
not effective in reducing the forecasting errors of the daytime temperature and improving the
optimum scheduling of plant operation for the next day. To improve accuracy of the temperature
profile forecast, it is possible to combine updating the prediction by the temperature observa-
tions and correction using the daily maximum and minimum temperature forecast available from
a local weather station.

In conclusion, the adaptive algorithm for temperature prediction used in this paper consists
of a deterministic part and a stochastic part, which model the deterministic trend and stochas-
tic variations of the ambient temperature. An EWMA model has been used to account for the
deterministic part, and an AR(4) model for the stochastic part of the temperature. Using this
method to model the two sets of weather data, the mean absolute error in predicting the ambi-
ent temperature over an entire year is less than 1.8 K and the root mean square error less than
2.5 K, with no bias. For predicting solar radiation, the deterministic EWMA model has been
used. The algorithm is simple and efficient for use in off-line parameter estimation at the end
of every day.

Although the effectiveness of the method has not been investigated for other climates, it is
anticipated that because the method has been examined for both stable (such as winter and sum-
mer months in the U.K.) and more random conditions (like transitional seasons in the U.K.), it
will offer good performance over the range of climates experienced in other countries.

NOMENCLATURE
a uncorrelated Gaussian white noise
b uncorrelated Gaussian white noise; 

sinusoidal function coefficient
B sinusoidal function coefficient
C sinusoidal function coefficient

deterministic forecast
e vector of uncorrelated Gaussian white noise
G daily total global radiation

normalized daily total global radiation
Gr Green’s function
Ho extraterrestrial daily insolation on the 

horizontal surfaces
I inverse function
Isc solar constant
L latitude of a particular site, radians
N number of data samples
r ratio of solar radiation intensity to the solar 

constant; and sinusoidal function coefficient
R sinusoidal function coefficient
St stochastic part of the data series

forecast of stochastic element of the data 
series

T  temperature
daily average temperature
temperature forecast
daily average temperature forecast
corrected temperature prediction

∆T amplitude of temperature variation
X data observation

forecast of data observation
Y vector of daily average temperature  and 

normalized daily total radiation 

Greek

γ solar declination, radians
δ difference in daily maximum and minimum 

temperature
predicted difference in daily maximum and 
minimum temperature

θ moving average parameters
Θ matrix of moving average parameters
λ exponential smoothing constant
ρxy correlation coefficient between x and y
φ autoregressive parameters
φi1 autoregressive parameters, for the daily 

average temperature 
ϕ0 parameter of exogenous input variable 
ϕi1 autoregressive parameters for the normalized 

daily total global radiation 
ϕi2 parameters of the normalized daily total 

global radiation  as an exogenous input 
variable

Φ matrix of autoregressive parameters
Φ0 matrix of parameters for daily average 

temperature  and normalized daily total 
radiation 

ψ moving average parameters for the 
normalized daily total global radiation 

ω cycle of sinusoidal functions
ωs sunset hour angle, radians

D̂

G

Ŝt

T
T̂
T

)

T̃

X̂
T

G

δ̂

T
G

G

G

T
G

G
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Subscripts

d day
d+i at day i following day d
d–i at day i prior to day d
m order of moving average parameters
max daily maximum
min daily minimum

n order of autoregressive parameters, and 
number of sinusoidal function coefficients

t time
t+i at i time steps following time t
t–i at i time steps prior to time t
t–j at j time steps prior to time t
t,d at time t and day d
t,d+1 at time t and for the next day d+1
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