ELSEVIER

Original article

Synthesis of a series of 8-(substituted-phenyl)xanthines and a study on the effects of substitution pattern of phenyl substituents on affinity for adenosine A_{1} and $\mathrm{A}_{2 \mathrm{~A}}$ receptors

Ranju Bansal ${ }^{\text {a, },}$, Gulshan Kumar ${ }^{\text {a }}$, Deepika Gandhi ${ }^{\text {a }}$, Louise C. Young ${ }^{\text {b }}$, Alan L. Harvey ${ }^{\text {b }}$
${ }^{\text {a }}$ University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
${ }^{\mathrm{b}}$ Strathclyde Institute for Drug Research and Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 ONR, United Kingdom

A R T I C L E I N F O

Article history:

Received 7 February 2008
Received in revised form
4 July 2008
Accepted 20 October 2008
Available online 26 October 2008

Keywords:

8-Arylxanthines
Adenosine receptor antagonists
Radioligand binding assays
A_{1} and $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptors

Abstract

A new series of 8-(substituted-phenyl)xanthines have been synthesized and compounds were evaluated for their affinity for A_{1} and A_{2} adenosine receptors (AR) using radioligand binding assays. The effects of varying the positions of 8 -phenyl substituents on affinity and selectivity at A_{1} and $A_{2 A}$ adenosine receptors have been studied. Isovanilloid 1,3-dimethyl-8-[4-methoxy-3-(2-morpholin-4-ylethoxy)phenylxanthine (9d) displayed the highest affinity and selectivity towards $A_{2 A} A R$ subtypes with $K_{\mathrm{i}}=100 \mathrm{nM}$ over A_{1} receptors ($\mathrm{Ki}>100 \mathrm{mM}$). It has been observed that substitution pattern on 8-phenyl group greatly affects the affinity and selectivity at adenosine receptors, with $A_{2 A}$ tolerating bulkier substituents than did A_{1} receptors.

© 2008 Elsevier Masson SAS. All rights reserved

1. Introduction

In recent years, considerable efforts have been dedicated to the development of potent and selective adenosine receptor antagonists as therapeutic agents [1-3]. Substituted xanthines represent the most potent class of adenosine receptors antagonists reported to date [4-7]. A variety of xanthine analogues have already been synthesized and assessed for their potency and selectivity at A_{1} and A_{2} adenosine receptors [5,6]. Structure-activity studies have established that structural modifications at 1 - and 3-positions of the xanthine nucleus do not greatly affect the binding ability of the compounds for adenosine receptors. However the most dramatic alterations in potencies of the xanthines as antagonists of adenosine receptors result from substitution in the 8 -position of this heterocyclic system $[5,8]$. Introduction of alkyl, cycloalkyl or a phenyl ring in the 8 -position of 1,3-dipropylxanthines generates a variety of potent and selective adenosine receptor antagonists [8,9].

8 -Phenyltheophylline is the parent member of a variety of potent adenosine receptor antagonists. It has been reported that appropriate substituents on the 8-phenyl ring not only affects the potency and selectivity towards adenosine receptors but also the

[^0]solubility properties [9]. On one side, monosubstituted 8 -($p-$ hydroxyphenyl)xanthine has been chosen as a suitable lead compound to develop MRS-1754 (1) as a potent and selective $\mathrm{A}_{2 \mathrm{~B}}$ receptor antagonist [10], and on other disubstitution as in the case of 8-(2-hydroxy-4-methoxyphenyl)xanthine (2) (Fig. 1) is reported to increase 90 fold selectivity towards A_{1} versus A_{2} receptors [9]. The incorporation of polar substituents has been shown to improve the otherwise extremely limited water solubility of 8-phenylxanthines and increase their usefulness as potential therapeutic agents $[9,10]$.

In view of the above observations, it was decided to study the impact of substituting polar dialkylaminoethoxy substituents at para or meta positions of the 8 -phenyl ring along with an ortho methoxy group on the adenosine receptors binding affinity and selectivity. Herein we report the synthesis of a new series of 8 -(substituted-phenyl)xanthines and the effects of the substitution pattern of phenyl substituents on binding affinity at A_{1} and $\mathrm{A}_{2} \mathrm{~A}$ adenosine receptors.

2. Chemistry

The synthetic routes to various 8-(substituted-phenyl)xanthines have been depicted in Schemes 1-4. The synthesis of 5,6-diamino-1,3-dimethyluracil (3), a key compound for the synthesis of all the 8 -substituted derivatives, was performed according to the general

(1)

(2)

Fig. 1. Structures of xanthine based adenosine receptor antagonists MRS-1754 (1) and 8-(2-hydroxy-4-methoxyphenyl)xanthine (2).
method [11,12] summarized in Scheme 1. 1,3-Dimethyl-5-nitrosouracil was prepared by condensing N, N^{\prime}-dimethylurea and cyanoacetic acid in the presence of acetic anhydride to obtain 6 -aminouracil and subsequent nitrosation with sodium nitrite. Reduction of nitrosouracil with sodium dithionite in concentrated ammonium hydroxide afforded quite an unstable diaminouracil 3, which was then reacted with appropriately substituted aldehydes 4a-e, 7a-e and 10a-e to afford corresponding benzylidene derivatives $\mathbf{5 a - e}, \mathbf{8 a} \mathbf{e}$ and 11a-e. Subsequent cyclization of these compounds by refluxing in thionyl chloride for 1 h yielded the desired 8 -substituted 1,3-dimethylxanthines 6a-e, 9a-e and 12a-e.

Substituted-aldehydes 4a-e, 7a-e and 10a-e were prepared by treating vanillin, isovanillin and 3-hydroxybenzaldehyde, respectively, with hydrochloride of the requisite dialkylaminoethyl chloride such as β-dimethylaminoethyl chloride, β-diethylaminoethyl chloride, 1-(2-chloroethyl)piperidine, 4-(2-chloroethyl)morpholine and 1-(2-chloroethyl)-pyrrolidine in refluxing ethyl methyl ketone in the presence of anhydrous potassium carbonate. The completion of the reaction was monitored by thin layer chromatography (TLC). The oily residues obtained after processing the reaction mixture were used as such for further reaction. Treatment of these substituted aldehydes with 5,6-diamino-1,3-dimethyluracil (3) in $\mathrm{MeOH}-\mathrm{AcOH}(4: 1)$ at room temperature resulted in the formation

Scheme 1. Synthesis of starting compound 5,6-diamino-1,3-dimethyluracil (3)

d $R=\mathrm{CH}_{2} \mathrm{H}_{2} \mathrm{~N}^{\square}$
e $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$

Scheme 2. Synthetic route to compounds 6a-e. Reagents and conditions. (a) $\mathrm{MeOH} /$ $\mathrm{CH}_{3} \mathrm{COOH}$, room temperature, 18 h ; (b) SOCl_{2}, reflux, $30-40 \mathrm{~min} ; \mathrm{NH}_{4} \mathrm{OH}$.
of corresponding benzylidene adducts $5 \mathbf{5 a - e}, \mathbf{8 a - e}$ and 11a-e. The structures of the compounds were characterized using various spectral analyses. ${ }^{1} \mathrm{H}$ NMR spectra of these benzylidenes exhibited a characteristic one proton singlet at $\sim \delta 9.75$ for $\mathrm{N}=\mathrm{CH}$ and a slightly broad singlet, which disappeared on deuterium exchange, for two exchangeable protons of $-\mathrm{NH}_{2}$ group at $\delta 6 \mathrm{ppm}$. Protons of phenyl ring and its substituents resonated at their required positions. Subsequent ring closure of these intermediates by refluxing in thionyl chloride for $30-40 \mathrm{~min}$ afforded the target 8 -(substituted-phenyl)xanthines 6a-e, 9a-e and 12a-e. Singlets for $\mathrm{N}=\mathrm{CH}$ at $\sim \delta 9.75$ and of $-\mathrm{NH}_{2}$ at $\sim \delta 6$ were found missing in the ${ }^{1} \mathrm{H}$ NMR spectra of these cyclized products, while peaks for other protons were present at their expected values.

3. Biological evaluation

The newly synthesized compounds were evaluated in radioligand binding studies at cloned human A_{1} and $\mathrm{A}_{2 \mathrm{~A}}$ adenosine

Scheme 3. Synthetic route to compounds 9a-e. Reagents and conditions. (a) $\mathrm{MeOH} /$ $\mathrm{CH}_{3} \mathrm{COOH}$, room temperature, 18 h ; (b) SOCl_{2}, reflux, $30-40 \mathrm{~min} ; \mathrm{NH}_{4} \mathrm{OH}$.

Scheme 4. Synthetic route to compounds 12a-e. Reagents and conditions. (a) $\mathrm{MeOH} /$ $\mathrm{CH}_{3} \mathrm{COOH}$, room temperature, 18 h ; (b) SOCl_{2}, reflux, $30-40 \mathrm{~min} ; \mathrm{NH}_{4} \mathrm{OH}$.
receptors. $\left[{ }^{3} \mathrm{H}\right]$ DPCPX and $\left[{ }^{3} \mathrm{H}\right] Z \mathrm{ZM}-241385$ were used as radioligands for A_{1} and $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptors, respectively [10,13].

4. Results and discussion

Table 1 summarizes the observed affinities of various newly synthesized 8-phenylxanthine derivatives in radioligand binding assays at human A_{1} and $A_{2 A}$ receptors. Data for the standard A_{1} receptor antagonist 8 -cyclopentyl-1,3-dipropylxanthine (DPCPX) and the $\mathrm{A}_{2 \mathrm{~A}}$ receptor antagonist 4-[2-[[7-amino-2-(furyl)1,2,4-tri-azolo[2,3-a]1,3,5-triazin-5-yl]-amino]ethyl]phenol (ZM-241385) has also been provided for comparison.

The three series of xanthine derivatives 6a-e, 9a-e and 12a-e exhibited varying degrees of affinity and selectivity towards A_{1} and $A_{2 A}$ receptor subtypes. Disubstituted vanilloid based xanthine derivatives ($\mathbf{6 a - c}$) with a methoxy group ortho to polar substituents such as dimethylaminoethoxy, diethylaminoethoxy and piperidinoethoxy on 4-position of phenyl ring were found to possess ~ 100 times more binding affinity for adenosine $\mathrm{A}_{2 \mathrm{~A}}$ receptors ($K_{\mathrm{i}}=\sim 1 \mu \mathrm{M}$) in comparison to A_{1} receptors ($K_{\mathrm{i}}>100 \mu \mathrm{M}$). Pyrrolidinyl derivative $\mathbf{6 e}$ was found to be only 10 times more selective for $A_{2 A}$ over A_{1} receptors. However, the results with morpholinoethoxy substituted compound $\mathbf{6 d}$ seem anomalous as this compound showed little binding affinity for either receptor (Table 1). In general, these compounds substituted with a polar para substituent along with an ortho methoxy group on the phenyl group seems to be more selective towards $\mathrm{A}_{2 \mathrm{~A}}$ over A_{1} receptors. Similarly, for the second series of isovanilloid based xanthine derivatives $9 \mathbf{9}-\mathbf{d}$ also, the overall selectivity and potency of compounds was observed at $A_{2 A}$ over A_{1} receptors. The rearrangement of two side substituents of the 8 -phenyl ring so that the methoxy is at 4 -position and polar substituents at 3 -position on the phenyl group resulted in moderate decrease in the selectivity of open ring analogues $9 \mathbf{a}$ (30 times), $\mathbf{9 b}$ (70 times) and piperidino substituted derivative $9 \mathbf{9}$ (38 times) for $\mathrm{A}_{2 \mathrm{~A}}$ receptors versus A_{1} receptors. However the data obtained with morpholinyl substituted product $9 d$ was surprising in comparison to its vanilloid based analogue 6d. 1,3-Dimethyl-8-[4-methoxy-3-(2-morpholin-4ylethoxy)phenylxanthine ($\mathbf{9 d}$) emerged as the most active and selective compound of the series with a $K_{i}=100 \mathrm{nM}$ at $\mathrm{A}_{2 \mathrm{~A}}$ receptors but showing little displacement of binding at A_{1} receptors at

Table 1
Adenosine A_{1} and $\mathrm{A}_{2 \mathrm{~A}}$ binding affinities of compounds 6a-e, 9a-e and 12a-e and reference compounds.

S. No.	Compd. No.	Code	$\mathrm{A}_{1} K_{\mathrm{i}}(\mu \mathrm{M})$	$\mathrm{A}_{2 \mathrm{~A}} K_{\mathrm{i}}(\mu \mathrm{M})$
1	$\mathbf{6 a}$	(RG-DPJ-23)	>100	$0.6(0.4-0.9)$
2	$\mathbf{6 b}$	(RG-DPJ-24)	>100	$1.1(0.8-1.6)$
3	$\mathbf{6 c}$	(RG-DPJ-26)	>100	$0.7(0.3-1.4)$
4	$\mathbf{6 d}$	(RG-DPJ-33)	>100	~ 100
5	$\mathbf{6 e}$	(RG-DPJ-35)	$11.2(2.1-59)$	$1.0(0.3-2.6)$
6	9a	(RG-DPJ-66)	$13.5(2.7-64)$	$0.4(0.2-2.0)$
7	9b	(RG-DPJ-76)	$43(10-181)$	$0.6(0.4-1.2)$
8	9c	(RG-DPJ-92)	>100	$2.7(1.3-55)$
9	9d	(RG-DPJ-79)	>100	$0.1(0.02-0.4)$
10	12a	(RG-DPJ-174)	$0.8(0.5-1.3)$	$0.4(0.2-0.7)$
11	12b	(RG-DPJ-99)	$14(1.3-145)$	$0.1(0.03-0.4)$
12	12c	(RG-DPJ-172)	$2.1(0.9-4.9)$	$0.8(0.3-7.2)$
13	12d	(RG-DPJ-168)	$2.1(0.7-17)$	$1.4(0.3-2.8)$
14	12e	(RG-DPJ-170)	$1.6(0.8-3.3)$	$0.4(0.2-0.6)$
	DPCPX		$0.095(0.06-0.15)$	0.13^{a}
	ZM 24,1385		0.54^{a}	$0.064(0.03-0.14)$

K_{i} values are given with 95% confidence limits.
${ }^{a}$ Ref. [14].
concentrations up to $100 \mu \mathrm{M}$. It can be said that interchange of position of alkylaminoalkoxy side chain and methoxy group on 8phenyl ring brings about changes in binding properties of xanthine derivatives for adenosine receptor subtypes significantly. This also depends on the type of attached substituent.

Monosubstituted xanthine derivatives (12a-e), in which only polar side chain is present at the 3-position of 8-phenyl group, exhibited potent affinity for both adenosine receptor subtypes. The binding affinity was a little more pronounced at $\mathrm{A}_{2 \mathrm{~A}}$ than at A_{1} receptors, except for diethylaminoethoxy substituted compound 12b, which was 140 times more potent at $A_{2 A}$ than at A_{1} receptors. Introduction of polar substituents at meta position of 8-phenyl ring without an ortho methoxy group in this series results in decreased selectivity for A_{2} receptors over A_{1} receptors.

In all, it has been observed that substitution pattern and type of substituents on 8-phenyl group greatly affects the affinity and selectivity of xanthine derivatives at adenosine receptors. Previous studies on substituted phenyl [9] or cyclohexyl xanthines [8] had revealed compounds that were generally selective for A_{1} over A_{2} receptors. We achieved the opposite selectivity with several compounds (notably 6a-c, 9a-d, 12b). In order to investigate the structure activity relationship, we can compare the affinity of the new xanthine derivatives with the parent analogue, 8-(2-hydroxy-4-methoxyphenyl)xanthine (2), which is reported to be 90 times more selective for $\mathrm{A}_{1}\left(K_{\mathrm{i}}=0.01 \mu \mathrm{M}\right)$ over $\mathrm{A}_{2}\left(K_{\mathrm{i}}=0.9 \mu \mathrm{M}\right)$ receptors. In the new compounds, the presence of a methoxy substituent ortho to a polar side chain at 3- or 4-position of phenyl ring results in increased selectivity for A_{2} over A_{1} receptors. A polar side chain at 3-position of 8-phenyl ring without a methoxy group results in almost equal selectivity for both subtypes. It can be concluded that suitable selection and positioning of aryl substituents may lead to the development of potent and selective xanthine based adenosine receptor antagonists.

5. Experimental

5.1. Chemistry

The melting points reported are uncorrected, ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Brucker AC-300F, 300 MHz instrument using $\mathrm{Me}_{4} \mathrm{Si}$ (TMS) as an internal standard (chemical shifts in δ, ppm). The IR spectra were recorded on Perkin-Elmer 882 spectrophotometer. The purity of the compounds was established by thin layer chromatography and elemental analyses ($\mathrm{C}, \mathrm{H}, \mathrm{N}$). Elemental analyses were carried out on a Perkin-Elmer 2400 model. IR spectra were
obtained with potassium bromide discs ($\nu_{\max }$ in cm^{-1}). Plates for TLC were prepared according to Stahl (E. Merck) using EtOAc as solvent (activated at $110^{\circ} \mathrm{C}$ for 30 min) and were visualized by exposure to iodine vapours. Anhydrous sodium sulphate was used as a drying agent. All solvents were dried and freshly distilled prior to use according to standard procedures.

5.1.1. General procedure for the synthesis of various aldehydes 4a-

 e, 7a-e and 10a-eRequisite alkylaminoethyl chloride hydrochloride (6.0 mmol) was added to a stirred and refluxing slurry of vanillin (1.0 g , $6.57 \mathrm{mmol})$, isovanillin $(1.0 \mathrm{~g}, \quad 6.57 \mathrm{mmol})$ or 3 -hydroxybenzaldehyde ($1.0 \mathrm{~g}, 8.19 \mathrm{mmol}$) in ethyl methyl ketone $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)$ $(40 \mathrm{~mL})$ in the presence of anhydrous potassium carbonate $(2.0 \mathrm{~g}$, 14.47 mmol). The reaction mixture was further refluxed for 6 h with continuous stirring. The completion of the reaction was monitored by TLC. On completion, the reaction mixture was cooled, filtered and the solvent was removed under reduced pressure to obtain oily residue of corresponding aldehyde 4a-e, 7a-e and 10a\mathbf{e}, which were used as such for further reaction.

5.1.2. General procedure for the synthesis of various benzylidene

 derivatives 5a-e, 8a-e and 11a-eTo a stirred solution of 5,6-diamino-1,3-dimethyluracil (3) (1.0 g, 5.87 mmol) in $\mathrm{MeOH}-\mathrm{AcOH}(4: 1,40 \mathrm{~mL}$) was slowly added the solution of above obtained oily residue of respective aldehyde 4a-e, $\mathbf{7 a - e}$ and 10a-e in methanol (24 ml). The reaction mixture was further stirred overnight at room temperature. The residue obtained after removal of solvent under reduced pressure was dissolved in ice-cold water and alkalized with sodium hydroxide. The resultant turbid solution was cooled in ice for complete precipitation. The precipitate obtained was filtered off, washed with ice cold water and dried to obtain corresponding benzylidene derivatives 5a-e, 8a-e and 11a-e.
5.1.2.1. 6-Amino-5-[\{4-(2-dimethylaminoethoxy)-3-methoxy-benzylidene\}amino]-1,3-dimethyluracil (5a). Yield: 20.52\%; m.p. $178-186{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\right.$ DMSO- $\left.\mathrm{d}_{6}\right): \delta 2.34\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.80\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}\right), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.90$ $\left(\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.14\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 5.76\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}_{2}\right.$, disappeared on $\mathrm{D}_{2} \mathrm{O}$ exchange), $6.89\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}\right.$, arom, $\mathrm{J}_{\mathrm{o}}=8.29 \mathrm{~Hz}$), $7.28(\mathrm{dd}, 1 \mathrm{H}$, CH, arom, $\left.J_{o}=8.86, J_{\mathrm{m}}=1.80 \mathrm{~Hz}\right), 7.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}$, arom, $\left.J_{\mathrm{m}}=1.55 \mathrm{~Hz}\right), 9.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH})$.
5.1.2.2. 6-Amino-5-[\{4-(2-diethylaminoethoxy)-3-methoxybenzylidene\}amino J-1,3-dimethyluracil (5b). Oily residue; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\right.$ DMSO-d $\left.\mathrm{d}_{6}\right): \delta 1.04\left(\mathrm{t}, 6 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 2.54(\mathrm{~m}, 4 \mathrm{H}$, $\left.-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 2.86\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}\right), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.61(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{N}-\mathrm{CH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.08\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 5.76\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}_{2}\right.$, disappeared on $\mathrm{D}_{2} \mathrm{O}$ exchange), 6.97 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$, arom), 7.35 ($\mathrm{s}, 1 \mathrm{H}$, CH, arom), 7.46 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$, arom), 9.72 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}$).
5.1.2.3. 6-Amino-5-[\{3-methoxy-4-(2-piperidin-1-ylethoxy)-
benzylidene\}amino-1,3-dimethyluracil (5c). Yield: 26.8\%; m.p. 110$114{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.46$ (m, 2H, CH_{2}, piperidine), 1.60 (pent, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$, piperidine), $2.50\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right.$, piperidine), 2.81 ($\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}$), $3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.88(\mathrm{~s}, 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right), 4.14\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 5.98\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}_{2}\right.$, disappeared on $\mathrm{D}_{2} \mathrm{O}$ exchange), $6.86\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}\right.$, arom, $\left.J_{\mathrm{o}}=8.34 \mathrm{~Hz}\right), 7.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}$, arom, $J_{o}=8.32 \mathrm{~Hz}$), $7.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$, arom), $9.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH})$.
5.1.2.4. 6-Amino-5-[\{3-methoxy-4-(2-morpholin-4-ylethoxy)benzylidene\}amino J-1,3-dimethyluracil (5d). Yield: 38.10\%; m.p. $180-184^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\right.$ DMSO- $\left.d_{6}\right): \delta 2.59\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right.$, morpholine), $2.85\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.50(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{N}-\mathrm{CH}_{3}\right), 3.75\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right.$, morpholine), $3.90\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.17$
($\left.\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 5.86\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}_{2}\right.$, disappeared on $\mathrm{D}_{2} \mathrm{O}$ exchange), $6.88\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}\right.$, arom, $\left.J_{\mathrm{o}}=8.20 \mathrm{~Hz}\right), 7.28\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}\right.$, arom, $J_{\mathrm{o}}=8.26$, $\left.J_{\mathrm{m}}=1.70 \mathrm{~Hz}\right), 7.35\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, \operatorname{arom}, J_{\mathrm{m}}=1.80 \mathrm{~Hz}\right), 9.71(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{N}=\mathrm{CH}$).
5.1.2.5. 6-Amino-5-[\{3-methoxy-4-(2-pyrrolidin-1-ylethoxy)-benzylidene\}amino-1,3-dimethyluracil (5e). Yield: 53.58\%; m.p. $112-114{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.82$ (br s, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$, pyrrolidine), 2.62 (br s, $4 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}$, pyrrolidine), $2.95\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}\right), 3.35(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.14(\mathrm{t}, 2 \mathrm{H}$, $\left.-\mathrm{OCH}_{2}-\right), 6.09\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}_{2}\right.$, disappeared on $\mathrm{D}_{2} \mathrm{O}$ exchange), 6.85 (d, $1 \mathrm{H}, \mathrm{CH}$, arom, $J_{0}=8.22 \mathrm{~Hz}$), 7.26 (dd, $1 \mathrm{H}, \mathrm{CH}$, arom, $J_{\mathrm{o}}=8.21$, $\left.J_{\mathrm{m}}=1.53 \mathrm{~Hz}\right), 7.34\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, \operatorname{arom}, J_{\mathrm{m}}=1.45 \mathrm{~Hz}\right), 9.68(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{N}=\mathrm{CH}$).
5.1.2.6. 6-Amino-5-[\{3-(2-dimethylaminoethoxy-4-methoxy-benzylidene\}aminol-1,3-dimethyluracil (8a). Yield: 15.36\%; m.p. $208-210{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.30\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.75(\mathrm{t}, 2 \mathrm{H}$, $-\mathrm{CH}_{2} \mathrm{~N}^{-}$), 3.30 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 3.50 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 3.83 ($\mathrm{s}, 3 \mathrm{H}$, $-\mathrm{OCH}_{3}$), $4.15\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right.$), 5.65 (br s, $2 \mathrm{H},-\mathrm{NH}_{2}$, disappeared on $\mathrm{D}_{2} \mathrm{O}$ exchange), 6.80 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}$, arom), 7.39 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}$, arom), 9.65 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}$).
5.1.2.7. 6-Amino-5-[\{3-(2-diethylaminoethoxy)-4-methoxy-benzylidene\}aminol-1,3-dimethyluracil (8b). Yield: 34.5\%; m.p. 186$188{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}+$ DMSO- d_{6}): $\delta 1.09\left(\mathrm{t}, 6 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right)$, $2.72\left(\mathrm{~m}, 6 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.50(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-$ CH_{3}), $3.90\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.20\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}\right), 5.79\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H},-\mathrm{NH}_{2}\right.$, disappeared on $\mathrm{D}_{2} \mathrm{O}$ exchange), 7.50 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}$, arom), 9.75 ($\mathrm{s}, 1 \mathrm{H}$, $\mathrm{N}=\mathrm{CH}$).
5.1.2.8. 6-Amino-5-[\{4-methoxy-3-(2-piperidin-1-ylethoxy)-benzylidene\}amino-1,3-dimethyluracil (8c). Yield: 63.45\%; m.p. $179-180{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.80\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{2}\right.$, piperidine), $2.50(\mathrm{~m}$, $4 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}$, piperidine $), 2.80\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}\right), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right)$, $3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.10\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 5.60$ (br s, $2 \mathrm{H},-\mathrm{NH}_{2}$, disappeared on $\mathrm{D}_{2} \mathrm{O}$ exchange), $6.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$, arom), $7.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$, arom), $9.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH})$.
5.1.2.9. 6-Amino-5-[\{4-methoxy-3-(2-morpholin-4-ylethoxy)-benzylidene\}aminol-1,3-dimethyluracil (8d). Yield: 29.93\%; m.p. $218-220{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}+$ DMSO- d_{6}): $\delta 2.68(\mathrm{~m}, \quad 6 \mathrm{H}$, $-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}$, morpholine), $3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right)$, $3.70\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right.$, morpholine), $3.90\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.20(\mathrm{t}, 2 \mathrm{H}$, $\left.-\mathrm{OCH}_{2}\right), 5.86\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}_{2}\right.$, disappeared on $\mathrm{D}_{2} \mathrm{O}$ exchange), $6.90(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}$, arom), 7.36 (m, 2H, CH, arom), $9.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH})$.
5.1.2.10. 6-Amino-5-[\{4-methoxy-3-(2-pyrrolidin-1-ylethoxy)-benzylidene\}amino-1,3-dimethyluracil (8e). Yield: 31.05\%; m.p. $196-198{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.80\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right.$, pyrrolidine), $2.60\left(\mathrm{~m}, 6 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right), 3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right)$, $3.80\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.20\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right.$), $5.70\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H},-\mathrm{NH}_{2}\right.$, disappeared on $\mathrm{D}_{2} \mathrm{O}$ exchange), 6.90 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$, arom), 7.30 ($\mathrm{m}, 2 \mathrm{H}$, CH , arom), 9.60 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}$).
5.1.2.11. 6-Amino-5-[\{3-2-dimethylaminoethoxybenzylidene\}amino]-1,3-dimethyluracil (11a). Yield: 71.2%; m.p. $160-164{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 2.34\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.78\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}\right), 3.31(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), $3.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 4.16\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right.$), 5.90 (br s, 2 H , $-\mathrm{NH}_{2}$, disappeared on $\mathrm{D}_{2} \mathrm{O}$ exchange), 6.95 (d, $1 \mathrm{H}, \mathrm{CH}$, arom, $\left.J_{\mathrm{o}}=8.29 \mathrm{~Hz}\right), 7.31\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}\right.$, arom, $\left.J_{\mathrm{o}}=7.81 \mathrm{~Hz}\right), 7.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$, arom), $9.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH})$.
5.1.2.12. 6-Amino-5-[\{3-(2-diethylaminoethoxy)benzylidene\}amino]-1,3-dimethyluracil (11b). Yield: 37.6%; m.p. $150-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\right.$ DMSO- $\left.d_{6}\right): \delta 1.10\left(\mathrm{t}, 6 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 2.60(\mathrm{~m}, 6 \mathrm{H}$,
$\left.-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 4.10(\mathrm{t}$, $2 \mathrm{H},-\mathrm{OCH}_{2}-$), 5.90 (br s, $2 \mathrm{H},-\mathrm{NH}_{2}$, disappeared on $\mathrm{D}_{2} \mathrm{O}$ exchange), $7.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}, \operatorname{arom}), 7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}, \operatorname{arom}), 9.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH})$.

5.1.2.13. 6-Amino-5-[\{3-(2-piperidin-1-yl-ethoxy)-

benzylidene\}amino-1,3-dimethyluracil (11c). Yield: 56.5\%; m.p. $198-202{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.44\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\right.$, piperidine), 1.59 (p, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$, piperidine), 2.50 ($\mathrm{br} \mathrm{s}, 4 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}$, piperidine), $2.81\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{\prime}\right), 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 4.14$ ($\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-$), 5.98 ($\mathrm{s}, 2 \mathrm{H},-\mathrm{NH}_{2}$, disappeared on $\mathrm{D}_{2} \mathrm{O}$ exchange), $6.86\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}\right.$, arom, $\left.J_{\mathrm{o}}=8.34, \mathrm{~J}_{\mathrm{m}}=1.75 \mathrm{~Hz}\right), 7.23(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}$, arom, $\left.J_{o}=8.10 \mathrm{~Hz}\right), 7.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$, arom), $9.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH})$.

5.1.2.14. 6-Amino-5-[\{3-(2-morpholin-4-yl-ethoxy)-

benzylidene\}amino-1,3-dimethyluracil (11d). Yield: 51.7\%; m.p. $196-200{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\right.$ DMSO- $\left.\mathrm{d}_{6}\right): \delta 2.58\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right.$, morpholine), $2.81\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}\right.$), 3.37 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.60(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{N}-\mathrm{CH}_{3}\right), 3.70\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right.$, morpholine $), 4.17\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 5.86$ ($\mathrm{s}, 2 \mathrm{H},-\mathrm{NH}_{2}$, disappeared on $\mathrm{D}_{2} \mathrm{O}$ exchange), 6.95 (dd, $1 \mathrm{H}, \mathrm{CH}$, arom, $\left.J_{\mathrm{o}}=8.31, J_{\mathrm{m}}=1.92 \mathrm{~Hz}\right), 7.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$, arom), $7.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$, arom), $9.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH})$.
5.1.2.15. 6-Amino-5-[\{3-(2-pyrrolidin-1-ylethoxy)-
benzylidene\}amino]-1,3-dimethyluracil (11e). Yield: 29.7\%; m.p. $192-196{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.86$ (br s, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$, pyrrolidine), 3.08 ($\mathrm{m}, 6 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}$, pyrrolidine and $\left.-\mathrm{CH}_{2} \mathrm{~N}^{\prime}\right)$, 3.36 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{N}-$ CH_{3}), $3.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 4.26\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 6.09\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}_{2}\right.$, disappeared on $\mathrm{D}_{2} \mathrm{O}$ exchange), 6.92 (dd, $1 \mathrm{H}, \mathrm{CH}$, arom, $J_{\mathrm{o}}=8.05$, $\left.J_{\mathrm{m}}=1.98 \mathrm{~Hz}\right), 7.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}, \operatorname{arom}), 7.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$, arom), $9.68(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{N}=\mathrm{CH}$).
5.1.3. General procedure for the synthesis of various 8-(substitutedphenyl)xanthine derivatives 6a-e, 9a-e and 12a-e

Benzylidene derivatives 5a-e, 8a-e and 11a-e ($1.0 \mathrm{~g}, 2.5 \mathrm{mmol}$) thus obtained were refluxed separately in thionyl chloride (20 mL) for $30-40 \mathrm{~min}$ to affect cyclization. The excess thionyl chloride was removed under reduced pressure to obtain a solid product. Ice cold water was added to it and resultant suspension was neutralized with ammonium hydroxide solution. The precipitate obtained was collected by filtration, dried and recrystallized from a mixture of DMF and methanol to afford the desired products 6a-e, 9a-e and 12a-e, respectively.
5.1.3.1. 8-[4-(2-Dimethylaminoethoxy)-3-methoxyphenyl]-1,3-dimethylxanthine ($\mathbf{6 a}$). Yield: 48.28%; m.p. $246-250{ }^{\circ}$ C. IR: 3290,1690 , 1650, 1495, 1215; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}\right): \delta 2.23$ ($\mathrm{s}, 6 \mathrm{H}$, $\left.-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.65\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{\prime}\right), 3.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.48(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-$ $\left.\mathrm{CH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.09\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 7.07(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}$, arom, $\left.J_{0}=8.47 \mathrm{~Hz}\right), 7.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$, arom); Anal. Calc. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, 57.89; H, 6.20; N, 18.75. Found: C, $57.53 ; \mathrm{H}, 6.05$; N, 18.67\%.
5.1.3.2. 8-[4-(2-Diethylaminoethoxy)-3-methoxyphenyl]-1,3-dimethylxanthine (6b). Yield: 19.11%; m.p. $176-180^{\circ} \mathrm{C}$. IR: 3300,1690 , 1650, 1490, 1210; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}\right): \delta 1.08(\mathrm{t}, 6 \mathrm{H}$, $\left.-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 2.65\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 2.94\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}\right)$, $3.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.12(\mathrm{t}$, $2 \mathrm{H},-\mathrm{OCH}_{2}-$), 6.98 (s, $1 \mathrm{H}, \mathrm{CH}$, arom), 7.37 (s, $1 \mathrm{H}, \mathrm{CH}$, arom), 7.51 (s , $1 \mathrm{H}, \mathrm{CH}$, arom); Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4}: \mathrm{C}, 59.83 ; \mathrm{H}, 6.78$; N , 17.40. Found: C, 59.41; H, 6.29; N, 17.12\%.
5.1.3.3. 1,3-Dimethyl-8-[3-methoxy-4-(2-piperidin-1-ylethoxy)phenyllxanthine (6c). Yield: 20.12\%; m.p. 204-206 ${ }^{\circ} \mathrm{C}$. IR: 3350 , 2940, 1695, 1640, 1480, 1225; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\right.$ DMSO- $\left.d_{6}\right): \delta 1.45$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$, piperidine), 1.57 ($\mathrm{p}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$, piperidine), $2.52(\mathrm{br} \mathrm{s}$, $4 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}$, piperidine $), 2.80\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}\right), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right)$,
$3.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.17\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 7.03(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}$, arom), 7.31 (s, 1H, CH, arom), 7.83 (s, 1H, CH, arom); Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, 61.00; H, 6.58; N, 16.93\%. Found: C, 60.90; H, 6.29; N, 16.57\%.
5.1.3.4. 1,3-Dimethyl-8-[3-methoxy-4-(2-morpholin-4-ylethoxy)phenylxanthine (6d). Yield: 35.75%; m.p. $264-268^{\circ} \mathrm{C}$. IR: 3300 , 2940, 1695, 1645, 1490, 1220; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}+$ DMSO- d_{6}): $\delta 2.54$ (br s, $4 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}$, morpholine), $2.78\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}\right.$), 3.31 ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{N}-\mathrm{CH}_{3}\right), 3.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.62\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right.$, morpholine), 3.88 $\left(\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.18\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 7.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}$, arom, $\left.J_{\mathrm{o}}=8.28 \mathrm{~Hz}\right), 7.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$, arom), $7.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$, arom), $13.50(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{N}-H)$; Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{5}$: C, 57.82 ; $\mathrm{H}, 6.06$; $\mathrm{N}, 16.85$. Found: C, $57.38 ; \mathrm{H}, 5.96$; $\mathrm{N}, 16.52 \%$.
5.1.3.5. 1,3-Dimethyl-8-[3-methoxy-4-(2-pyrrolidin-4-ylethoxy)phenyllxanthine (Ge). Yield: 22.27%; m.p. $232-234^{\circ}$ C. IR: 3300 , 2925, 1695, 1640, 1470, 1260; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}+$ DMSO- d_{6}): $\delta 1.71$ (br s, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$, pyrrolidine), 2.57 (br s, $4 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}$, pyrrolidine), $2.85\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}\right), 3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right)$, $3.86\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.12\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 7.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}$, arom, $\left.J_{0}=7.25 \mathrm{~Hz}\right), 7.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}\right.$, arom); Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4}: \mathrm{C}$, 60.13 ; H, 6.30; N, 17.53. Found: C, 60.08; H, 6.08; N, 17.24\%.
5.1.3.6. 8-[3-(2-Dimethylaminoethoxy)-4-methoxyphenyl]-1,3-dimethylxanthine (9a). Yield: 49.29%; m.p. $230-232{ }^{\circ}$ C. IR: 3220,1680 , 1640, 1470, 1270; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}$): $\delta 2.34$ ($\mathrm{s}, 6 \mathrm{H}$, $\left.-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.77\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}\right), 3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.61(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-$ $\left.\mathrm{CH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.13\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}\right.$), $6.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$, arom), $7.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}\right.$, arom); Anal. Calc. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{4}: \mathrm{C}, 57.89$; H, 6.20; N, 18.75. Found: C, 57.71; H, 6.25; N, 18.59\%.
5.1.3.7. 8-[3-(2-Diethylaminoethoxy)-4-methoxyphenyl]-1,3-dimethylxanthine (9b). Yield: 36.21%; m.p. $168-170^{\circ} \mathrm{C}$. IR: 3350,1690 , 1650, 1490, 1210; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\right.$ DMSO- d_{6}): $\delta 1.09(\mathrm{t}, 6 \mathrm{H}$, $\left.-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 2.65\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 2.95\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}\right)$, $3.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.19(\mathrm{t}$, $2 \mathrm{H},-\mathrm{OCH}_{2}-$), 6.90 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$, arom), 7.30 (s, $1 \mathrm{H}, \mathrm{CH}$, arom), 7.80 (s, $1 \mathrm{H}, \mathrm{CH}$, arom); Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, $59.83 ; \mathrm{H}, 6.78$; N , 17.40. Found: C, 59.44; H, 6.51; N, 17.33%.
5.1.3.8. 1,3-Dimethyl-8-[4-methoxy-3-(2-piperidin-1-ylethoxy)phenyl]xanthine (9c). Yield: 60.36%; m.p. $230-232^{\circ} \mathrm{C}$. IR: 3380 , 1680, 1640, 1480, 1210; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}\right): \delta 1.45(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}, piperidine), 1.57 ($\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$, piperidine), 2.51 (br s, 4 H , $-\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}$, piperidine), $2.78\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}\right), 3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right)$, $3.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.16\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 6.93$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{CH}\right.$, arom, $\left.J_{\mathrm{m}}=2.21 \mathrm{~Hz}\right), 7.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$, arom $), 7.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$, arom); Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, $61.00 ; \mathrm{H}, 6.58$; $\mathrm{N}, 16.93 \%$. Found: C, 60.90; H, 6.31; N, 16.74\%.
5.1.3.9. 1,3-Dimethyl-8-[4-methoxy-3-(2-morpholin-4-ylethoxy)phenylxanthine (9d). Yield: 53.32%; m.p. $250-252^{\circ} \mathrm{C}$. IR: 3350 , 1690, 1650, 1480, 1250; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}$): $\delta 2.62(\mathrm{t}, 4 \mathrm{H}$, $-\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}$, morpholine), $2.88\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}\right), 3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right)$, $3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.73\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right.$, morpholine), $3.90(\mathrm{~s}, 3 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right), 4.26\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 6.96\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}\right.$, arom, $J_{o}=8.28 \mathrm{~Hz}$), 7.76 (m, 2H, CH, arom) and 13.20 (br s, 1H, N-H); Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{5}$: C, 57.82; H, 6.06; N, 16.85. Found: C, 57.57; H, 6.03; N, 16.65\%.
5.1.3.10. 1,3-Dimethyl-8-[4-methoxy-3-(2-pyrrolidin-4-ylethoxy)phenylJxanthine (9e). Yield: 80.48%; m.p. $234-236^{\circ} \mathrm{C}$. IR: 3200 , 2925, 1690, 1670, 1490, 1210; ${ }^{1} \mathrm{H}$ NMR (CDCl 3 + DMSO- d_{6}): $\delta 1.67$ (br $\mathrm{s}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$, pyrrolidine), 2.86 ($\mathrm{br} \mathrm{s}, 4 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}$, pyrrolidine), $3.12\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}\right), 3.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.88$
$\left(\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.29\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 6.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}$, arom, $J_{0}=8.27 \mathrm{~Hz}$) and 7.71 (m, $2 \mathrm{H}, \mathrm{CH}$, arom); Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, 60.13; H, 6.30; N, 17.53. Found: C, 60.08; H, 6.19; N, 17.35\%.
5.1.3.11. 8-[3-(2-Dimethylaminoethoxy)phenyl]-1,3-dimethylxanthine (12a). Yield: 30.30\%; m.p. 260-264 ${ }^{\circ} \mathrm{C}$. IR: 3177, 1689, 1647, 1524, 1480, 1231, 1058; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right): \delta 2.37(\mathrm{~s}, 6 \mathrm{H}$, $\left.-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.80\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}\right), 3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.55(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-$ $\left.\mathrm{CH}_{3}\right), 4.16\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 6.98\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}\right.$, arom, $\left.\mathrm{J}_{\mathrm{o}}=8.19 \mathrm{~Hz}\right), 7.35$ $\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}\right.$, arom, $\left.J_{\mathrm{o}}=7.84 \mathrm{~Hz}\right)$ and $7.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$, arom). Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, 59.45; H, 6.16; N, 20.39. Found: C, 59.25; H, 6.13; N, 19.91\%.
5.1.3.12. 8-[3-(2-Diethylaminoethoxy)phenyl]-1,3-dimethylxanthine
(12b). Yield: 43.26\%; m.p. 268-270 ${ }^{\circ}$ C. IR: 3190, 1690, 1650, 1480, 1210; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right): \delta 1.08\left(\mathrm{t}, 6 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 2.65$ $\left(\mathrm{q}, 4 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 2.91\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}\right), 3.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.66$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 4.14\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 6.96(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}$, arom, $\left.J_{\mathrm{o}}=7.31 \mathrm{~Hz}\right), 7.33\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}\right.$, arom, $\left.J_{\mathrm{o}}=7.78 \mathrm{~Hz}\right)$ and $7.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$, arom). Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, 61.43; H, 6.78; $\mathrm{N}, 18.85$. Found: C, 61.23; H, 6.38; N, 18.45\%.
5.1.3.13. 1,3-Dimethyl-8-[3-(2-piperidin-4-ylethoxy)phenyl]xanthine (12c). Yield: 62.82\%; m.p. 264-266 ${ }^{\circ}$ C. IR: 3153, 2932, 1696, 1651, 1523, 1479, 1449, 1225, 1059; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right): \delta 1.46$ ($\mathrm{m}, 2 \mathrm{H},-\mathrm{CH}_{2}$, piperidine), $1.61\left(\mathrm{p}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right.$, piperidine), 2.57 (br $\left.\mathrm{s}, 4 \mathrm{H}, \mathrm{N}-\left(\mathrm{CH}_{2}\right)_{2}\right), 2.83\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.60(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 4.19\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2^{-}}\right), 6.97\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}\right.$, arom, $J_{\mathrm{o}}=7.50$, $\left.J_{\mathrm{m}}=1.75 \mathrm{~Hz}\right), 7.35\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}\right.$, arom, $J_{\mathrm{o}}=8.10 \mathrm{~Hz}$), and $7.74(\mathrm{~m}, 2 \mathrm{H}$, CH , arom). Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, 62.65 ; $\mathrm{H}, 6.57$; N, 18.26. Found: C, 62.38; H, 6.22; N, 18.15\%.
5.1.3.14. 1,3-Dimethyl-8-[3-(2-morpholin-4-ylethoxy)-
phenyl Jxanthine (12d). Yield: 27.27\%; m.p. $256-260{ }^{\circ} \mathrm{C}$. IR: 3150, 2910, 170, 1650, 1290, 1230, 1120; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}$): $\delta 2.60\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right.$, morpholine $), 2.83\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{-}\right), 3.42(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.72\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right.$, morpholine), $4.20\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{OCH}_{2}-\right), 6.98\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}\right.$, arom, $\mathrm{J}_{\mathrm{o}}=8.31, J_{\mathrm{m}}=1.92 \mathrm{~Hz}$), $7.34\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}\right.$, arom, $\left.J_{0}=8.40 \mathrm{~Hz}\right), 7.76(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$, arom $)$ and 13.49 (br s, $1 \mathrm{H}, \mathrm{N}-H$). Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, 59.21; H, 6.01; N, 18.17. Found: C, 58.91; H, 5.87; N, 17.92\%.
5.1.3.15. 1,3-Dimethyl-8-[3-(2-pyrrolidin-1-ylethoxy)-
phenyl]xanthine (12e). Yield: 14.37%; m.p. $>250^{\circ} \mathrm{C}$. IR: 3166, 1694, 1649, 1525, 1478, 1228, 1058; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}\right): \delta 1.90$ (br s, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$, pyrrolidine), $3.10\left(\mathrm{~m}, 6 \mathrm{H},-\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right.$, pyrrolidine and $\left.-\mathrm{CH}_{2} \mathrm{~N}^{-}\right), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 4.30(\mathrm{t}, 2 \mathrm{H}$, $-\mathrm{OCH}_{2}-$), $6.97\left(\mathrm{dd}, 1 \mathrm{H}, 5-\mathrm{CH}\right.$, arom, $\left.J_{\mathrm{o}}=8.05, J_{\mathrm{m}}=2.23 \mathrm{~Hz}\right), 7.34(\mathrm{t}$, $2 \mathrm{H}, \mathrm{CH}$, arom, $\left.J_{0}=7.99 \mathrm{~Hz}\right)$ and $7.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$, arom). Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, 61.77; $\mathrm{H}, 6.27$; $\mathrm{N}, 18.96$. Found: C, 61.38; H, 6.22; N, 18.42 \%.

5.2. Adenosine binding assays

Radioligand binding assays of xanthine analogues were carried out using cloned human adenosine A_{1} and $A_{2 A}$ receptors and $\left[{ }^{3} \mathrm{H}\right]$ DPCPX and $\left[{ }^{3} \mathrm{H}\right] Z \mathrm{ZM} 241385$ as radioligands, respectively. $\left[{ }^{3} \mathrm{H}\right]$ DPCPX (Tocris Cookson) (specific activity $103 \mathrm{Ci} / \mathrm{mmol}$, concentration $1 \mathrm{mCi} / \mathrm{ml}$) was used in assays at 20 nM . The receptor membrane preparation (Human recombinant Adenosine A_{1} receptor - ES-010-M) was from Euroscreen. The recombinant adenosine A_{1} receptor was stably expressed in $\mathrm{CHO}-\mathrm{K} 1$ cells; the membrane suspensions (received as frozen aliquots in 7.5 mM

Tris- HCl pH $7.5 ; 12.5 \mathrm{mM} \mathrm{MgCl}_{2}, 0.3 \mathrm{mM}$ EDTA, 1 mM EGTA, 250 mM sucrose) were diluted in assay buffer on thawing. $\left[{ }^{3} \mathrm{H}\right]$ ZM241385 (Tocris Cookson) (specific activity $0.777 \mathrm{TBq} / \mathrm{mmol}$, concentration $37 \mathrm{MBq} / \mathrm{ml}$) was used in assays at 20 nM . Receptor membrane preparation (Human $A_{2 A}$ receptor membraneRBHA2AM) was from Perkin Elmer. The human recombinant $A_{2 A}$ receptor was expressed in HEK-293 cells. The membrane suspensions were received as frozen aliquots in 50 mM Tris- HCl (pH 7.4) and 10% sucrose and were diluted in assay buffer on thawing.

The assays were performed using a similar method as previously described $[10,13]$. Binding assays were performed using Milipore Multiscreen MHAF B3H60 filter plates presoaked in 0.3% polyethyleneimine (PEI). $10 \mu \mathrm{~g}$ of membrane protein was used in the final assay volume of 0.2 ml . Tris- HCl buffer [50 mM Tris- HCl , 0.5 mM EDTA and $10 \mathrm{mM} \mathrm{MgCl} 2, \mathrm{pH} 7.4$] supplemented with $1 \mathrm{U} / \mathrm{ml}$ adenosine deaminase for $\mathrm{A}_{2 \mathrm{~A}}$ binding assays and Hepes buffer [20 mM Hepes, $10 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM} \mathrm{MgCl} 2, \mathrm{pH} 7.4$] for A_{1} binding assays were used. Stock solutions of the compounds were prepared in dimethylsulfoxide (DMSO), the final concentration of DMSO in assays was $\leq 1 \%$. Nonspecific binding was measured in the presence of $100 \mu \mathrm{M}$ known non-radioactive ligands and accounted for less than 5% of total binding.

The incubation time was 1 h at $25^{\circ} \mathrm{C}$. Termination of the incubation was performed by rapid filtration using a Millipore manifold at a pressure of 700 mbr . Filters were washed three times with $200 \mu \mathrm{l}$ of the relevant assay buffer. Scintillation fluid was added ($100 \mu \mathrm{l} /$ well) and bound radioactivity was counted in a scintillation counter (Wallac Microbeta). Testing was done in three stages: first, all the compounds were tested at $100 \mu \mathrm{M}$; second, those causing greater than 60% displacement of binding were retested at three different concentrations from 1 to $100 \mu \mathrm{M}$; third, those that were consistently active in a concentration-dependent manner were tested over a full concentration range to determine the IC_{50} values and K_{i}. Data was analysed using GraphPad Prism, Version 2.0 (GraphPad, San Diego, CA). For nonlinear regression analysis, the Cheng-Prusoff equation and K_{D} values of 1.6 nM (human A_{1}) for [$\left.{ }^{3} \mathrm{H}\right]$ DPCPX and 1 nM (human $\mathrm{A}_{2 \mathrm{~A}}$) for [$\left.{ }^{3} \mathrm{H}\right] \mathrm{ZM}-241385$ were used to calculate K_{i} values from IC_{50} values.

Acknowledgements

The financial support provided by the HSCST, Haryana, India and Commonwealth Fellowship from the Association of Commonwealth Universities, United Kingdom is gratefully acknowledged.

References

[1] C.E. Müller, B. Stein, Curr. Pharm. Des. 2 (1996) 501-530.
[2] O. Yuzlenko, K. Kiec-Kononowicz, Curr. Med. Chem. 13 (2006) 3609-3625.
[3] K.A. Jacobson, Z.G. Gao, Nat. Rev. Drug Discov. 5 (2006) 247-264.
[4] Y.C. Kim, X. Ji, N. Melman, J. Linden, K.A. Jacobson, J. Med. Chem. 23 (2000) 1165-1172.
[5] M.R.D. Giudice, A. Borioni, C. Mustazza, F. Gatta, S. Dionisotti, C. Zocchi, E. Ongini, Eur. J. Med. Chem. 31 (1996) 59-63.
[6] R.V. Kalla, E. Elzein, T. Perry, X. Li, V. Palle, V. Varkhedkar, A. Gimbel, T. Maa, D. Zeng, J. Zablocki, J. Med. Chem. 15 (2006) 3682-3692.
[7] Q. Li, K. Ye, C.C. Blad, H. den Dulk, J. Brouwer, A.P. IJzerman, M.W. Beukers, J. Pharmacol. Exp. Ther. 2 (2007) 637-645.
[8] T. Katsushima, L. Nieves, J.N. Wells, J. Med. Chem. 33 (1990) 1906-1910.
[9] M.T. Shamim, D. Ukena, W.L. Padgett, O. Hong, J.W. Daly, J. Med. Chem. 31 (1988) 613-617.
[10] A.M. Hayallah, J. Sandoval-Ramirez, U. Reith, U. Schobert, B. Preiss, B. Schumacher, J.W. Daly, C.E. Müller, J. Med. Chem. 45 (2002) 1500-1510.
[11] V. Papesch, E.F. Schroeder, J. Org. Chem. 16 (1951) 1879-1890.
[12] F.F. Blicke, H.C. Godt, J. Am. Chem. Soc. 76 (1954) 2798-2800.
[13] L. Yan, C. Müller, J. Med. Chem. 47 (2004) 1031-1043.
[14] K.N. Klotz, Naunyn Schmiedebergs Arch. Pharmacol. 362 (2000) 382-391.

[^0]: * Corresponding author. Tel.: +91 1722541142.

 E-mail address: ranju29in@yahoo.co.in (R. Bansal).

