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The synthesis of capsanthin 1 was accomplished via the C15-
cyclopentyl ketone 13 prepared by Lewis acid-promoted regio-
and stereoselective rearrangement of the epoxide 12. 
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Previously, we reported1) the first biomimetic type total
synthesis of both crassostreaxanthin B 2 (Fig. 1) possessing a
novel acyclic-tetrasubstituted olefinic end group and mytilo-
xanthin 3 containing a cyclopentyl enolic b-diketone group
applying stereoselective rearrangement of tetrasubstituted
epoxide.2) In these syntheses, we employed epoxides, in
which substituents at the C-63) position were alkyl groups
having an oxygen functional group as shown in Chart 1. 

Capsanthin 1 (Fig. 1), having a k-end group, is a main pig-
ment of red paprika Capsicum annuum and has become the
center of attention due to its strong antioxidant activities.4)

There has been only one report by Weedon’s group5) con-
cerning its synthesis. Here, we describe the total synthesis
of 1 via regio- and stereoselective rearrangement of the C15-
epoxide 12 (Chart 3) having a conjugated olefinic group at
C-6, which was efficiently derived from the optically active
(4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone.6)

It has been known that the rearrangement of the epoxide
4b7) (Chart 2) only provided the flanoid 5b by opening of C-
6–oxygen bond of the oxirane ring (route a) and subsequent
migration of the 7,8-double bond, whereas that of the epox-
ide 4a8) predominantly produced the cyclopentyl ketone 6a
by cleavage of the oxirane ring at the C-5 position (route b)
and successive ring contraction. It is considered that the se-
lective cleavage of epoxide 4a at C-5 was promoted by desta-
bilization of the cation at C-6 due to the electron deficiency
of 7(b)-carbon on a ,b-unsaturated carbonyl group. 

Thus, the reaction of epoxides 4c—e9) having an olefinic
group conjugated to a carbonyl group at C-6 (Chart 2) was
investigated toward the synthesis of 1. As a result, treatment
of the epoxide 4d with SnCl4 was found to give predomi-
nantly the desired cyclopentyl ketone 6d (91%). On the other
hand, the reaction of the epoxides 4c and 4e with SnCl4 pref-
erentially provided flanoids 5c (86%; 5,8-trans10) : 5,8-
cis10)58 : 1) and 5e (53%; 5,8-trans : 5,8-cis55 : 1). These re-
sults show that the direction of C–O bond cleavage in the
oxirane ring depends upon both the length of conjugated
double bond system and the electron-withdrawing ability of
the substituent adjacent to the double bond. 

In order to synthesize 1, C15-epoxide 12 was prepared via
stereo-controlled cross-coupling reaction of the vinylstan-
nane 8 with the vinyl triflate 1511) as shown in Chart 3. The

known12) terminal alkyne 7, prepared (62%) from (4R,6R)-4-
hydroxy-2,2,6-trimethylcyclohexanone,6) was heated at 130
°C for 20 min with an excess amount (4 eq) of Bu3SnH in the
presence of a catalytic amount of azobisisobutyronitrile
(AIBN)13) to give stereoselectively the E-vinylstannane 8 in
88% yield. Cross-coupling reaction of 8 with 1511) by com-
bined use of tris(dibenzylidene-acetone)dipalladium (Pd2dba3)
and AsPh3 (ligand)14) in N,N-dimethylformamide (DMF) at
50 °C gave the all-E trienoate 9 (93%), whose hydroxy group
at C-3 was protected (93%) with tert-butlydimethylsilyl
(TBS) group. The resulting TBS ether 10 was then treated
with m-chloroperbenzoic acid (m-CPBA) to give a mixture of
the anti(a)-epoxide 11a (28%) and syn(b)-epoxide 11b
(54%). Reduction of 11a with LiAlH4 followed by MnO2-ox-
idation gave the C15-epoxy-aldehyde 12 in 98% yield.

Treatment of the epoxide 12 with SnCl4 followed by desi-
lylation yielded the regio- and stereoselective rearranged
product 1315) in good yield, which was then condensed with
the Wittig salt 1616) in the presence of NaOMe as a base fol-
lowed by one-pot treatment with ion exchange resin, Dowex
50W-X8 (H1), to give a mixture of the all-E C25-apocarotenal
14a (39%), the 11Z isomer 14b (28%) and 13Z one 14c
(9%). Both isomers 14b and 14c could be transformed (64%
from 14b; 70% from 14c) into the desired all-E one 14a by
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palladium-catalyzed isomerization.17) Finally, C25-apocarote-
nal 14a was condensed with C15-Wittig salt 17,18) which was
prepared from trienoate 9 by reduction with LiAlH4 followed
by treatment with PPh3·HBr, to give the condensed products
(quant.), which was purified by preparative HPLC to afford
all-E capsanthin (42%). Its spectral data [IR, UV-VIS, 1H-
and 13C-NMR, MS, and CD (circular dichroism)] were in
good agreement with those reported.5)

Biological activities of capsanthin 1 except for the antioxi-
dant function are now extensively under investigation. 
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