# N -Dealkylation-N-nitrosation of Tertiary Aromatic Amines by n-Butyl Nitrite <br> Giancarlo Verardo, Angelo G. Gumaninı* and Paolo Strazzolinı <br> Department of Chemistry, University of Udine, I-33100 Udıne, Italy 

(Recetved in UK 24 June 1991)

Key Words.<br>Nitrosamines; N-Dealkylation; N-Nitrosation; C-Nitration; Alkyl nitrite.


#### Abstract

N,N-Dialkyl aromatic amines with a variety of ring substituents are $N$-dealkylated and N-nitrosated efficiently by n-butyl nitrite/ammonium chloridelwater at reflux temperature Ring nitrosation was never observed, but minor amounts of $m$ - and p-nitro amines and/or nitrosamines were formed in some cases Ring nitration is rather a reaction of the initial substrate than a process occurring on formed nitrosamines. The leaving propensities of the initial $N$-substituents to yield nitrosamines were in the order benzyl >> methyl >> alkyl


In a previous paper ${ }^{1}$ we have reported the reactivity of the systems made up by mixang alkyl nitrites and $\mathrm{N}, \mathrm{N}$-dimethyl-aromatic amines Two experimental aspects were worth of pecubar attention: the prompt reactivity and the exceptional vanability of the reaction outcome upon seemingly minor changes of the conditions of the experiments it also appeared that the time necessary for the disappearance of the original amıne was essentally the same at reflux temperature, given an identical concentration of reactants, independently of wide variations in the nature of substituents However, only if the reaction was prolonged much longer than the time just necessary for the disappearance of the starting amines, further processes set in to transform some products into others.

On the basis of our previous experimental results and some mechanistic considerations, it was possible to set up a procedure for the rapid and efficient N -dealkylation- N -nitrosation of tertary aromatic amines (1) by n -butyl nitrite The new route to $N$-mitrosamines (2) avoids the handling of large volumes of aqueous solutions required for the classical N -nitrosation of secondary amines with " $\mathrm{HNO}_{2}$ ", the careful operations of temperature, pH and amounts of reagents necessary and the incursion of unwanted side reactions

## Results and Discussion

We observed that for N -dealkylation- N -nitrosation of tertiary aromatic amines (1) by n-butyl nitrite ( BN ) excellent conditions were a fourfold molecular equivalent (m.e.) of BN , one $m e$. of water and one tenth m.e of ammonium chlonde at reflux temperature The results are summarized in Table 1. The individual experiments were monitored by GC-MS and terminated as soon as the starting amine 1 was fully consumed this duration afforded the highest yield of N -nitrosamines 2 in all cases

The yields of N -nitrosamines $\underline{2}$ varned usually from good to almost quantitative although no optimization was attempted it should be noticed that

1 amines with bulky groups elther in 26 -positions of the ring (1ga and 1ha) or at the $\mathbb{N}$-position (1ad, lae, laf and 1 fd ) did not exert any significant effect on the reaction times and yields of 2 ,

2 N-benzylamines (1aq, $\underline{\mathbf{1 b g}}$ and $\mathbf{1 c q}$, reacted consistently faster than $N$-alkylamines with another N -substatuent of comparable or smaller saze; the N -benzyl group was lost exclusively, confirming a previous observation in the reaction of tertiary amines with nitrous acid, ${ }^{2}$ however, a further, more extensive report ${ }^{3}$ was unable to establish such a
clearcut propensity;
3 with the exception of the $N$-benzyl group, the smaller $N$-alkyl substituent was lost preferentially, but this propensity was less prominent as the alkyl chain became longer (compare laf with lab, lac with 1ae). This observation is in agreement with analogous experiments carried out with " $\mathrm{HNO}_{2}$ ", with the exception of an ambigous report on N -ethyl-N-methyl-4-nitrobenzeneamune (1fb); 4

4 branching, as in 1ad and 1fd, did not influence the propensity of the smaller group to be lost preferentally,

5 any substituent in a key location, like the para position with respect to the
 only the rate was slightly reduced by electron withdrawing substituents;

6 as previously shown, ${ }^{1}$ seemingly small changes of the reaction catalyst caused dramatic variations in the reaction outcome;

7 side products were aromatic nitro compounds and eventually their $N$-dealky-lation-N-nitrosation products, but when the rate of the disappearance of the amıne was high, these processes did not set in Ring nitrations, when they occurred, preceded any eventual N -nitrosation;

8 electron releasing groups in ortho- and para-position seemed to accelerate the reaction, the latter induced some ortho-nitration of the substrate, which was also eventually efficiently N -nitrosated,

9 C-nitrosation products were never detected.
Preparative N -dealkylation-N-nitrosation of aromatic tertiary amınes using acidified sodium nitrite has been described, but the procedure has the obvious limitation of the apphcability only to some $2,4,6$-trisubstituted ${ }^{5}$ and nitrosubstituted ${ }^{6}$ benzeneamines, because of the occurrence of ring reactions.

A final consideration pertains to the usefuiness of the reaction Besides offering a prompt route to $N$-nitrosamines, starting from relatively cheap and readily avalable chemicals, like $N$-permethylated amines, with recyclable effluents ( $n$-butanol and $B N$ ) in small amounts and easily separated by conventional distillation from the reaction moxture, the products themselves are convenient precursor of N -dealkylated amunes in many cases (by well known procedures ${ }^{3}, 4,7$ ), 1,1-disubstatuted hydrazines (by reductions with a number of reagents ${ }^{8}$ ) and 4 -nitroso aromatic secondary amines (by Fischer-Hepp rearrangement ${ }^{9}$ of the 4 -unsubstituted 2) The synthetic scope of N -nitrosamines has also been recently widened by their umpolung ${ }^{10}$ In most cases the present route to $\underline{2}$ appears by far and many means more convenient than $N$-nitrosation of a secondary amine The interest for N-dealkylation, at the same time, is well documented by a number of recent publications, introducing more or less efficient, economic, general and handy procedures, ${ }^{11}$ often not at all amenable to large scale preparations

We have consistently used n-butyl nitrite in our experiments, as a convenient reagent which is commercially available and may be easily prepared in the laboratory ${ }^{12}$ Optimizations were not carried out, they might obviously involve also the change of the alkyl moiety of the ester

Identification of all the compounds prepared according to this unprecedented procedure was performed by comparison of known chemicals and by careful studies of their spectral and MS properties with supplemental information from thermal degradation (reductive N -denitrosation and "HNO" elimination in the case of N -nitrosamines 2 ) ${ }^{1}$ in the GC injector and from GC properties ${ }^{13}$ Amine 1ga gave a product 2k, which was identified on the basis of comparison with authentic 2,6-dusopropyl-N-methyl-3-nitro-N-nitrosobenzeneamine (2ka), as 2,6-dinsopropyl- N -methyl-4-nitro- N -nitrosobenzeneamine (2k) The reaction of BN with $\mathrm{N}, \mathrm{N}, 4$-trimethylbenzeneamine (1ba) gave a C -nitro- N -nitroso derivative (2i), which was identified as the $2-1 s o m e r ~ b y ~ c o m p a r i s o n ~(m p, ~ m u x e d ~ m p, ~ G C ~ p r o p e r t i e s, ~$ MS, IR, ${ }^{1} \mathrm{H}$ NMR) with the 3 -1somer (2a), namely $\mathrm{N}, 4$-dimethyl-3-nitro-N-mitrosobenzeneamine ${ }^{14}$

## Experimental Part

WARNING - Anybody wishing to repeat these experiments or carry out simular reactions should be well aware of the known inherent or potental toxacological dangers in handling most of the chemicals used or produced in this work. Thus, safe working conditions are required and decrease of the toxac potential of muxtures and products (before transportation) should be ensured for final disposal

Table 1. Reactions of Tertiary Aromatic Amınes (1) with n-Butyl Nitrite (BN)

| Starting Amine (compd) | Reaction <br> time, min | Reaction products (compd, yreld \%) |
| :---: | :---: | :---: |
| $\begin{gathered} \mathrm{Ph}^{2} \mathrm{NMe}_{2} \\ (\underline{\text { laa }})^{1} \end{gathered}$ | 20 | $\mathrm{Ph}-\mathrm{NNOMe}$, $\left(\right.$ 2aa, 87 ) $13 \mathrm{ga,22,23,24} \quad \begin{array}{c}\text { 4- } \mathrm{NO}_{2}-\mathrm{Ph}-\mathrm{NNOMe} \\ \text { (2fa, 8.7) }\end{array}$ |
| Ph-NMeEt (1ab) | 20 |  |
| $\mathrm{Ph}-\mathrm{NMePr}$ (1ac) | 20 |  |
| $\begin{aligned} & \mathrm{Ph}-\mathrm{NMe}(1-\mathrm{Pr}) \\ & (\underline{\text { lad })} \end{aligned}$ | 20 |  |
| $\mathrm{Ph}-\mathrm{NMeBu}$ (lae) | 18 |  |
| $\begin{aligned} & \text { Ph-NMeHex } \\ & (1 \mathrm{af}) \end{aligned}$ | 20 | $\mathrm{Ph}-\mathrm{NNOMe}$, $\mathrm{Ph}-\mathrm{NNOHex}$, 4- $\mathrm{NO}_{2}$ - Ph -NMeHex <br> (2aa, 11) $(\underline{\text { (2af }}, 58) 26$ $(\underline{\text { (ff }}, 17)$ |
| $\begin{aligned} & \text { Ph-NMeBn } \\ & (\underline{1 \mathrm{aq}}) \end{aligned}$ | 5 | $\begin{aligned} & \text { Ph-NNOMe } \\ & \text { (2aa, } 94 \text { ) } \end{aligned}$ |
| $\begin{aligned} & \text { 4-Me-Ph-NMe } \\ & (\underline{\text { lba }}) \end{aligned}$ | 10 | 4-Me-Ph-NNOMe, $(\underline{2 \mathrm{ba}}, 81)^{4,139,22} 27$ $\begin{gathered} 4-\mathrm{Me}-2-\mathrm{NO}_{2}-\mathrm{Ph}-\mathrm{NNOMe} \\ (\underline{2 \mathrm{i}}, 68) \end{gathered}$ |
| $\begin{aligned} & \text { 4-Me-Ph-NMeBn } \\ & (1 \mathrm{bg}) \end{aligned}$ | 4 | 4-Me-Ph-NNOMe <br> (2ba, 93) |
| $\begin{aligned} & 4-\mathrm{Me}-\mathrm{Ph}-\mathrm{NEtBn} \\ & (\underline{\mathrm{Icq})} \end{aligned}$ | 4 | $\begin{gathered} 4-\mathrm{Me}-\mathrm{Ph}-\mathrm{NNOEt} \\ (2 \mathrm{cb}, 91)^{28} \end{gathered}$ |
| $\begin{aligned} & \text { 4-MeO-Ph-NMe } \\ & (\text { (da) } 1, b \end{aligned}$ | 5 | $\begin{array}{cc} 4-\mathrm{MeO}-\mathrm{Ph}-\mathrm{NNOMe}, & 4-\mathrm{MeO}-2-\mathrm{NO}_{2}-\mathrm{Ph}-\mathrm{NNOMe} \\ (2 \mathrm{daa}, 85.5) & (2 \mathrm{~L}, 114) \end{array}$ |
| $\begin{aligned} & 4-\mathrm{Br}-\mathrm{Ph}-\mathrm{NM}_{2} \\ & \left(\underline{\text { 1ea })^{1}}\right. \end{aligned}$ | 15 | $\begin{gathered} 4-\mathrm{Br}-\mathrm{Ph}-\mathrm{NNOMe} \\ (\text { 2ea, } 88) \end{gathered}$ |
| $\begin{aligned} & 4-\mathrm{NO}_{2}-\mathrm{Ph}_{4}-\mathrm{NM}_{2} \\ & (1 \mathrm{fa}) \end{aligned}$ | 25 | $\begin{gathered} 4-\mathrm{NO}_{2}-\mathrm{Ph} \text {-NNOMe } \\ (2 \text { fa, } 917)^{6} \end{gathered}$ |
| 4-NO2-Ph-NMeEt <br> (1fb) | 25 | $4-\mathrm{NO}_{2}-\mathrm{Ph}-\mathrm{NNOMM}_{2}$, $(\underline{2 \mathrm{fa}}, 24)$ $4-\mathrm{NO}_{2}-\mathrm{Ph}-\mathrm{NNOEt}^{2}$ $(\underline{2 \mathrm{fb}}, 67)^{29}$ |
| $\begin{aligned} & 4-\mathrm{NO}_{2}-\mathrm{Ph}-\mathrm{NMe}(1-\mathrm{Pr}) \\ & (\underline{\mathrm{fd})} \end{aligned}$ | 25 | $\begin{gathered} 4-\mathrm{NO}_{2}-\mathrm{Ph}-\mathrm{NNO}(1-\mathrm{Pr}) \\ (\underline{2 \mathrm{fd}}, 91) \end{gathered}$ |
| $\begin{aligned} & \text { 2,6-(1-1-Pra) }) \end{aligned}$ | 17 | $2,6-(1-\mathrm{Pr})_{2}-\mathrm{Ph}-\mathrm{NNOMe}, \quad 2,6-(1-\mathrm{Pr})_{2}-4-\mathrm{NO}_{2}-\mathrm{Ph}-\mathrm{NNOMe}$ <br> (2ga, 897 ) <br> (2k, 3 2) |
| $\begin{aligned} & 2,4,6-(\mathrm{Me})_{3}-\mathrm{Ph}-\mathrm{NMe}_{2} \\ & (\text { 1ha) }) \end{aligned}$ | 10 | $\begin{gathered} 2,4,6-(\mathrm{Me})_{3} \text {-Ph-NNOMe } \\ (2 \mathrm{Pha}, 93)^{5 \alpha} 30 \end{gathered}$ |

a Isolated yield bTwice the usual amount of $\mathrm{NH}_{4} \mathrm{Cl}$ was used in order to optimize the yield of 2da Under the usual conditions, the time for the consumption of 1 da was 10 min
Table 2. Properties of Some Amines (1) and N-Nitrosamines (2)

| Compd | $\operatorname{mpa}_{\mathrm{bp} / \mathrm{Pa}^{( }\left({ }^{\circ} \mathrm{C}\right) \text { or }}^{\left({ }^{\circ} \mathrm{C} / \mathrm{Pa}\right)}$ | IR ${ }^{\text {b }}\left(\mathrm{cm}^{-1}\right)$ | 1H NNRe ( $\delta, \mathrm{ppm}, \mathrm{J}, \mathrm{Hz}$ ) | MSd (m/z; rel\%) |
| :---: | :---: | :---: | :---: | :---: |
| 1fc | 58 | $\begin{aligned} & 2940,1590,1520,1473, \\ & 1386,1305,1285,1210, \\ & 1190,1105,1097,960, \\ & 818,750 \end{aligned}$ | $\begin{aligned} & 0.96(t, 3 H, J=7.34), \quad 1.42-1.90 \\ & (m, 2 H), 6.58(d, 2 H, J=9.53), \\ & 8.09(d, 2 H, J=953) \end{aligned}$ | $\begin{aligned} & 165(100), 119(75), 194 \\ & \left(M^{+}, 57\right), 77(18), 42 \\ & (18), 149(11), 91(11) \end{aligned}$ |
| 1 fd | 51 | 2940, $2900,1600,1571$, $1505,1468,1386,1320$, $1295,1195,1160,1105$, $1038,818,750$ | 1.24(d, 6H, J=6 35), 2.87(s, 1H), 4.22 (septet, $1 \mathrm{H}, \mathrm{J}=6.35$ ), 6.65(d, $2 \mathrm{H}, \mathrm{J}=9.53$ ), $809(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.53$ ) | $\begin{aligned} & 179(100), 133(77), 194 \\ & \left(\mathrm{H}^{+}, 55\right), 77(19), 117 \\ & (13), 105(13), 163(12) \end{aligned}$ |
| 1fe | 77 | $\begin{aligned} & 2920,2900,2840,1592, \\ & 1515,1473,1385,1290, \\ & 1205,1190,1100,989, \\ & 815,748 \end{aligned}$ | $\begin{aligned} & 0.78-1.89(\mathrm{~m}, 7 \mathrm{H}), \quad 3.07(\mathrm{~s}, 3 \mathrm{H}), 3.43 \\ & (\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=7.40), 6.58(\mathrm{~d}, 2 \mathrm{H}, \\ & \mathrm{J}=9.53), 8.10(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=9.53) \end{aligned}$ | $\begin{aligned} & 165(100), 119(59), 208 \\ & \left(\mathrm{~K}^{+}, 28\right), 77(2), 104(1), \\ & 91(1) \end{aligned}$ |
| 1ff | 72 | $\begin{aligned} & 2920,2900,2830,1595, \\ & 1520,1475,1456,1378, \\ & 1277,1190,1100,985, \\ & 819,750 \end{aligned}$ | $\begin{aligned} & 0.72-182(\mathrm{~m}, ~ 11 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), \\ & 3.42(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=7.40), 6.57(\mathrm{~d}, 2 \mathrm{H}, \\ & \mathrm{J}=953), 809(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=9.53) \end{aligned}$ | $\begin{aligned} & 165(100), 119(64), 236 \\ & \left(M^{+}, 39\right), 149(8), 77(8), \\ & 105(6), 91(6) \end{aligned}$ |
| 2 fc | 112 | $\begin{aligned} & 1595,1518,1490,1437, \\ & 1415,1338,1315,1303, \\ & 1167,1082,978,850, \\ & 750,686 \end{aligned}$ | $\begin{aligned} & 0.93(\mathrm{t}, 3 \mathrm{H}, \mathrm{~J}=7.15), 1.34-187 \\ & (\mathrm{~m}, 2 \mathrm{H}), 403(\text { pseudo } \mathrm{t}, 2 \mathrm{H}), \\ & 776(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=935), 8.36(\mathrm{~d}, \\ & 2 \mathrm{H}, \mathrm{~J}=935) \end{aligned}$ | $\begin{aligned} & 179(100), 133(88), 105 \\ & (53), 151(46), 209\left(\mathrm{IN}^{+},\right. \\ & 31), 77(29), 120(17) \end{aligned}$ |
| 2fd | 57 | $\begin{aligned} & 3030,1520,1460,1445, \\ & 1370,1335,1316,1130, \\ & 1270,892,850,750, \\ & 727,688 \end{aligned}$ | two separate $\mathrm{d}, 6 \mathrm{H}$, centered at 1.30 and 1.54, $\mathrm{J}=6.84,5.16$ (m, $1 \mathrm{H}), 7.62(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.28), 8.37(\mathrm{~d}$ 2H, J=9.28) | $\begin{aligned} & 133(100), 179(93), 117 \\ & (52), 76(49), 149(44), \\ & 91(30), 50(30), 209\left(\mathrm{~K}^{+},\right. \\ & 27) \end{aligned}$ |
| 2fe | 87 | $\begin{aligned} & 3040,2920,2840,1591, \\ & 1510,1465,1338,1300 \text {, } \\ & 1165,1078,1003,842, \\ & 746,680 \end{aligned}$ | $\begin{aligned} & 0.59-2.02(\mathrm{~m}, 7 \mathrm{H}), 406(\mathrm{t}, 2 \mathrm{H}, \\ & \mathrm{J}=7.32), 7.76(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=9.28), \\ & 8.35(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=928) \end{aligned}$ | $\begin{aligned} & 151(100), 193(94), 105 \\ & (72), 43(70), 134(44), \\ & 223\left(\mathrm{M}^{+}, 34\right) \end{aligned}$ |

Table 2. (continuation)

| Compd | $\begin{gathered} \operatorname{mpa}^{2}\left({ }^{\circ} \mathrm{C}\right) \text { or } \\ \mathrm{bp} / \mathrm{Pa}^{2}\left({ }^{( } \mathrm{C} / \mathrm{Pa}\right) \end{gathered}$ | IR ${ }^{\left(\mathrm{cm}^{-1}\right)}$ | 1H MMRe ( $\delta$, ppm, J, Hz) | MSd (m/z; rel\%) |
| :---: | :---: | :---: | :---: | :---: |
| $\underline{2 g a}$ | 98 | $\begin{aligned} & 2940,2900,2840,1585, \\ & 1455,1428,1380,1360, \\ & 1213,1065,1048,1016, \\ & 803,688 \end{aligned}$ | $\begin{aligned} & 1.16(\mathrm{~d}, 6 \mathrm{H}, \mathrm{~J}=6.97), 1.22(\mathrm{~d}, 6 \mathrm{H}, \\ & \mathrm{J}=6.97), 231-2.93(\mathrm{~m}, 2 \mathrm{H}), 3.36 \\ & (\mathrm{~s}, 3 \mathrm{H}), 718-7.62(\mathrm{~m}, 3 \mathrm{H}) \end{aligned}$ | $\begin{aligned} & 190(100), 175(88), 160 \\ & (86), 132(45), 91(45), \\ & 118(42), 220\left(\mathbf{M}^{+}, 1\right) \end{aligned}$ |
| $\underline{2 k}$ | 124 | $\begin{aligned} & 3020,2940,1523,1440, \\ & 1345,1200,1072,1005 \text {, } \\ & 947,893,752 \end{aligned}$ | $\begin{aligned} & 122-147 \text { (complex pattern, 12H), } \\ & 251-3.18(\mathrm{~m}, 2 \mathrm{H}), 339(\mathrm{~s}, 3 \mathrm{H}), \\ & 757(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=183), 776(\mathrm{~d}, 1 \mathrm{H}, \\ & \mathrm{J}=1.83) \end{aligned}$ | $\begin{aligned} & 235(100), 201(59), 172 \\ & (44), 144(37), 185(35), \\ & 158(33), 187(30), 132 \\ & (28), 265\left(\mathrm{M}^{+}, 1\right) \end{aligned}$ |

[^0]Inalytical equipment and procedures used dunng this work were descmbed zere. 1
Laterials - $n$-Butyl nitrite (BN) was prepared as described 12,15 and its purity was ained by IR. BN could be stored without loss of punty at $-20^{\circ} \mathrm{C}$ in the dark for ca. veek For longer storage times, the compound was redistilled before use. Simple tic amines (laa, lab, 1ba and 1ea) were commercially available. N,N,4-Trimethyl-3benzeneamine (1ia) was prepared as described. ${ }^{16} \mathrm{~N}, \mathrm{~N}$-Dimethylarylamine lfa was Jusly described by us,17 1da, 1ga and 1ha were prepared after the reported dure 17 Mono-N-alkylations of primary amines 4-nitrobenzeneamine (3) and hylbenzeneamine (4) were performed to obtain N-ethyl-4-mitrobenzeneamine (3b), ropyl-4-nitrobenzeneamine (3d) and $N$-benzyl-4-methylbenzeneamine (4g), stively, using a modification ${ }^{18}$ of the N -permethylation procedure $\left(\mathrm{NaBH}_{4}-\mathrm{RR} \mathrm{NCO}^{\prime}\right.$ ). ${ }^{17}$ Mono-N-alkylations of secondary amines $3 \mathrm{~b}, 3 \mathrm{~d}, 4 \mathrm{~g}$ and N -methylbenzeneamine were performed by an extension of the $N$-permethylation procedure ${ }^{17}$ obtaining 1fb, $\mathrm{bg}, 1 \mathrm{cg}, 1 \mathrm{ac}, 1 \mathrm{ad}, 1 \mathrm{ae}, 1 \mathrm{af}$ and 1ag, respectively 1,6-Dusopropyl-3-nitrobenzeneamine (6) was prepared according to a reported dure ${ }^{19} \quad 2,6$-Dusopropyl-N-methyl-3-nitrobenzeneamine (6a) was prepared by the methylation procedure ${ }^{17}$ using a 1.1 equivalent of formaldehyde the reaction -e containing 6, 6a and 2,6-dusopropropyl-N,N-dimethyl-3-nitrobenzeneamine (6aa) in pproximate ratios (GC-peak areas ratios) 1.8 .4 was treated with nitrous acid ${ }^{15}$ to the $N$-nitrosoderivative 2ka of 6a, whose GC properties and thermolysis-GC-MS rties were definitively different from those of $\mathbf{2 k}$ the only observable product was both cases the corresponding N-denitrosation-N-hydrogenation derivative nsopropyl-N-methyl-3-nitrobenzeneamine $\mathbf{6 a}$ and 2,6-disopropyl-N-methyl-4-nitroneamıne 7a, respectively) with distinct GC20 and MS 21
1 -Dealkylation- $N$-mitrosation General Procedure - A mixture of the amine 1 (4 28
BN ( 2140 mmol ), water $(428 \mathrm{mmol})$ and ammonium chloride ( 0428 mmol ) was ed under an inert atmosphere for the time necessary for the complete searance of the amine ( $<1 \%$ ) as monitored by GC Volatile material was then rated in vacuo (ca 2660 Pa ) and the residue was purified by column atography on alumina (BDH, Grade I, neutral) using hexane-ether mixtures and/or ents of appropriate concentrations The yields reported in Table 1 refer to pure ated products Table 2 enlists the physical properties, IR, NMR and MS of all the osamines as well as those of side products prepared for the first time by us, the 3 were identical with autentic specimen prepared according with hterature
tcknowledgements - This work was supported in part by grants to AGG (CNR .4903, CNR 890376503 , MPI 1987-1989 40\% and 60\%) and to GV (MPI $198760 \%$ and $40 \%$ ). The authors are grateful to Miss. G. Favret for helpful assistance in many $s$ of the work during the course of her thesis work for a degree in Food Sciences is institution, Mr $P$ Polese for technical assistance and Mr P Padovam for expert imental maintenance

## erences and Notes

lerardo, G, Giumanını, A G, Strazzolını, P Tetrahedron, 1990, 46, 4303 Negler R, Frank, W Ber Dtsch Chem Ges 1936, 69, 2071 ミmath, P A S, Leoppky, R. N J Am Chem Soc 1967, 89, 1147 Jrowley, G P, Milton, $G$ J G, Reade, T H, Todd, W M, J Chem Soc 1940, 1286. a) Emerson, W S J Am Chem Soc 1941, 63, 2023 (b) Glaser, H, Moller, F, ${ }^{2}$ leper. G, Schroter, R, Splelberger, G, Soll, H In Methoden der Organischen 'hemie (Houben-Weyl), 4th ed, Muller, E, Ed, G Thieme Verlag Stuttgart, 1957, lol XI/1, pp 979-980 and references cited therein
Yacmplian, W G, Reade, T H J Chem Soc 1929, 2863
a) Enders, D, Hassel, T., Pieter, R, Renger, B, Seebach, D Synthesis 1976, 548 b) Thompson, J T, Wilhams, D L $\mathrm{H} J$ Chem Soc, Perkin trans 2 1977, 1932 (c) Hallett, G, Johal, S, Meyer, T A, Wilhams, D L H In N-Nitroso ompounds Analysis, Formation and Occurrence, Walker, E A, Griciute, L, Jastegnaro, M, Borzsonyı, M, Eds, IARC Scientific Publications Lyon (France), 1980, Vol 31, pp 31-41 (d) Kano, S, Tanaka, Y, Sugino, E, Shıbuya, S, Hibino, S jynthesis 1980, 741 (e) Challis, B C, Challis, J A In The Chemistry of Amino, litroso and Nitro Compounds and their Derivatives, Patal, S, Ed, Wiley New York, 1982, Supplement F, Part 2, pp 1179-1183 and 1191-1194 (f) Walters, C
L.; Eisenbrand, G. In Environmental Carcinogens. Selected Methods of Analysis; Egan, H, Ed.; IARC Scientific Publications: Lyon (France), 1983; Vol. 45, pp 467-490 (g) Williams, D. L. H. In Advances in Physical Organic Chemistry; Golden, V., Bethell, D., Eds.; Academic Press• New York, 1983; Vol. 19, pp 407-413. (h) Lunn, G., Sansone, E. B J. Org. Chem 1984, 49, 3470. (1) Lunn, G.; Sansone, E B Synthesis 1985, 1104 (J) Ohta, T., Kojıma, K, Takitani, S. Chem Pharm Bull 1987, 35, 3943. (k) Willams, D L H In Nitrosation, Cambridge University Press: New York, 1988, pp 128-141.
8. (a) Enders, E In Methoden der Organischen Chemie (Houben-Weyl), 4th ed, Muller, E., Ed; G Thieme Verlag Stuttgart, 1967; Vol X/2, Part 2, pp 224-230 (b) See reference 7e pp 1188-1189.
9 (a) Shine, H J. In Aromatic Rearrangements, Elsevier Amsterdam, 1967, pp 124-271 (b) Willams, D L H In The Chemistry of Amino, Nitroso and Nitro Compounds and their Derivatives, Patal, S, Ed, Wley. New York, 1982, Supplement F, Part 1, pp 127-153 (c) See reference 7k pp 113-125
(a) Seebach, D ; Enders, D
(a) Bernardi, L, Bosisio, G J Chem Sac., Chem Commun 1974, 690 (b) Montzka, T A, Matıskella, J D, Partyka, R A Tetrahedron Lett. 1974, 14, 1325. (c) Murahashı, S I; Yano, T J Chem Soc, Chem Commun 1979, 270. (d) Dopp, D., Heufer, J Tetrahedron Lett 1982, 23, 1553 (e) Maryanoff, B E., Molnar1, A J, McComsey, D F. Maryanoff, C A J org Chem. 1983, 48, 5074. (f) Olofson, R A, Martz, J T, Senet, J P, Piteau, M, Malfroot, T J Org. Chem. 1984, 49, 2081 (g) Okazakı, R, Tokıtoh, N J Chem Soc, Chem. Commun 1984, 192 (h) Monkovic, I, Wong, H, Bachand, C Synthesis 1985, 770
12 Miller, M W, Audrieth, L F In Inorganic Synthesis, Fernelius, W C, Ed, Robert E Krieger Publishing Company New York, 1978, Vol II, pp 139-140
13 N -Nitrosamines, due to a $\pi$-contribution to the $\mathrm{N}-\mathrm{N}$ bond, usually have rotational barner above $20 \mathrm{kcal} / \mathrm{mol}$ [(a) Shur, H In Anwendungen der Kernmagnetischen Resonanz in der Organischen Chemie, Bredereck, H, Muller E, Eds, Spnng-Verlag Berln, 1965; pp 338-341] Their ${ }^{1 H}$ NMR spectra are therefore expected to show well defined patterns for the possible conformers at equinbrium at room temperature ${ }^{13}$ a On the other hand, steric hindrance may favor a single form [(b) Karabatsos, G J, Taller, R A J Am Chem Soc 1957, 79, 6136]. The phenyl ring appeared twisted to a significant extent even in ortho-unsubstituted aromatic nitrosamines [(c) D'Agostino, J T; Jaffe, H H J Am chem Soc 1970, 92, 5160, (d) Caminatı, W., Glumanini, A G J Mol Struct 1987, 162, 255] with the result of causing much less steric hindrance to the oxygen than, say, a tert-butyl group [(e) D'Agostino, J T, Jaffe, H H J Am Chem Soc 1969, 91, 3383]; the N-methyl group always ends up $100 \%$ on the oxygen side [(f) D'Agostino, J T, Jaffe, H H J. Org chem 1971, 36, 992] The situation for an $N$-sopropyl group is intermediate, as confirmed by our present observations on 2ad and 2fd, for which the rotamers ratio was identical, within experimental error, and equal to that found previously ${ }^{13} \mathrm{f}$ for the former All of the $N$-methylnitrosamines exhibited a single peak for the methyl protons, which was a good indication for the presence of a single rotamer [(g) Looney, C E, Philhps, W D, Relly, E L J Am Chem Soc 1957, 79, 6136], which is believed to be the one with the alkyl group on the same side of the oxygen ${ }^{13 \mathrm{~b}, 13 \mathrm{f}}$ the positions of the peaks were found essentially insensitive to any ring substitution This fact reaffirms the tenuous conjugation between the ring and the mitrosamino function A small, but consistent shift to lower field of the methyl proton resonances in $\mathrm{CDCl}_{3}$ with respect to those recorded in $\mathrm{CCl}_{4}{ }^{13} \mathrm{f}$ reflected the H-bonding properties of the former solvent for the oxygen pole The closer association of the N -mitrosamines with the solvent might rationaluze the total absence of the anti-rotamer in our spectra even - and a fortion - when ortho-substituents strongly presented coplanarity of the benzene hexagon with the functional group (steric hindrance to solvation). Space filling molecular models and perhaps eleztronic considerations (the methyl protons are certanly rather polarized [(h) Haszeldme, R N, Mattison, B J H J Chem Soc 1955, 4172]) permit to rationalize the absolute preference for syn configuration even for molecules presenting the quasi orthogonal position of the phenyl group The compound $2 \mathbf{k}$, though, showed additional complications in the ${ }^{1} \mathrm{H}$ NMR pattern for the isopropyl
resonances perhaps due to some different rather frozen populations of rotamers or, better, the non identity of the isopropyl groups, due to a twisted ring in a configuration frozen by the action of resonance between part of the $s p^{2}$ lone pair of the amine nitrogen and the strongly conjugating nitro group. The latter hypothess was confirmed by the pair doublets for the non equivalent aromatic protons. Minor concentrations of anti rotamers were evidenced from the spread $\alpha$-methylene resonance in the spectra of higher homologues from ethyl upword.
14. (a) Pinnow, J. Ber. Dtsch. Chem Ges. 1895, 28, 3039. (b) Vorlánder, D.; Siebert, E. J. Ber. Dtsch. Chem. Ges. 1919, 52, 283.
15. Vogel, A. In Vogel's Textbook of Practical Organic Chemistry, including Quantitative Organic Analysis, 4th ed.; revised by Furniss, B. S., Hannaford, A. J., Roger, V., Smith, P. W. G., Tatchell, A. R.; Longman: New York, 1978.
16. Crocker, H. P.; Jones, B. J. Chem. Soc. 1959, 1808. IR (KBr) 3000, 2940, 2900, 2870 , 2785, 1628, 1510, 1445, 1421, 1403, 1380, 1350, 1237, 1220, 1064, 880, 830, 807, 760, 722 $\mathrm{cm}^{-1}$; $^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 80 \mathrm{MHz}$ ) 2.44(s, 3H), $2.96(\mathrm{~s}, 6 \mathrm{H}), 6.70-7.62(\mathrm{~m}, 3 \mathrm{H}) ; \mathrm{MS}(70 \mathrm{eV})$ $\mathrm{m} / \mathrm{z}$ 180(M+, 100), 91(70), 134(57), 133(56), 163(55), 118(50), 135(44), 77(28), 132 (24); $m p 38^{\circ} \mathrm{C}$.
17. (a) Giumanını, A. G.; Verardo, G.; Gel, M. H.; Lassuani, L. J Labelled Comp. Radiopharm. 1987, 24, 255. (b) Gıumanıni, A. G.; Verardo, G.; Poiana, M. Boll. Chim. Farm 1987, 126, 129.
18. Verardo, G.; Giumaninı, A. G.; Pouana, M.; Strazzolinı, P. in course of publication.

19 Giumaninı, A. G.; Verardo, G.; Poiana, M. J. Prakt. Chem. 1988, 330, 161
20. Elution times: $9^{\prime} 14^{\prime \prime}$ for 6a and $8^{\prime \prime} 40^{\prime \prime}$ for 7a; fused suluca column, 30 m long, 032 $\mathrm{mm} 1 \mathrm{~d} .$, Supelchem ${ }^{\mathrm{R}}$ SE-54, carrier gas helium, flow rate $1 \mathrm{~mL} \mathrm{man}^{-1}$.
21. $6 \mathrm{G} . \mathrm{MS}(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}$ 176(100), 236( $\left.\mathrm{M}^{+}, 80\right), 132(56), 148(54), 146(47), 191(44), 221(41)$, 160(41); 7a: MS (70 eV) m/z 201(100), 160(85), 158 (29), 236(M+, 27), 132(24), 221(20), 175(19), 187(16).
22. Schmadt, E.; Fischer, H. Ber Dtsch, Chem. Ges 1920, 53, 1529.
23. Pensabene, J. W., Fiddler, W.; Dooley, C.; Calvin, J.; Doerr, R. C.; Wasserman, A. E. J. Agr. Food Chem 1972, 20, 274.
24. Lovejoy, D. J., Vosper, A. J. J Chem. Soc. A 1968, 2325.
25. Frienz-David, H. E.; Blangey, L.; Kaul, H. Helv. Chim Acta 1946, 29, 1765.
26. Willenz, J. J. Chem. Soc. 1955, 1677
27. Hodgson, H. H.; Kershaw, A. J. Chem Soc 1929, 277
28. Stroh, H. Chem Ber. 1958, 91, 2645
29. Stoermer, R. Ber Dtsch. Chem. Ges. 1898, 31, 2523.
30. Horner, L., Hubenett, F. Justus Liebigs Ann Chem. 1953, 579, 193.


[^0]:    Melting and boiling points are uncorrected bSpectra were recorded on neat liquids and in KBr for solids Meiting and boiling points are uncorrected
    aSpectra recorded in $\mathrm{CDCl}_{3}$ solutions using amines with background substraction between 35 and $450 \mathrm{u} \quad \mathrm{N}$-Nitrosamine spectra were recorded on very pure specimens by vaporization into the ion source from a solid probe between room temperature and $100^{\circ} \mathrm{C}$ as suitable. These compounds do not usually withstand the high temperatures of the GC injector, yielding imines (by loss of HNO ) and, in larger proportions, the denitrosated amines by a radıcal hydrogen abstraction from solvent.

