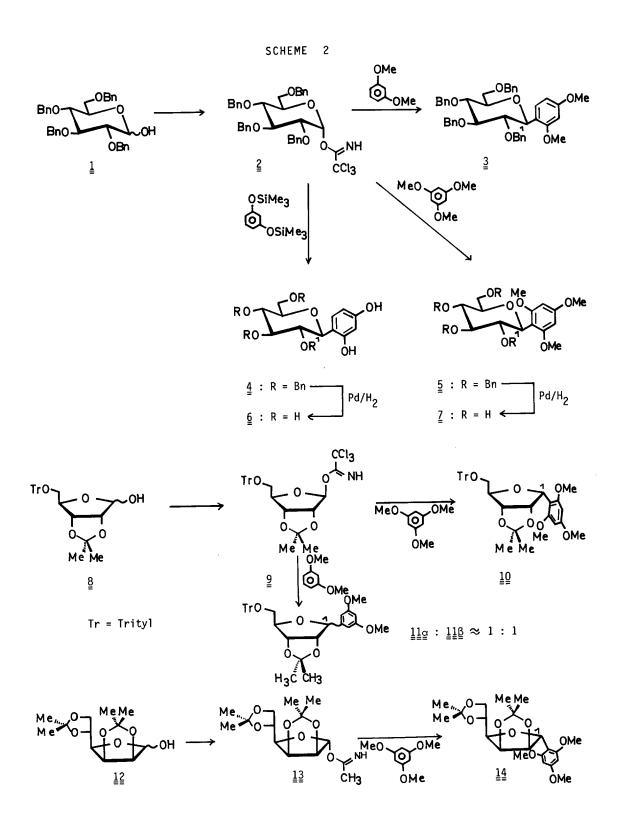

C-GLYCOSIDES FROM O-GLYCOSYL TRICHLOROACETIMIDATES 1)

Richard R. Schmidt ⁺ and Michael Hoffmann Fakultät Chemie, Universität Konstanz 7750 Konstanz, Germany

<u>Abstract</u>: From O-glycosyl trichloroacetimidates 2, 9, and <u>13</u> and activated benzene derivatives C-aryl glycosides were obtained by mild Lewis acid catalysis. In most cases only one stereoisomer was formed, however, the a-alkoxyalkyl transfer took place not always by inversion of configuration at the anomeric center.

0-Glycosyl trichloroacetimidates were obtained directly in high chemical and stereochemical yield from 1-O-unprotected carbohydrates and trichloroacetonitrile under base catalysis $^{2-5)}$. These activated species afforded - with different alcohols and under acidic catalysis - O-glycosides, di-, tri-, and tetrasaccharides mainly by inversion of configuration at the anomeric center $^{2-6)}$. Without the addition of any further catalyst a highly stereoselective glycosyl transfer to acids was obtained $^{2,5,6)}$. The observed high reactivity of these $0-\alpha$ -alkoxyalkyl trichloroacetimidates should admit a stereoselective α -alkoxyalkyl transfer also to other nucleophiles (Scheme 1).


Scheme 1

The glycosyl transfer to activated benzene derivatives in a Friedel-Crafts type reaction reported here $^{7)}$ is of interest for the synthesis of C-glycosyl flavonoids $^{8,9)}$. Earlier Friedel-Crafts reactions with glycosyl halides gave frequently both anomers and unsatisfactory results because of low reactivity $^{9)}$.

The 0-glycosyl trichloroacetimidates $\frac{2}{2}^{2}$, $\frac{9}{2}^{10}$, and $\frac{13}{12}^{10}$ were obtained from the 1-0-unprotected carbohydrates $\frac{1}{2}$, $\frac{8}{2}$, and $\frac{12}{2}$ and trichloroacetonitrile with sodium hydride as base in practically quantitative yield. The 0- α -D-glucopyranosyl imidate $\frac{2}{2}$ gave with 1.3-dimethoxy benzene, 1.3-bis-trimethylsilyloxy benzene, and 1.3.5-trimethoxy benzene and borontrifluoride

409

Compound ^b	yield ^C	[a] ²⁰ [a] ⁵⁷⁸	mp.	¹ H - NMR data ^d		
		(CHC1 ₃ , c=1)	[⁰ C]	1-Н	J _{1,2} [Hz]	other protons
3	75	+15.6	176-8	4.75(d)	10	7.4-7.12 (m, 20 H, $4C_6H_5$); 6.92, 6.52, 6.46 (dd, 1H; dd, 1H; d, 1H; C_6H_3); 3.83, 3.75 (2s, 2 OMe)
<u>4</u>	75	- 1.3	oil	е		6.65-6.48 (m, 3H, C ₆ H ₃).
5	77	+ 5.4	oil	e		6.17, 6.20 (2s, 2H, C ₆ H ₂); 3.95 (s, 6H, 2 OMe); 3.73 (s, 3H, OMe)
<u>6</u>	88	e	oil	4.85(d)	8	6.50-6.80 (m, 3H, C ₆ H ₃).
<u>7</u> f	85	e	105	4.60(d)	10	6.27 (s, 2H, C ₆ H ₂); 3.81 (s, 6H, 2 OMe); 3.77 (s, 3H, OMe).
<u>10</u>	53	+ 1.0	oil	5.60(d)		6.40 (s, 2H, C ₆ H ₂); 3.83 (s, 3H, OMe); 3.57 (s, 6H, 2 OMe).
<u>11</u> g	65	е	oil	5.73(d) 5.29(d)		1.60, 1.32 (2s, 6H, 2CH ₃). 1.40, 1.26 (2s, 6H, 2CH ₃).
<u>14</u>	63	+24.5	134-6	5.60(s)	-	6.11 (s, 2H, C ₂ H ₂); 3.82 (s, 3H, OMe); 3.79 (s, 6H, 2 OMe).

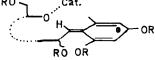
Table 1: C-Glycosides from trichloroacetimidates $\frac{2}{2}$, $\frac{9}{2}$, and $\frac{13}{2}$ ^a

a Reaction conditions: CH₂Cl₂, room temperature, 3 h, catalyst (²/₂, ¹/₂): 1 equivalent BF₃·OEt₂; (⁹/₂): 1 equivalent ZnCl₂.

^b All compounds gave correct elemental analyses.

^C Isolated yields.

^d 80 MHz-spectra in CDCl₃ ($\underline{3}$ - $\underline{5}$, $\underline{10}$, $\underline{11}\underline{2}$, $\underline{6}$, $\underline{14}$) and D₆-DMSO ($\underline{6}$, $\underline{7}$), internal TMS, δ -values. ^e Not assigned.


f <u>7</u> was synthesized independently, see ref. 9; the ¹H-NMR spectral assignments and the mp. are in accordance.

etherate as catalyst only the C- β -D-glucopyranosides $\frac{3}{2}$, $\frac{4}{2}$, and $\frac{5}{2}$ (Scheme 2). The ¹H-NMR structural assignment of $\frac{4}{2}$ and $\frac{5}{2}$ was possible after hydrogenolytic deprotection (Pd/H₂), which afforded $\frac{6}{2}$ and $\frac{7}{2}$ ⁹⁾.

Tritylated O-B-D-ribofuranosyl imidate $\frac{9}{2}$ was partly detritylated with borontrifluoride etherate as catalyst; therefore dry ZnCl₂ was used as catalyst. However, only with the more reactive 1.3.5-trimethoxybenzene the inverted α -D-ribofuranosylated compound $\underline{10}$ was obtained; 1.3-dime-

thoxybenzene gave a 1:1-mixture of both anomers $\underline{11}\underline{12}$ and $\underline{11}\underline{15}$. The O- α -D-mannofuranosyl imidate $\underline{13}$ led with 1.3.5-trimethoxybenzene and borontrifluoride etherate catalysis exclusively to the α -product $\underline{14}$. Presumably intermediate ion pair formation and at least partial equilibration are responsible for the observed retention of configuration in the products $\underline{116}$ and $\underline{14}$. Anomerisation of the obtained C-glycosides was not observed under the applied reaction conditions ¹¹). The structural assignments are based on the ¹H-NMR data (Table 1).

- Glycosylimidates, Part 5. This work was supported by the DEUTSCHE FORSCHUNGSGEMEINSCHAFT and the FONDS DER CHEMISCHEN INDUSTRIE. - Part 4: see ref. 5.
- 2) R.R. Schmidt and M. Michel, Angew.Chem. <u>92</u>, 763 (1980); Angew.Chem.Int.Ed.Engl. <u>19</u>, 731 (1980).
- 3) R.R. Schmidt and G. Grundler, Synthesis 1981, in press.
- 4) R.R. Schmidt and J. Michel, Angew.Chem., in press.
- R.R. Schmidt, Lecture, IX⁰ Journees sur la Chimie et la Biochimie des Glucides, Aussois, January 1981; Lecture, 1st European Symposium on Carbohydrates and Glycoconjugates, Vienna, September 1981.
- 6) R.R. Schmidt and M. Stumpp. Tetrahedron Lett. preceding paper.
- 7) M. Hoffmann, Diplomarbeit, Universität Konstanz, 1981.
- 8) P.A. Ramaiah, L.R. Row, D.S. Reddy, A.S.R. Anjaneyulu, R.S. Ward, and A. Pelter, J.C.S. Perkin I, <u>1979</u>, 2313; J. Lutowski, K. Szpunar, and E. Segiet, Pharm.i.u.Z. <u>10</u>, 45 (1981) and ref.
- 9) R.A. Eade and H.-P. Pham, Aust.J.Chem. <u>32</u>, 2483 (1979) and ref.; compound <u>7</u> was synthesized by a modified Koenigs-Knorr procedure.
- 10) 1 H-NMR data (80 MHz spectra in CDCl₃, internal TMS, δ -values); <u>9</u>; 6.22 (s,1H,1-H); 8.41 (s,1H,NH); 1.51(s,3H,CH₃; 1.32(s,3H,CH₃). <u>13</u>: 6.28(s,1H,1-H); 8.63(s,1H,NH). [α]²⁰₅₇₈ (CHCl₃, c=1.0): <u>9</u>: 0.42^o; <u>13</u>: +49.0^o. Mp. <u>9</u>: 140-142^oC; <u>13</u>: 103-106^oC.
- Anomerisation was not expected under the applied reaction conditions; however, anomerisation of C-aryl glycosides having electron releasing substituents should be possible via the following intermediate:
 RO Cat.

(Received in Germany 23 October 1981)