Total Synthesis of Capsanthin Using Lewis Acid-Promoted Regio- and Stereoselective Rearrangement of Tetrasubstituted Epoxide

Yumiko YAMANO and Masayoshi Ito*

Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe 658–8558, Japan. Received September 17, 2001; accepted October 24, 2001

The synthesis of capsanthin 1 was accomplished *via* the C_{15} -cyclopentyl ketone 13 prepared by Lewis acid-promoted regioand stereoselective rearrangement of the epoxide 12.

Key words capsanthin; tetrasubstituted epoxide; regio- and stereoselective rearrangement; total synthesis

Previously, we reported¹⁾ the first biomimetic type total synthesis of both crassostreaxanthin B **2** (Fig. 1) possessing a novel acyclic-tetrasubstituted olefinic end group and mytiloxanthin **3** containing a cyclopentyl enolic β -diketone group applying stereoselective rearrangement of tetrasubstituted epoxide.²⁾ In these syntheses, we employed epoxides, in which substituents at the C-6³⁾ position were alkyl groups having an oxygen functional group as shown in Chart 1.

Capsanthin 1 (Fig. 1), having a κ -end group, is a main pigment of red paprika *Capsicum annuum* and has become the center of attention due to its strong antioxidant activities.⁴⁾ There has been only one report by Weedon's group⁵⁾ concerning its synthesis. Here, we describe the total synthesis of 1 *via* regio- and stereoselective rearrangement of the C₁₅epoxide 12 (Chart 3) having a conjugated olefinic group at C-6, which was efficiently derived from the optically active (4*R*,6*R*)-4-hydroxy-2,2,6-trimethylcyclohexanone.⁶⁾

It has been known that the rearrangement of the epoxide $4b^{71}$ (Chart 2) only provided the flanoid **5b** by opening of C-6-oxygen bond of the oxirane ring (route *a*) and subsequent migration of the 7,8-double bond, whereas that of the epoxide $4a^{81}$ predominantly produced the cyclopentyl ketone **6a** by cleavage of the oxirane ring at the C-5 position (route *b*) and successive ring contraction. It is considered that the selective cleavage of epoxide **4a** at C-5 was promoted by destabilization of the cation at C-6 due to the electron deficiency of 7(β)-carbon on α , β -unsaturated carbonyl group.

Thus, the reaction of epoxides $4c - e^{9}$ having an olefinic group conjugated to a carbonyl group at C-6 (Chart 2) was investigated toward the synthesis of **1**. As a result, treatment of the epoxide **4d** with SnCl₄ was found to give predominantly the desired cyclopentyl ketone **6d** (91%). On the other hand, the reaction of the epoxides **4c** and **4e** with SnCl₄ preferentially provided flanoids **5c** (86%; 5,8-*trans*¹⁰):5,8*cis*¹⁰=8:1) and **5e** (53%; 5,8-*trans*:5,8-*cis*=5:1). These results show that the direction of C–O bond cleavage in the oxirane ring depends upon both the length of conjugated double bond system and the electron-withdrawing ability of the substituent adjacent to the double bond.

In order to synthesize 1, C_{15} -epoxide 12 was prepared *via* stereo-controlled cross-coupling reaction of the vinylstannane 8 with the vinyl triflate 15^{11} as shown in Chart 3. The known¹²⁾ terminal alkyne 7, prepared (62%) from (4*R*,6*R*)-4hydroxy-2,2,6-trimethylcyclohexanone,⁶⁾ was heated at 130 °C for 20 min with an excess amount (4 eq) of Bu₃SnH in the presence of a catalytic amount of azobisisobutyronitrile (AIBN)¹³⁾ to give stereoselectively the *E*-vinylstannane **8** in 88% yield. Cross-coupling reaction of **8** with **15**¹¹⁾ by combined use of tris(dibenzylidene-acetone)dipalladium (Pd₂dba₃) and AsPh₃ (ligand)¹⁴⁾ in *N*,*N*-dimethylformamide (DMF) at 50 °C gave the all-*E* trienoate **9** (93%), whose hydroxy group at C-3 was protected (93%) with *tert*-butlydimethylsilyl (TBS) group. The resulting TBS ether **10** was then treated with *m*-chloroperbenzoic acid (*m*-CPBA) to give a mixture of the *anti*(α)-epoxide **11a** (28%) and *syn*(β)-epoxide **11b** (54%). Reduction of **11a** with LiAlH₄ followed by MnO₂-oxidation gave the C₁₅-epoxy-aldehyde **12** in 98% yield.

Treatment of the epoxide **12** with $SnCl_4$ followed by desilylation yielded the regio- and stereoselective rearranged product **13**¹⁵ in good yield, which was then condensed with the Wittig salt **16**¹⁶ in the presence of NaOMe as a base followed by one-pot treatment with ion exchange resin, Dowex 50W-X8 (H⁺), to give a mixture of the all-*E* C₂₅-apocarotenal **14a** (39%), the 11*Z* isomer **14b** (28%) and 13*Z* one **14c** (9%). Both isomers **14b** and **14c** could be transformed (64% from **14b**; 70% from **14c**) into the desired all-*E* one **14a** by

© 2001 Pharmaceutical Society of Japan

a) Bu₃SnH, cat. AIBN / 130°C; b) 15, cat. AsPh₃, cat. Pd₂dba₃•CHCl₃ / 50°C; c) TBSCl, DMAP, Et₃N; d) *m*-CPBA;
e) LiAIH₄; f) MnO₂; g) SnCl₄; h) HF; i) 16, NaOMe then Dowex(H⁺); j) cat. PdCl₂(MeCN)₂, Et₃N; k) 17, NaOMe

Chart 3

palladium-catalyzed isomerization.¹⁷⁾ Finally, C_{25} -apocarotenal **14a** was condensed with C_{15} -Wittig salt **17**,¹⁸⁾ which was prepared from trienoate **9** by reduction with LiAlH₄ followed by treatment with PPh₃. HBr, to give the condensed products (quant.), which was purified by preparative HPLC to afford all-*E* capsanthin (42%). Its spectral data [IR, UV-VIS, ¹Hand ¹³C-NMR, MS, and CD (circular dichroism)] were in good agreement with those reported.⁵⁾

Biological activities of capsanthin **1** except for the antioxidant function are now extensively under investigation.

Acknowledgements We are indebted to Drs. U. Hengartner and K. Bernhard, Hoffmann-La Roche Ltd., Basel, Switzerland for chemical support. We thank Mr. H. Kuroki for technical assistance.

References and Notes

- a) Tode C., Yamano Y., Ito M., J. Chem. Soc., Perkin Trans. 1, 1999, 1625—1626; b) Idem, Chem. Pharm. Bull., 48, 1833—1834 (2000).
- a) Yamano Y., Tode C., Ito M., J. Chem. Soc., Perkin Trans. 1, 1996, 1337–1339; b) Idem, ibid., 1998, 2569–2581.
- 3) We have employed the numbering system used in carotenoids.
- a) Matsufuji H., Nakamura H., Chino M., Takeda M., J. Agric. Food Chem., 46, 3468—3472 (1998); b) Hirayama O., Nakamura K., Hamada S., Kobayashi Y., Lipids, 29, 149—150 (1994).
- Rüttimann A., Englert G., Mayer H., Moss G. P., Weedon B. C. L., *Helv. Chim. Acta*, 66, 1939–1960 (1983).
- 6) Leuenberger H. G. W., Boguth W., Widmer E., Zell R., Helv. Chim.

Acta, 59, 1832—1849 (1976).

- Acemoglu M., Prewo R., Bieri J. H., Eugster C. H., *Helv. Chim. Acta*, 67, 175–183 (1984).
- Lopez L., Mele G., Fiandanese V., Cardellicchio C., Nacci A., *Tetrahe*dron, 50, 9097–9106 (1994).
- 9) These epoxides were prepared from β -ionone.
- 10) In this paper, two terms *trans* and *cis* are used to refer to the relationship between C-5 methyl group and C-8 substituent.
- a) Saulnier M. G., Kadow J. F., Tun M. M., Langley D. R., Vyas D. M., J. Am. Chem. Soc., 111, 8320–8321 (1989); b) Crisp G. T., Meyer A. G., J. Org. Chem., 57, 6972–6975 (1992).
- 12) Soukup M., Widmer E., Lukáč T., *Helv. Chim. Acta*, **73**, 868–873 (1990).
- Betzer J.-F., Delaloge F., Muller B., Pancrazi A., Prunet J., J. Org. Chem., 62, 7768—7780 (1997).
- 14) Farina V., Krishnan B., J. Am. Chem. Soc., 113, 9585-9595 (1991).
- 15) Compound **13**: ¹H-NMR (CDCl₃) δ : 0.85, 1.22 and 1.39 (each 3H, s), 1.52 (1H, dd, *J*=14.5, 3.5 Hz), 1.74 (1H, dd, *J*=13.5, 4.5 Hz), 1.99 (1H, dd, *J*=13.5, 8 Hz), 2.32 (3H, d, *J*=1.5 Hz), 2.91 (1H, dd, *J*=14.5, 8.5 Hz), 4.51 (1H, m), 6.21 (1H, brd, *J*=8 Hz), 6.88 (1H, d, *J*=15.5 Hz), 7.26 (1H, d, *J*=15.5 Hz), 10.18 (1H, d, *J*=8 Hz). IR (CHCl₃) cm⁻¹: 3605, 3466, 1667, 1589. HR-MS *m/z*: 250.1560 (Calcd for C₁₅H₂₂O₃: 250.1568). [α]²⁵_D - 15.2° (*c*=1.12 in MeOH).
- 16) Bernhard K., Kienzle F., Mayer H., Müller R. K., *Helv. Chim. Acta*, 63, 1473—1490 (1980).
- 17) Fischli A., Mayer H., Simon W., Stoller H.-J., *Helv. Chim. Acta*, 59, 397–405 (1976).
- 18) Pfander H., Lachenmeier A., Hadorn M., Helv. Chim. Acta, 63, 1377–1382 (1980).