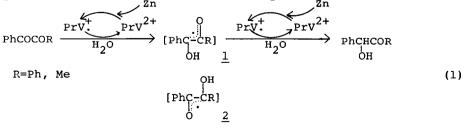
VIOLOGENS THAT PLUNDER ELECTRON FROM SOLID REDUCING AGENT. REDUCTION OF ARYL KETONES BY ZINC POWDER IN THE PRESENCE OF PROPYL VIOLOGEN AS AN ELECTRON TRANSFER CATALYST

Takeshi ENDO,<sup>\*</sup> Yasushi SAOTOME, and Makoto OKAWARA Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Nagatsuta, Midori-ku Yokohama 227

It was found that viologen (propyl viologen) acted as an Electron Transfer Catalyst (ETC) in the reduction of aryl ketones with zinc powder.  $\alpha$ -Diketones undertook the two-electron reduction to obtain the corresponding benzoins in good yields and aromatic ketones could one-electron reduced selectively to give the corresponding pinacols.


Viologen (1,1'-dialkyl-4,4'-bipyridinium,  $v^{2+}$ ) is known to undergo one-electron reduction to produce the cation radical ( $v_{\cdot}^{+}$ ), which is easily reoxidized to  $v^{2+}$ . More recently, viologens have received much attention as an ETC in redox system,<sup>1</sup> especially in hydrogen production by photoreduction of water.

$$\begin{array}{c} \stackrel{+}{\operatorname{NO}} & & & \stackrel{+}{\operatorname{ON}} & & \stackrel{-}{\operatorname{NO}} & & \stackrel{-}$$

Further, the viologen-mediated reductions of organic compound have been reported by us.<sup>2.3</sup> In this communication, we wish to report the reduction of aryl

ketones such as  $\alpha$ -diketones and aromatic ketones with zinc<sup>4</sup> at room temperature using propyl viologen (PrV<sup>2+</sup>) as a catalyst.

The reduction of  $\alpha$ -diketones like diphenylethanedione and l-phenyl-1,2-propanedione by zinc were carried out with or without  $PrV^{2+}$ . The reaction conditions and the results were shown in Table 1. The reduction did not occur at all in the absence of  $PrV^{2+}$ . On the other hand, the reaction proceeded smoothly in the presence of  $PrV^{2+}$  to obtain the two-electron reduced products, 2-hydroxy-1,2-diphenylethanone and 1-hydroxy-1-phenyl-2-propanone, in good yields respectively. Four-electron reduced products(diols) were not produced although zinc powder was used in excess. Further, only the carbonyl group attached to the phenyl residue in the case of 1phenyl-1,2-propanedione could be reduced selectively.



4525

Considering that  $\underline{l}$  is more likely as a radical intermediate than  $\underline{2}$  because of the stabilization by the phenyl group, scheme (1) may be reasonable to explain the regioselectivity.

Aryl ketones, which do not have  $\alpha$ -carbonyl group, were treated in a similar condition. The results are indicated in Table 2. Although acetophenone and 4-cyanoacetophenone were not reduced even at 50°C, benzophenone and its chlorinated derivatives undertook one-electron reduction at room temperature in the presence of PrV<sup>2+</sup> to yield corresponding pinacol derivatives. However, the products (diphenyl-methanol and its derivatives) obtained by two-electron reduction were not obtained.

yield(%)

Λ

92 0

97

| $Ph_2CO \xrightarrow{PrV^+}_{H_2O} \xrightarrow{PrV^{2+}}$ | [Ph2COH]                           | Ph <sub>2</sub> CHO | H   |
|------------------------------------------------------------|------------------------------------|---------------------|-----|
|                                                            | Coupling                           |                     |     |
|                                                            | Ph <sub>2</sub> C-CPh <sub>2</sub> | <b>Mable</b>        | 2   |
|                                                            | OH OH                              | Table               | _ 2 |

product

PhCH (OH) COPh

PhCH (OH) COCH

It is extremely interesting that viologen plunders electron from solid zinc and transfers electron to carbonyl compounds. Reduction of Arvl Ketones<sup>a</sup>

| verac cre | m or | лгуг | retones |   |
|-----------|------|------|---------|---|
|           | ,    |      |         | - |

| ketone P                                             | $rv^{2+}$ (mmol)  | pinacol(%)      |
|------------------------------------------------------|-------------------|-----------------|
| PhCOCH <sub>3</sub>                                  | 0.05              | 0               |
| PhCOCH                                               | 0.05              | 0 <sup>C</sup>  |
| p-CNC6H4COCH3                                        | 0.05              | 0               |
| p-CNC6H4COCH3                                        | 0.05              | 0 <sup>°</sup>  |
| Ph <sub>2</sub> CO                                   | none              | 0               |
| Ph <sub>2</sub> CO                                   | 0.05              | 13              |
| Ph <sub>2</sub> CO                                   | 0.20              | 20              |
| Ph <sub>2</sub> CO                                   | 0.20 <sup>d</sup> | 63              |
| p-ClC <sub>6</sub> H <sub>4</sub> COPh               | none              | 0               |
| p-ClC6H4COPh                                         | 0.20              | 57              |
| (p-C1C <sub>6</sub> H <sub>4</sub> ) <sub>2</sub> CO | none              | 0               |
| (p-ClC <sub>6</sub> H <sub>4</sub> ) <sub>2</sub> CO | 0.20              | 49 <sup>e</sup> |

<sup>a</sup>The experiment was performed with 1.5 mmol of Zinc,1.0 mmol of  $\alpha$ -diketone, and propyl viologen in 20 mL of CH<sub>3</sub>CN-H<sub>2</sub>O (49:1) at room temperature for 24 h with stirring. <sup>b</sup>PrV<sup>2+</sup>: propyl viologen.

Table 1. Reduction of α-Diketones by Zinc<sup>a</sup>

(mmol)

Prv2+b

none

0.05

none

0.05

a-diketone

PhCOCOPh

PhCOCOPh

PhCOCOCH<sub>2</sub>

PhCOCOCH,

## References and Notes

 J. G. Caray, J. F. Caians, and J. E. Colchester, J. Chem. Soc. Chem. Commun., <u>1969</u>, 1280; K. Kalyanasundaram, J. Kiwi, and M. Gatzel, Helv. Chim. Acta, 1978, <u>61</u>, 2720; A. I. Krasna, Photochem. <sup>a</sup>The experiment was performed with 1.5 mmol of zinc, 1.0 mmol of the ketone, and propyl viologen in 20 mL CH<sub>3</sub>CN-H<sub>2</sub>O (49:1) at room temperature for 24 h with stirring. <sup>b</sup>PrV<sup>2+</sup>: propyl viologen. <sup>C</sup>at 50°C. <sup>d</sup>added dropwise for 24 h. <sup>e</sup>NMR yield.

- Photobio., 1979, <u>29</u>, 276; I. Okura and N. Kim-Thuan, J. Mol. Catal., 1979, <u>5</u>, 331. 2. K. Ageishi, T. Endo, and M. Okawara, J. Polym. Sci. Polym. Chem. Ed., 1983, <u>21</u>, 175.
- 3. Y. Saotome, T. Endo, and M. Okawara, Macromolecules, 1983, 16, 881.
- 4. It has been reported that benzophenone is reduced with Zn/NaOH in H<sub>2</sub>O-C<sub>2</sub>H<sub>5</sub>OH at 70°C to obtain diphenylmethanol without producing pinacol [F.Y. Wiselogle and H. Sonneborn, "Organic Syntheses," Coll. Vol I, p.90(1941)], and diphenylethanedione is also reduced with Zn in DMF-H<sub>2</sub>O under refluxing to give 1-hydroxy-1,2-diphenylethanone (W. Kreiser, Liebigs Ann. Chem., 1971,745,164).

(Received in Japan 4 July 1985)

4526