Experimental Section7

2-[(2-Chloroethyl)ethylamino]-2'.6'-acetoxylidide Hydrochloride.—2-[Ethyl(2-hydroxyethyl)amino]-2',6'-acetoxylidide (13.8) g, 0.055 mol) in 50 ml of CHCl₃ was cooled in an ice bath. A solution of SOCl₂ (13.1 g, 0.110 mol) in 50 ml of CHCl₃ was added slowly with stirring. The mixture was warmed on a water bath for 2 hr at 50-60°. The excess SOCl₂ and CHCl₃ were removed in vacuo, and the residual oil was triturated with dry C₆H₆ until crystallization occurred. The solid material was removed by filtration and recrystallized repeatedly from C₆H₆-CHCl₃. The yield was 6.2 g of product melting at 152-154°. Anal. (C14H22Cl2N2O): C, H, N

2-[(2-Chloroethyl)ethylamino]ethyl 4-Butoxybenzoate HCl.— 2-[Ethyl-(2-hydroxyethyl)amino]ethyl 4-butoxybenzoate (6.2 g, 0.02 mol) was dissolved in 20 ml of CHCl₃. A solution of SOCl₂ (6.0 g, 0.05 mol) in 20 ml of CHCl₃ was added in small portions with stirring. The mixture was heated for 4 hr at 65-70° on a water bath. The mixture was concentrated *in vacuo* to a thick oil. The residue was cooled and triturated with petroleum ether to induce crystallization. The product was recrystallized repeatedly from a C₆H₆-petroleum ether mixture. The yield of pure material melting at 103-105° was 0.9 g. Anal. (C₁₇H₂₇Cl₂- NO_3): C, H, N.

(7) Melting points were taken in a Thomas-Hoover Unimelt apparatus and are uncorrected. Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4\%$ of the theoretical values.

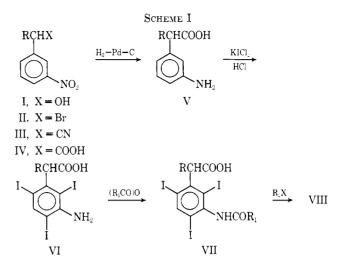
Radioopaque Contrast Media. XVIII.¹ Derivatives of

2-(3-Amino-2,4,6-triiodophenyl)alkanoic Acids

ERNST FELDER, DAVIDE PITRÈ, LUCIANO FUMAGALLI, AND ENRICO LORENZOTTI

> Research Laboratories, Bracco Industria Chimica SpA, Milan, Italy

> > Received October 29, 1969


In connection with our studies concerning X-ray contrast media and particularly with the search for new oral cholecystographic agents² a number of derivatives of 2-(3-amino-2,4,6-triiodophenyl)alkanoic acids have been synthesized for biological evaluation.

$$I \xrightarrow{\begin{array}{c} R \\ CHCOOH \\ I \end{array}} I$$

$$I \xrightarrow{\begin{array}{c} NCOR_1 \\ R_2 \end{array}} VIII$$

We were specially interested in the relationship between structure and biological activity such as intestinal absorption, toxicity, and biliary and urinary excretion within a homogenous group of substances.

The synthetic steps leading to the title compounds are outlined in Scheme I.

Pharmacology.—The compounds were tested by Dr. G. Rosati for acute toxicity and biliary and urinary excretion.

For determination of intravenous and oral acute toxicity aqueous solutions of the Na salts were administered in mice and the LD₅₀ was determined after 3 days following the method of Litchfield and Wilcoxon.3 Excretion studies were done in the rabbit, collecting bile and urine through catheters for 3 hr after intravenous injection of 100 mg/kg of the aqueous solution of the Na salts. Total I₂ was determined, after digestion, by the Sandell-Kolthoff reaction4 with a Technikon autoanalyzer⁵ and results calculated as per cent of administered dose.

Table I 1-(3-Nitrophenyl)alkanols (I)

No.	R	Mp or bp (mm), °C	Yield, %	Formula	Analyses
1	CH_3	62.5^a	80^a	$C_8H_9NO_3$	
2	$\mathrm{C_2H_5}$	$163 (2)^{b}$	95^{5}	$\mathrm{C_9H_{11}NO_3}$	
3	$\mathrm{C_3H_7}$	173 (4)	92	$C_{10}H_{13}NO_{3}$	C, H, N
α Li	t ⁸ mp 62	.5°: vield 76	3%. b Lit	.9 bp 170-172°	(12 mm).

TABLE II 1-(3-Nitrophenyl)alkyl Bromides (II)

No.	R	Mp or bp (mm), °C	$_{\%}^{ m Yield}$	Formula	Analyses			
4	CH_3	42	55	$\mathrm{C_8H_8BrNO_2}$	C, H, Br, N			
5	C_2H_5	153 (3)	58	$\mathrm{C_9H_{10}BrNO_2}$	C, H, Br, N			
6	$\mathrm{C_3H_7}$	150 (2)	55	$\mathrm{C}_{10}\mathrm{H}_{12}\mathrm{BrNO}_2$	Br^a			
^a Br: caled, 30.96; found, 30.18.								

The 2-(3-amino-2,4,6-triiodophenyl)alkanoic acids (Table VI) and their acyl derivatives (Table VII) showed predominantly urinary excretion; N-alkylation (Table VIII) enhanced biliary excretion.

For comparison iopanoic acid was tested under the same conditions giving LD_{50} p.o. = 1540 mg/kg and LD_{50} i.v. = 285 mg/kg (mouse), biliary excretion 28%, urinary excretion 13% (rabbit). For further investigation 200 mg/kg of compounds 37, 38, and 40 in suspension in 5% arabic gum solution were administered orally to dogs. Opacification of the gallbladder and of bile

^{(1) (}a) XVI, E. Felder, D. Pitrè, L. Fumagalli, H. Suter, and H. Zutter, Helv. Chim. Acta, 52, 1339 (1969); (b) XVII, D. Pitrè and L. Fumagalli, Chim. Ther., in press.

^{(2) (}a) D. Pitrè and L. Fumagalli, Farmaco, Ed. Sci., 18, 33 (1963); (b) D. Pitre and L. Fumagalli, ibid., 17, 340 (1962); (c) L. Fumagalli and D. Pitrè, ibid., 24, 568 (1969).

⁽³⁾ J. T. Litchfield and F. Wilcoxon, J. Pharmacol. Exp. Ther., 96, 99 (1949).

⁽⁴⁾ E. B. Sandell and J. M. Kolthoff, J. Amer. Chem. Soc., 56, 1426 (1939).

⁽⁵⁾ Technikon Instruments Corporation "N" Method File N-56.

Table III 2-(3-Nitrophenyl)alkanenitriles (III)

No.	R	Mp, °C	Bp(mm), °C	Crystn solvent ^a	Yield.	Formula ^b
7	CH_3	66	160-170 (5)	Λ	76	$\mathrm{C_9H_8N_2O_2}$
8	C_2H_5	44	147-150 (2)	В	48	$\mathrm{C_{10}H_{10}N_{2}O_{2}}$
9	C_3H_7	42	135-137 (0.02)	()	60	$\mathrm{C_{11}H_{12}N_{2}O_{2}}$

^a Final recrystallization: A, EtOH: B, hexane; C, petroleum ether. ^b All compounds were analyzed for C, H, N.

Table IV 2-(3-Nitrophenyl)alkanoic Acids (IV)

			Crystn	Yield,	
No_{ϵ}	R	M_{D} , $^{\circ}C$	$solvent^n$	E.	Formula b
10	CH_3	96	A	7.1	$C_9H_9NO_4$
11	C_2H_5	117-118	\mathbf{A}	74	$C_{10}H_{11}NO_4$
12	C_3H_7	95-97	В	45	$C_{11}H_{12}NO_4$

 $[^]a$ Final recrystallization: A, EtOH 50%; B, petroleum ether. b All compounds were analyzed for C, H, N.

 $TABLE \ V \\ 2-(3-Aminophenyl)alkanoic \ Acids \ (V)$

No.	R	Mp, °C	Crystn solvent"	Yield %	Formula ^c
13	CH_3	100-101	A	88	$\mathrm{C_9H_{11}NO_2}$
14^{b}	C_2H_5	60-61	В	86	$\mathrm{C}_{10}\mathrm{H}_{13}\mathrm{NO}_2$ ·
					H_2O
15	C_3H_7	110-111	A	87.5	$C_{11}H_{15}NO_2$

 $^{^{\}rm a}$ Final recrystallization: A, CHCla; B, H₂O. $^{\rm b}$ Monohydrate. H₂O determined by Karl Fischer method: calcd, 9.13; found, 9.21. $^{\rm c}$ Analyses C, H, N.

Experimental Section?

The general procedures are representative for the preparation of the compounds described in Tables I-VIII. Analyses, yields, and physical properties are recorded in the tables. Melting points were determined using the Tottoli melting point apparatus, and are uncorrected.

1-(3-Nitrophenyl)alkanols (1-3, Table I).—The 1-(3-nitrophenyl)alkanols were synthesized more efficiently by reduction of 3-nitroacetophenones with NaBH₄ in MeOH, than by the methods reported.^{8,9}

1-(3-Nitrophenyl)alkyl Bromides (4-6, Table II).—To a solution of 1-(3-nitrophenyl)alkanol (0.25 mol) in 200 ml of AcOH was added HBr (1N) in AcOH. The mixture was heated at 90-100° for 1 hr and then evaporated to dryness under reduced pressure.

2-(3-Nitrophenyl)alkanenitriles (7-9, Table III).—KCN (15 g, 0.23 mol) was added to a solution of 1-(3-nitrophenyl)alkyl bromide (0.2 mol) in 160 ml of EtOH, and the mixture was heated to reflux for 3 hr. EtOH was then evaporated under reduced pressure and the residue partitioned between 200 ml of Et₂O and 200 ml of H₂O. The H₂O layer was reextracted with three 240-ml portions of Et₂O. The combined Et₂O extracts were washed (H₂O) to neutrality, dried, and evaporated. The residual oil was distilled under vacuum and recrystallized from a suitable solvent.

Table VI 2-(3-Amino-2,4,6-triiodophenyl)alkanoic Acids (VI)

						Mouse	ouse toxicity			
			Crystn	Yield,			ng/kg	I % es	eretion	
No.	\mathbf{R}	Mp, °C	$solvent^a$	9	Formula ^e	10.0.	i.v.	bile	urine	
16	CH_3	226 - 228	A	50	$\mathrm{C}_{9}\mathrm{H_{8}I_{3}NO}_{2}{}^{b}$	2900	520	1.4	34	
17	$\mathrm{C}_2\mathrm{H}_5$	146 - 147	A	53	$\mathrm{C_{10}H_{10}I_{3}NO_{2}{}^{c}}$	3750	550	4	26	
18	C_3H_7	182-184	A	50	$C_{11}H_{12}I_3NO_2{}^d$	2100	170	5	16	

^a Final recrystallization: A, EtOH. ^b I: calcd, 70.73; found, 70.10. ^c I: calcd, 68.38; found, 68.83. ^d I: calcd, 66.69; found, 66.17. ^a Analyses: C, H, I (see b, c, d), equiv wt.

Table VII 2-(3-Acylamino-2,4,6-triiodophenyl)alkanoic Acids (VII)

				Crystn	Yield.		Monse toxicity				
No.	R	\mathbf{R}_1	Mp, °C	$solvent^d$	17.	$Formula^e$	11-0.	i.v.	bile	arine	
19	CH_3	CH_3	170	b	71	$\mathrm{C_{11}H_{10}I_{3}NO_{3}}$	3800	1200	5	70	
20	CH_3	$\mathrm{C_2H_5}$	153	b	80	$\mathrm{C}_{12}\mathrm{H}_{12}\mathrm{I}_{3}\mathrm{NO}_{3}{}^{c}$					
21	CH_3	$\mathrm{C_3H_7}$	152	b	69	$\mathrm{C}_{13}\mathrm{H}_{14}\mathrm{I}_{3}\mathrm{NO}_{3}{}^{d}$	1100	300	14	59	
22	$\mathrm{C_2H_5}$	CH_3	162	b	64	$C_{12}H_{12}I_3NO_3$	2800	950	7.5	57	
23	C_2H_5	C_3H_7	135-140	A	93	$C_{14}H_{16}I_3NO_3$	1900	54 0	19	35	
24	$\mathrm{C_3H_7}$	CH,	145	b	95	$C_{13}H_{14}I_3NO_3$	4000	700	13	30	
25	C_3H_7	C_2H_5	135	b	88	$C_{14}H_{16}I_3NO_3$					
26	$\mathrm{C_3H_7}$	$\mathrm{C_3H_7}$	222	В	75	$\mathrm{C}_{15}\mathrm{H}_{18}\mathrm{I}_{3}\mathrm{NO}_{3}{}^{/}$					

^a Final recrystallization: A, EtOAc; B, EtOH. ^b Purification by reprecipitation. ¹: calcd, 63.57; found, 64.42. ^a I: calcd, 61.11; found, 61.85. ^e Anal. C, H, I, equiv wt. ^f I anal. only.

ducts was evaluated following Hoppe⁶ and intestinal residues were observed.

Best results were obtained with 40 with regard to tolerability, gallbladder opacification, and absence of intestinal residues.

(6) S. Margolin, I. R. Stephens, M. T. Spoerlein, A. Makovsky, and G. B. Belloff, J. Amer. Pharm. Ass., Sci. Ed., 42, 476 (1953).

2-(3-Nitrophenyl)alkanoic Acids (10–12, Table IV).—A mixture of 0.1 mol of 2-(3-nitrophenyl)alkanonitriles and 200 ml of 50% H_2SO_4 was heated under reflux for 5 hr. The hydrolyzed product

⁽⁷⁾ Where analyses are indicated by symbols of the elements, the analytical results obtained for those elements were within $\pm 0.4\%$ of the theoretical values.

⁽⁸⁾ H. Lund, Chem. Ber., 70, 1520 (1937).

⁽⁹⁾ Swiss Patent 326363 (1958): Chem. Abstr., 53, 9252f (1959).

TABLE VIII	
2-(3-Alkylacylamino-2,4,6-triiodophenyl)alkanoic Acids ((VIII)

							Mouse toxicity				
					Crystn	Yield,		$-LD_{50}$, 1			cretion-
No.	R	R_1	R_2	Mp, °C ^a	$solvent^b$	%	Formula d	p.o.	i.v.	bile	urine
27	Н	CH_3	$\mathrm{CH_{3}}$	197-198	A	84	$\mathrm{C_{11}H_{10}I_{3}NO_{3}}$	2700	1100	13	72
28	H	CH_3	C_2H_5	131-133	\mathbf{A}	74.5	$C_{12}H_{12}I_3NO_3$	2200	390	37	34
29	H	CH_3	$\mathrm{C}_3\mathrm{H}_7$	100 - 105	c	94	$\mathrm{C}_{13}\mathrm{H}_{14}\mathrm{I}_{3}\mathrm{NO}_{3}$	1250	210	35	33
30	H	CH_3	C_4H_9	100 - 105	c	91	${ m C_{14}H_{16}I_3NO_3}$	1300	155	32	19
31	H	CH_3	${ m CH_2-\!C_6H_5}$	167 - 168	В	84	$\mathrm{C}_{17}\mathrm{H}_{14}\mathrm{I}_{3}\mathrm{NO}_{3}{}^{e}$	1550	235	34	28
32	H	C_3H_7	CH_3	164 - 166	A	76	${ m C_{13}H_{14}I_{3}NO_{3}}$	880	180	20	20
33	H	$\mathrm{C_3H_7}$	$\mathrm{C_2H_5}$	188 - 189	\mathbf{C}	76	$\mathrm{C}_{14}\mathrm{H}_{16}\mathrm{I}_{3}\mathrm{NO}_{3}$	880	100	15	35
34	H	$\mathrm{C_3H_7}$	$\mathrm{C_3H_7}$	139-140	\mathbf{A}	70	${ m C_{15}H_{18}I_3NO_3}$	365	49		
35	H	$\mathrm{C_3H_7}$	C_4H_9	90-95	c	87	${ m C_{16}H_{20}I_3NO_3}$	650	51	54	20
36	H	$\mathrm{C_3H_7}$	${ m CH}_2 \!\!-\!\! { m C}_6 { m H}_5$	95 – 102	c	95	$\mathrm{C}_{19}\mathrm{H}_{18}\mathrm{I}_{8}\mathrm{NO}_{3}$	770	74	34	12
37	CH_3	CH_3	CH_3	155-160	c	87	$\mathrm{C}_{12}\mathrm{H}_{12}\mathrm{I}_{3}\mathrm{NO}_{3}$	2800	620	27	22
38	CH_3	$\mathrm{CH_3}$	$\mathrm{C_2H_5}$	125	c	72	${ m C_{13}H_{14}I_{3}NO_{3}}$	1300	380	38	16
39	$\mathrm{C}_2\mathrm{H}_5$	CH_3	CH_3	115 - 120	c		$\mathrm{C_{13}H_{14}I_{3}NO_{3}}$	700	600	33	9
40	$\mathrm{C}_2\mathrm{H}_5$	CH_3	C_2H_5	184-187	c	85	${ m C_{14}H_{16}I_3NO_3}$	1260	420	31	8
41	$\mathrm{C_3H_7}$	CH_3	CH_3	120	c	70	$\mathrm{C}_{14}\mathrm{H}_{16}\mathrm{I}_{3}\mathrm{NO}_{3}$	2800	550	17	10
42	$\mathrm{C_3H_7}$	CH_3	C_2H_5	116	d	85	${ m C_{15}H_{18}I_{3}NO_{3}}$	2800	170	28	15

^a All these compounds sinter 20-30° before the melting point. ^b Final recrystallization: A, EtOAc; B, C₆H₆; C, Me₂CO. ^c Purification by reprecipitation. d Anal. C, H, I, equiv wt. I: calcd, 57.10; found, 57.80. II: calcd, 62.57; found, 63.40.

was poured into crushed ice (300 g), collected, washed (H₂O), and dissolved in 100 ml of 1 N NaOH at 70°. The solution was filtered and made acid with 1 N HCl. The precipitated acid was collected, dried, and recrystallized from a suitable solvent.

2-(3-Aminophenyl)alkanoic Acids (13-15, Table V).—A solution of 0.04 mol of 2-(3-nitrophenyl)alkanoic acid in 150 ml of EtOH was hydrogenated at room temperature and atmospheric pressure over Raney Ni catalyst. After consumption of the theoretical quantity of H2 the catalyst was filtered off and the filtrate was evaporated to dryness. The crystalline residue was suspended in 80 ml of H₂O, collected, and recrystallized.

2-(3-Amino-2,4,6-triiodophenyl)alkanoic Acids (16-18, Table VI).—A solution of 0.09 mol of 1 N KICl₂¹⁰ was added dropwise with vigorous stirring at 24° to 0.03 mol of 2-(3-aminophenyl)alkanoic acid in 3000 ml of 0.01 N HCl. After a further 2-hr stirring the temperature was raised to 60° and another 0.03 mol of KICl₂ solution was added. The suspension was stirred at 60° for 15 hr, then cooled to room temperature, collected, and washed. The solid was dissolved in 300 ml of H₂O with 10 ml of 15% NaOH and the solution was treated with a trace of Na₂S₂O₄ and added dropwise to a mixture of 300 ml of H₂O, 12 ml of 18% HCl, and 0.3 g of NaHSO₃. The crude product was collected by filtration, washed (H₂O), dried, and recrystallized from EtOH.

2-(3-Acylamino-2,4,6-triiodophenyl)alkanoic Acids (19-26, Table VII).—2-(3-Amino-2,4,6-triiodophenyl)alkanoic acid (0.005 mol) was dissolved in 18 ml of (Ac)₂O at 60°, 2 drops of concentrated H₂SO₄ were added and the temperature was raised to 90-95° for 3 hr. After evaporation to dryness, the residue was dissolved in 60 ml of H₂O with 2 ml of 15% NaOH. The pH was adjusted to 9 and the solution was heated for 2 hr at 90° at constant pH, then filtered and the product was precipitated with 15% HCl. Compounds 19, 20, 21, 22, 24, and 25 were purified by reprecipitation, 23 was crystallized from EtOAc, and 26 from EtOH.

2-(3-Alkylacylamino-2,4,6-triiodophenyl)alkanoic Acids (27-42, Table VIII).11—A solution of 0.045 mol of alkyl iodide in 2.5 ml of Me₂CO was added during 0.5 hr to a solution of 0.03 mol of 2-(3-acylamino-2,4,6-triiodophenyl)alkanoic acid and 0.12 mol of KOH in 35 ml of H₂O. The mixture was stirred for 4 hr at 35° and then poured into 200 ml of ice-H2O and extracted twice with Et₂O (30 ml). The crude product, obtained by precipitation with 18% HCl, was purified further by reprecipitation, extraction with boiling EtOAc, or recrystallization from a suitable solvent.

Chlorosulfonation of 17β -Acetoxy-3-methoxyestra-1,3,5(10)-triene

ARTHUR H. GOLDKAMP^{1a}

Division of Chemical Research, G. D. Searle & Company, Chicago, Illinois 60680

Received May 19, 1969

The estrogenic potencies of 2- and 4-substituted estrones, among which were included Cl, O2N, and H₂N derivatives, have been compared. 1b These compounds, especially the 2-substituted and electronegatively substituted ones, all have very low estrogenic activities and this has been suggested to be one of the prerequisites for a practical lipodiatic, or antiatherogenic steroid in man.2 The second, and effective, requirement may be a lowering of the cholesterol: lipid phosphorous (C:P) ratio.3 This effect is shown as well by the 3-Me ethers which are considerably less estrogenic than the phenols, estrone methyl ether being 1% as estrogenic and 25% as lipodiatic, or lipid-shifting, as estrone.2,4 A favorable change in the C:P ratio has been shown in the case of some simple estrogens to be related to an increase in serum phospholipid rather than a decrease in cholesterol⁵ and this is regarded as corrective toward coronary atherogenesis though without

⁽¹⁰⁾ A. A. Larsen, Ch. Moore, J. Sprague, B. Cloke, J. Moss, and J. O. Hoppe, J. Amer. Chem. Soc., 78, 3210 (1956).

⁽¹¹⁾ Intermediate 3-amino-2,4,6-triiodophenylacetic acid for compounds 27-36, see ref 2a.

^{(1) (}a) Present address: Bellevue, Wash. 98004; (b) R. J. Fisette and L. R. Morgan, Arch. Int. Pharmacodyn. Ther., 168, 312 (1967).

^{(2) (}a) D. L. Cook, D. W. Calhoun, and R. A. Edgren, ibid., 135, 91 (1962); (b) D. L. Cook, R. A. Edgren, and F. J. Saunders, Endocrinology, 798 (1958); (c) R. A. Edgren and D. W. Calhoun, Circulation, 16, 505 (1957); (d) R. A. Edgren and D. W. Calhoun, Proc. Soc. Exp. Biol. Med., 94, 537 (1957).

⁽³⁾ R. Pick, J. Stamler, S. Rodbard, and L. N. Katz, Circulation, 6, 276 (1952).

⁽⁴⁾ D. L. Cook, Drugs Affecting Lipid Metab. Proc. Symp. D. A. L. M. Milan, 1960, 204 (1961).

⁽⁵⁾ A. Corbellini, G. Lugaro, M. V. Farina, and G. Gerali, Ital. J. Biochem., 12, 393, 413 (1963).

⁽⁶⁾ R. Pick, J. Stamler, S. Rodbard, and L. N. Katz, Circulation, 4, 468 (1951).