
Silver-Promoted Direct Phosphorylation of Bulky C(sp2)−H Bond to
Build Fully Substituted β‑Phosphonodehydroamino Acids
Hao-Qiang Cao, Hao-Nan Liu, Zhe-Yuan Liu, Baokun Qiao, Fa-Guang Zhang,* and Jun-An Ma*

Cite This: https://dx.doi.org/10.1021/acs.orglett.0c02229 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: A general and practical cross-dehydrogenative coupling protocol between readily available trisubstituted α,β-dehydro
α-amino carboxylic esters and H-phosphites is described. This C(sp2)−H phosphorylation reaction proceeds with absolute Z-
selectivity promoted by silver salt in a radical relay manner. The bulky tetrasubstituted β-phosphonodehydroamino acids were
obtained in grams and added new modules to the toolkit for peptide modifications.

Unnatural amino acids such as α,β-dehydroamino acids
(dhAAs) do not belong to the 20 canonical proteino-

genic amino acids, yet they are found widespread in natural
products and play a very important role in pharmaceutical
science (Figure 1).1 The unique polar double bond endows
dhAAs with increased structural rigidity, enhanced proteolytic
resistance, and tighter target complementarity compared with
the saturated amino acid residues.2 In particular, inspired by
the natural product yaku’amide, bulky tetrasubstituted dhAAs
has begun to capture increasing attention as a powerful
adamant regulator in peptide modifications.3 From a retro-

synthetic point of view, direct C(sp2)−H bond functionaliza-
tion of trisubstituted dhAAs would be an ideal approach to
obtain the fully substituted derivatives.4 However, such a
reaction pattern still represents a formidable challenge due to
the excessive steric hindrance across the congested C = C
double bond. Indeed, previous efforts have mainly focused on
the electrophilic halogenation reactions (Scheme 1a), albeit
frequently with low stereoselectivity, offering synthetic handles
that could be further used in downstream cross-coupling
transformations.5 Alternatively, Maia and Ciufolini independ-
ently described the carbon−nitrogen and carbon−carbon bond
formation reactions of dhAAs, but still suffering from low E/Z
selectivity or limited substrate scope (Scheme 1b and 1c).6 In
this context, here we report a straightforward and highly
stereoselective C(sp2)−H phosphorylation of trisubstituted
dhAAs for the construction of unprecedented fully substituted
β-phosphonodehydroamino acids and their application in
peptide modifications (Scheme 1d).
Phosphono-modified amino acids obtained by replacing the

natural O−P bond with an artificial nonhydrolyzable C−P
bond could lead to increased resistance to enzymatic
degradation, and this strategy has triggered the discovery of
numerous amino carboxylic phosphonate mimetics possessing
wide applications in medicine and agriculture.7 With this
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Figure 1. Selected natural products featuring a dehydroamino acid
motif.
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consideration in mind and as a continuing part of our constant
interest in phosphonic acid chemistry,8 we conceived that the
cross-dehydrogenative coupling between readily available α,β-
dehydro α-amino carboxylic esters and H-phosphites would
provide facile access to the valuable β-phosphono dehydroa-
mino acids.9 In particular, to circumvent the huge steric
congestion in the olefin moiety, we turned to a radical relay
solution by generating reactive alkyl radical species under
silver-promoted conditions which was recently disclosed in our
lab for a unique double phosphorylation reaction of
enamides.10 Put it into practice, a series of silver-mediated
coupling conditions were investigated between N-acetyldehy-
drophenylalanine 1a and diisopropyl phosphite 2a (Figure 2,
see the Supporting Information for detailed optimizing
results). To our great delight, under the conditions of
stoichiometric silver oxide in acetonitrile at reflux, the desired
phosphonodehydrophenylalanine 3a was obtained in up to
75% yield as a single Z isomer (X-ray confirmed). Notably, the

employment of silver oxide proved to be crucial to the
occurrence of this transformation, as almost no 3a was
observed when other metal salt was used, such as AgOAc,
Ag2CO3, Cu2O, and Mn(acac)3. Reducing the amount of
Ag2O, changing the solvent, or lowering the reaction
temperature also severely diminished the yield of 3a.11

The scope of this silver-promoted cross-dehydrogenative
coupling reaction was first assessed by the preparation of
different β-aryl-substituted phosphono-dhAAs (Scheme 2).

The change in the carboxylic or amino protecting groups was
well compatible (3b−3d). Electron-donating groups (−Me,
−OMe), halogens (−F, −Cl, −Br), and electron-withdrawing
groups (−CF3 and −CN) located at various positions on the
phenyl ring were all tolerated and gave the corresponding
amino carboxylic alkenyl phosphonates 3e−3p in moderate to
good yield with constant single Z-stereoselectivity. Impor-
tantly, both p- and m-pyridyl-derived dhAA substrates also
underwent the highly selective C(sp2)−H phosphorylation
uneventfully, thus affording 3q and 3r in 69% and 72% yield,
respectively. Subsequently, the application of this protocol to a
broad array of β-alkyl-substituted α-dhAAs was operated
(Scheme 3). Again, switching the substituents in the amino or
carboxylic moiety of 1 and H-phosphites 2 had no significant
influence on the reaction outcome (3s−3x). Substrates 1

Scheme 1. Bulky C(sp2)−H Functionalization Reactions of
α,β-Dehydroamino Acids

Figure 2. Selected optimizing results

Scheme 2. Scope of β-Aryl- and Heteroaryl-Substituted
Phosphonodehydroamino Acids
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possessing different alkyl groups, including Et, nPr, iPr,
PhCH2CH2, octyl, and cyclohexyl ones, were easily coupled
with 2a under identical conditions (3y−3d′). In addition, this
reaction is also applicable to disubstituted dhAAs and
furnished 3e′ and 3f′ in good yield. More importantly, we
were glad to find that trisubstituted α-amino carboxylic alkenes
equipped with diverse pharmaceutical cores, including
probenecid (1g′), oxaprozin (1h′), indomethacin (1i′), and
lithicolic acid (1j′), were also tolerated, thus giving rise to the
highly functionalized β-phosphono-dhAAs 3g′−3j′ as single Z-
isomers in good yield (Scheme 4).

Both β-aryl and β-alkyl dehydroamino acid substrates (1a
and 1u) were evaluated on gram scale with almost identical
results compared with their model reactions, highlighting the
good practicality of this method (Scheme 5a). In these two

cases, the excess Ag2O and other silver species could be easily
recycled, and reused as effective promoter in another round of
phosphorylation reaction with similar result, thus significantly
improving the economy of this protocol (see the SI for details).
The presence of benzyl ester groups in phosphono-dhAAs 3b,
3u, and 3f′ could be deprotected easily to liberate the free
carboxylic group and thus offered good opportunity for further
incorporation into peptide scaffolds (Scheme 5b). Among
them, the β-phenyl dehydroamino carboxylic acid 4a was
obtained in 85% yield and connected with phenylalanine to
give phosphonodipeptide 5a in 70% yield. The amino residue
of Aspartame was linked with P-hybrid amino acid 4b to
provide the phosphonotripeptide 5b in 80% yield. Phospho-
peptides often have the capacity to act as molecular switches
that could regulate protein−protein interactions (PPIs).12 For
example, Lee’s group has identified that the minimal
phosphopeptides (PLHSpT) could function as selective
binding agents targeting the polo-box domain (PBD) of
polo-like kinase 1 (PLK1).13 However, the hydrolytic lability
of phosphoryl esters to phosphatases restricted the applicability
of such O−P bond-linked phosphopeptides in cellular
environments. To overcome this shortage, Burke’s group has
demonstrated that the binding affinity of PLHS (Pmab) could

Scheme 3. Scope of β-Alkyl-Substituted
Phosphonodehydroamino Acids

Scheme 4. Preparation of Pharmacetical Core-Substituted
Phosphonodehydroamino Acids

Scheme 5. Scale-up Experiments and Synthesis of
Phosphono-Functionalized Peptides
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be enhanced several-fold yet retain good selectivity by
replacing O−P bond with more stable C−P bond.14 Inspired
by these pioneering studies, we subjected β-methyl dehy-
droamino acid 4c to integrate with the Pro-Leu-His-Ser
sequence to get the phosphono-pentapeptide 5c as a new
phosphatase-stable analogue of PLHSpT.
All the above-used starting dhAAs feature a Z-configuration,

and produced the phosphorylation products with absolute Z-
selectivity. As a comparison, several E-dehydroamino carbox-
ylic alkenes (6a−6d) were also prepared and treated with H-
phosphite 2a under otherwise standard conditions (Scheme
6a). Notably, still only Z-phosphono dhAAs (3c, 3d, 3y, and

3z) were formed in similar yields as those observed for Z-
starting materials, suggesting that geometry of the double bond
is not a controlling factor in the C−P bond formation step.
N,N-diprotected substrate 7 completely inhibited the trans-
formation, implying that the N−H group may possess a pivotal
role in triggering the current reaction. Adding a radical
scavenger (TEMPO) to the model reaction system entirely
halted the formation of 3a. Importantly, the alkyl radical-
capture product 8 was obtained in 45% yield, thus strongly
supporting that an uncommon radical-coupling pathway is
presumably operative. Taking these results into consider-
ation,15 a plausible mechanism was proposed as illustrated in
Scheme 6c. First, the N−H bond of trisubstituted dhAAs 1 was
activated through a proton-coupled electron transfer (PCET)
process initiated by Ag2O to give N-centered radical I-1, which
isomerized to a more stable alkyl radical I-2 expeditiously. This
radical species was then arrested by a P-centered radical to
form the imine intermediate I-3. Finally, fully substituted
alkenyl phosphonate 3 was generated with Z-configuration

driven by the formation of a hydrogen-bond network in a six-
membered ring. The presence of such hydrogen bonds has
been unambiguously confirmed in the X-ray structure of
compound 3a and 3a′.
In conclusion, a stereoselective C(sp2)−H phosphorylation

reaction of trisubstituted dhAAs was realized by means of a
silver-promoted radical relay process. This simple and practical
protocol allows us to obtain the bulky tetrasubstituted
phosphono-dhAAs on a gram scale along with three new
phosphonopeptides. This study not only provides a direct
approach for the introduction of valuable phosphonate group
into amino acid framework, but also offers new precursors for
future asymmetric hydrogenation en route to chiral β-
phosphonoamino acids, the research of which is in progress
in our group.
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