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Abstract Three hundred and fifty novel lipases and

esterases discovered from environmental DNA samples

were characterized for their fatty acid profile using GC-

analysis. Enzymes were selected for further study based on

activity and fatty acid chain length specificity. Additional

characterization was based on enzyme activity towards

tributyrin and 4-methylumbelliferyl butyrate, and enzyme

heat stability. Several lipases were identified, which show

high specificity towards short-chain fatty acids similar to

pregastric lipases from kid and calf and a lipase from

Mucor javanicus. Additionally, the metagenome-derived

enzymes were thermostable. Selected metagenomic lipases

were immobilized on Celite and used for the synthesis of

structured triglycerides.
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Introduction

Lipases (EC 3.1.1.3) are widely distributed in Nature and

are found in plants, mammals and microorganisms. Their

natural function is the hydrolysis of triglycerides, and they

are classified according to their specificity towards the

position of a fatty acid along the glycerol backbone (e.g.,

sn1,3-specific lipases), fatty acid chain-length or degree of

fatty-acid saturation [1]. They are widely used in lipid

modification, but have also found numerous applications in

other areas, such as the detergent industry and in organic

synthesis [2].

A decade ago, only a handful of lipases from a specific

class were readily available. These enzymes had been

identified using classical screening technology i.e. isolation

of lipase-producing microorganisms, purification of the

active proteins, reverse genetics to clone the corresponding

gene, and expression in a heterologous host. As only a

fraction (estimated to less than 1%) of the microorganisms

in an environmental sample can be grown using standard

cultivation technology, the vast majority of nature’s res-

ervoir of diversity escaped discovery until recently. With

the advent of the metagenome approach [3, 4] this diversity

is now more readily accessible, resulting in an exponential

increase in the number of potentially biocatalysts. For

example, more than 130 novel nitrilases were found by

screening environmental DNA libraries [5], significantly

expanding the number and diversity from the pool of 20

nitrilases described previously. Similarly, metagenomic

lipases and esterases have been characterized as biocata-

lysts on a variety of substrates [6, 7] and shown to possess

unique and novel properties.

In a further effort to explore the diversity of the me-

tagenome contained in environmental libraries, more than

350 unique lipase (and esterase) genes were cloned and the

enzymes produced recombinantly. Having access to such a

large number of biocatalysts necessitates having an effi-

cient, fast and reliable screen to enable biochemical

characterization. In the case of lipase substrate specificity,
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profiling on triglyceride mixtures containing a broad range

of fatty acids would meet this need. Milk fat triglycerides

contain all even numbered saturated fatty acids from C4 to

C18, as well as oleic acid (C18:1) [8], and so milk fat is a

suitable substrate for this screen (Table 1). Furthermore,

screening on this substrate opens up the possibility of

discovering a metagenomic lipase that could be used in

cheese making as an alternative to the mammalian lipases

currently in use.

In this work, 350 novel metagenomic lipases and

esterases were characterized with respect to their fatty acid

selectivities and their potential application in lipid

modification.

Experimental Procedures

Lipases and Chemicals

All 350 metagenomic enzymes were supplied by Verenium

Corporation as lyophilized samples. Pregastric lipases from

kid and calf, and a lipase from Mucor javanicus were from

commercial suppliers. Immobilized lipase from Rhizomu-

cor miehei (RMIM) was from Novozymes (Bagsvaerd,

Denmark). Full-fat ultra-high temperature treated milk

(UHT milk, 3.5% fat) was bought at a local grocery. The

heat treatment ensures that endogenous lipases are

destroyed. All chemicals were analytical grade and sup-

plied by Fluka, Roth and Sigma-Aldrich.

Experimental Conditions, Extraction and Methylation

of Free Fatty Acids

10 mg enzyme preparation was dissolved in 800 ll full fat

UHT milk (pH 6.4) and incubated overnight at 40 �C at

1100 rpm in an Eppendorf thermoshaker. Released fatty

acids (including mono-, di-, and triglycerides) were

extracted according to Folch et al. [9]. Thus, 100 ll sam-

ples were extracted twice with 1 ml CHCl3:MeOH:4 N

HCl (2:1:0.075 v/v) solution. Pentanoic and pentadecanoic

acid (5 mM) served as internal standards and were added to

the extraction solvent prior to further treatment. Excess

solvent was evaporated in a nitrogen stream, the residue

was redissolved in 500 ll n-hexane and 100 ll freshly

prepared HCl solution (20% in MeOH), then transferred to

glass vials with Teflon-sealed lids. The mixture was incu-

bated with vigorous shaking at 85 �C for 15 min to obtain

the fatty acid methyl esters (FAME). Next, distilled water

(200 ll) was added and well mixed to remove water-sol-

uble substances that would otherwise interfere with gas

chromatographic analyses. The upper phase was removed

and dried over anhydrous sodium sulfate prior to gas

chromatographic analysis. Milk untreated with enzyme

served as a control, and it was found that no transesterifi-

cation occurred.

Gas Chromatographic Analyses

FAME were analyzed on a Hewlett-Packard 5890 Series II

Plus gas chromatograph using a FFAP column (fused silica,

FFAP-crosslinked, 25 m 9 0.2 mm). The gas chromato-

graph was programmed as follows: injector 225 �C,

detector 250 �C, start temperature 60 �C (1 min), then

heating at 16 �C/min until 215 �C, the final temperature

was held for 2 min. The injected sample volume was 0.1 ll.

The quantification of the fatty acids was performed by

comparison of the peak area of each methyl ester peak with

that of the internal standards.

Determination of Enzyme Activity on Triglycerides

The activity of lipases (1–10 mg, depending on specific

activity) was measured by hydrolysis of triglycerides using

a pH-stat titration. The assay solution consisted of 5%

tributyrin (v/v) and 2% gum arabic (w/v) dispersed in

distilled water. The solution was emulsified with an Ultra

Turrax for 5 min at high speed. The titration point was set

to pH 5.8, and fatty acids released were titrated automati-

cally with 0.01 mM NaOH. One unit of lipase activity was

defined as the amount of enzyme releasing 1 lmol fatty

acid per min under assay conditions. Activity values were

corrected for autohydrolysis (\0.01 U/mg), which was

determined in the absence of enzyme. All measurements

were performed in triplicate.

Table 1 Milk fatty acids and their positional distribution

Fatty acid Totala (mol %) Positional distributionb (mol %)

sn1 sn2 sn3

C4:0 8.5 5.0 2.9 43.3

C6:0 2.9 3.0 4.8 10.8

C8:0 1.4 0.9 2.3 2.2

C10:0 2.3 2.5 6.1 3.6

C12:0 2.1 3.1 6.0 3.5

C14:0 7.5 10.5 20.4 7.1

C16:0 28.0 35.9 32.8 10.1

C18:0 14.6 14.7 6.4 4.0

C18:1 26.5 20.6 13.7 14.9

a according to reference [21]
b according to reference [22]
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Umbelliferyl Assay

The temperature optimum of lipases was determined using

4-methylumbelliferyl butyrate (4-MUB) in a microtiterplate

(MTP) assay. Lipase hydrolysis yields the fluorescent

compound 4-methylumbelliferone (4-MU), which was

quantified using an excitation wavelength of 355 nm and an

emission wavelength of 460 nm. Enzyme samples were

incubated in an Eppendorf thermoshaker at 65 �C for 90 s or

at 85 �C for 30 s and then stored on ice prior to fluorimetric

measurement. 150 ll of these treated enzyme solutions

(10 mg dissolved in 1 ml milk) were transferred to the wells

of an MTP and mixed with 150 ll substrate (final concen-

tration 90 lM 4-MUB in phosphate buffer pH 5.7, 50 mM)

using the pump in the fluorimeter (Galaxy-Fluostar, BMG,

Offenburg, Germany). The pH of this milk-buffer solution

was adjusted to pH 6.0, the temperature was set to 37 �C,

and the plate was shaken between the measurement cycles.

Alcoholysis of Triolein and Synthesis of 1,3-Diolein

The reaction was performed according to the method of

Soumanou and Bornscheuer [10]. Triolein (20 mmol),

ethanol (20 mmol) and 10% (w/w) immobilized RMIM

were mixed in a 50-ml glass flask. The reaction mixture was

incubated in a water bath at 40 �C and agitated with a

magnetic stirrer at 200 rpm. After 5 and 10 h, 20 mmol

ethanol were added. Reaction progress was monitored using

thin layer chromatography (TLC) and Iatroscan analysis.

After 24 h, the reaction was terminated by removal of

immobilized lipase. The desired ethyloleate was separated

on preparative scale by silica gel column chromatography

(petrolether:diethylether, 7:1, v/v) yielding 80% product.

The purity was checked using TLC (n-hexane:diethyl-

ether:acetic acid 87:13:0.2 v/v/v) and Iatroscan (benzene:

chloroform:acetic acid, 50:30:0.5, v/v/v).

The 1,3-diolein was produced according to a published

procedure [11]. Glycerol (12 mmol) was mixed with 1 g

silica gel in a 50 ml glass flask until the mixture became

dry. The purified ethyloleate (24 mmol), 20 ml tert-butyl-

methyl-ether (MTBE) and 0.5 g immobilized RMIM were

then added. The ethanol produced was removed from

the reaction mixture by activated molecular sieve (4 Å).

All reaction compounds were adjusted to a defined water

activity (aw = 0.11) using saturated salt solutions overnight

prior to the reaction [12]. The reaction progress was

monitored by TLC and Iatroscan analysis. The purification

of the regioisomerically pure 1,3-diolein was carried out

using silica gel column chromatography. In the first sepa-

ration step, an n-hexane:diethylether gradient system (5:1-

1:1 v/v) was used, followed by a chloroform:acetone

(96:4 v/v) eluent mixture. The identification of the desired

1,3-diolein was performed by TLC (chloroform:acetone

96:4 v/v), Iatroscan (conditions see above) and NMR-

spectroscopy (1H-NMR (300 MHz, CHCl3), d 0.88 (t, 6 H,

J = 7.0 Hz, CH3), d 1.26–1.30 (m, 40 H, CH2 group of

fatty acid chain length), d 1.63 (t, 4 H, J = 7.3 Hz,

COOCH2CH2), d 2.02 (m, 8 H, CHCH2), d 2.34 (t, 4H,

J = 7.7 Hz, COOCH2), d 4.07–4.20 (5 H, glycerol back-

bone), d 5.34 (m, 4 H, CH)).

Lipase Immobilization

Selected Verenium enzymes were immobilized by

adsorption on Celite 545. For this, 50 mg lipase were

dissolved in 1.5 ml sodium phosphate buffer (pH 7.5,

50 mM) and afterwards mixed with 500 mg support. The

solution was stirred for 15 min. Chilled acetone was added

in small portions and the preparation was collected by

filtration. After several washing steps with acetone, the

filtrate was dried overnight under vacuum.

Synthesis of 1,3-Dioleyl-2-palmitoyl-sn-glycerol

For this, purified 1,3-diolein (54 lmol) and vinylpalmitate

(80 lmol) were dissolved in 1 ml n-hexane in 1.5 ml glass

vials. All reaction components were adjusted before the

reaction to a fixed water activity (aw = 0.11) using satu-

rated salt solution [12]. Then activated molecular sieves

(3 Å) and 20 mg immobilized enzyme were added and the

reaction mixture was incubated at 40 �C and 1,000 rpm.

The reaction progress was monitored by TLC (n-hex-

ane:diethylether:acetic acid, 70:30:1, v/v/v) and Iatroscan

(benzene:chloroform:acetic acid, 50:30:0.5, v/v/v) analysis.

HPLC Separation of Triacylglycerols

The composition of the structured triglycerides was deter-

mined by HPLC on a Chromspher 5 Lipids column

(250 9 4.6 mm, Varian, Darmstadt, Germany) with an

evaporative light-scattering detector (65 �C, 1.5 ml/min

nitrogen) at a column temperature of 40 �C and a flow rate

of 1 ml/min using 0.5% acetonitrile in n-hexane as solvents

[13].

Results and Discussion

Preparation of FAME and Gas Chromatographic

Analysis

The chosen method to monitor lipase selectivity was con-

version of released FA to FAME, followed by quantitation
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of the FAME by gas chromatography. However, using

complex triglyceride mixtures as lipase substrates presents

certain challenges. First, the released FA must be trans-

ferred from the oil–enzyme-aqueous emulsion to organic

solvent without bias. In the case of milk fat as substrate,

this is particularly critical due to the high solubility of

short-chain fatty acids in aqueous solution. For instance,

Anderson et al. reported about 95% loss of caprylic acid

and 75% loss of capric acid at pH 6.6 [14]. By lowering the

pH to below the pKa of the FA carboxylates, efficient and

unbiased extraction of all milk fat FA could be achieved

(Fig. 1).

The second challenge of this method is to ensure that FA

are quantitatively converted to FAME without methanolysis

of triglycerides that are unreacted with lipase or mono- and

diglycerides formed by lipase action. This goal was achieved

by applying acid catalysis to the methylation reaction [15].

FA released by lipase action were quantified (as FAME) by

comparison to internal standards (C5 and C15 fatty acids).

Use of a negative control reaction, to which no enzyme was

added, allowed subtraction of background free FA from the

data. The kid lipase was used as a benchmark enzyme to

compare lipase performance.

In order to classify the 350 metagenomic enzymes with

respect to their fatty acid chain-length profile, the peak

areas were calculated using Eq. 1. Enzymes which have a

value of X C 0.8 preferentially hydrolyze short chain fatty

acids. For instance, the kid and calf lipases yielded values

of X = 1.3 and 1.0, respectively. A value of Y C 30,000

indicates a lipase with sufficiently high specific activity

to be potentially useful. The kid and calf lipases have

activity equivalent to Y = 66,932 and 100,955 per unit,

respectively.

Calculation of selectivity (X) and activity (Y) parameters

from peak areas of each fatty acid as determined by GC

analysis.

X ¼
C4:0þC6:0þC8:0

3

� �

C10:0þC12:0þC14:0þC16:0þC18:1
5

� �

Y ¼ C4:0þ C6:0þ C8:0þ C10:0þ C12:0þ C14:0

þ C16:0þ C18:1 ð1Þ

About 25% of the metagenomic enzymes showed good

activity on milk fat, as determined by their Y-values, but

the great majority of these enzymes did not have the

desired FA specificities towards short chain fatty acids,

since their X-values were less than 0.8. However, more

than ten lipases were identified by their X–Y-pair to show a

similar FA specificity to kid and calf lipases (Fig. 2) and

had good activity. It is worth noting that many of the

metagenomic lipases are derived from DNA sampled from

extreme environments. Thus the observed low activities

for some enzymes on milk fat may be attributable to

the ambient temperature of the assays described here,

and under different reaction conditions these enzymes

may display useful biocatalytic properties. The observed

low activities may also be due to preferences for other

substrates.

It has previously been suggested that animal lipases

release mainly short chain fatty acids and microbial lipases

prefer long-chain fatty acids [16]. Several of the microbial

lipases tested here had similar short-chain FA release

profiles to the benchmark mammalian lipases (Fig. 3),

suggesting that microbial lipases can also show short-chain

FA activity. However, these enzymes generally release

greater relative quantities of C18 FA than either the kid or

calf enzymes. Indeed, the overall profile of the metage-

nomic enzymes most closely resembled the FA release

profile of the Mucor javanicus lipase.

Activity Determination using pH-stat

Ten enzymes with good activity on short-chain fatty acids

in the milk-fat assays, were further characterized on tri-

butyrin using a pH-stat assay to follow the reaction.

Enzyme specific activity (U/mg lyophilized enzyme sam-

ple) was measured at 40 �C and pH 5.8 to compare the

enzymes to the kid lipase operating at close to optimum

conditions (37 �C, pH 5.5–6.2) [17]. Under these condi-

tions the pregastric lipases from kid and calf had low

specific activities slightly above the detection limit, and

[100 mg of each enzyme was required in the assay

(Table 2). Of the metagenomic lipases tested, three also

had low specific activities (\1), whereas four had moderate

Fig. 1 Effect of the addition of HCl solution ([4N] in 800 ll

extraction solvent) on the extraction of milk fatty acids from samples

treated with pregastric kid lipase. Fatty acids from C4:0 to C18:1 (see

Table 1 for types of fatty acids, stearic acid is not included in the

figure) are shown from left to right. No additional benefit was

obtained above addition of 40 lL 4 N HCl
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specific activities (1–10), and lipase #10 had very high

activity (87.2 U/mg) on tributyrin. Furthermore, the spe-

cific activity of this lipase on tributyrin was found to

increase to[100 U/mg when the reaction temperature was

increased to 90 �C. Thus although these microbial lipases

did not show the same short-chain FA preference on milk-

fats as the mammalian lipases, they are potentially much

more active.

Thermostability Assay

The data showing that lipase #10 is thermostable and may

even be thermophilic prompted examination of the ther-

motolerance of other metagenomic lipases. Response to

temperature of lipases active on short-chain FA is also of

interest in cheese making since elevated temperatures are

often used for the formation and extrusion of curd. A

convenient substrate to examine the influence of the heat

treatment on enzyme activity is 4-MUB [18], as the

released fluorophore 4-UM can be easily quantified in a

fluorimeter and the reaction can be performed in micro-

titerplates. The residual activities of selected enzymes were

first determined after incubation for 90 s at 65 �C followed

Fig. 2 Plot of X–Y (selectivity-

activity) pairs for each enzyme

calculated using Eq. 1. The box
marks enzymes with desired

properties. The value for kid

enzyme is indicated with a

triangle, the calf lipase is

marked by a square

Fig. 3 Fatty acid profiles of

nine selected lipases and

benchmark enzymes as

determined after milk fat

hydrolysis. M.j.: Mucor
javanicus lipase. Stearic acid

is not included in the figure

Table 2 Lipase specific activity on tributyrin as determined by pH-

stat

Enzyme Amount (mg)a Activity (U) Specific

activity (U/mg)

Mucor javanicus 5 3.6 0.72 ± 0.269

Calf lipase 266 8.0 0.03 ± 0.006*

Kid lipase 360 3.6 0.01 ± 0.005*

#1 10 0.71 0.07 ± 0.02

#3 7 12.39 1.77 ± 0.145

#5 10 0.59 0.06 ± 0.01

#6 8 10.16 1.27 ± 0.05

#7 2 4.66 3.02 ± 1.12

#8 10 7.46 0.76 ± 0.064

#9 2 11.93 5.98 ± 0.193

#10 0.1 8.72 87.20 ± 6.65

a per mg lyophilized sample
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by heating for 30 s at 85 �C (Fig. 4). Under these condi-

tions the kid and calf lipases retained greater than 75% of

their activity after heating at 65 �C, and less than 50%

of activity after heating at 85 �C. In contrast, all the me-

tagenomic lipases tested retained greater than 60% activity

after heating at 85 �C, and several retained greater than

80% activity after this treatment.

In summary, characterization of a large number of the

metagenomic lipases on milk triglycerides identified sev-

eral enzymes that showed high activities on short-chain

FA, and may have utility in cheese making.

Synthesis of 1,2-Oleoyl-3-palmitoyl-sn-glycerol (OOP)

and 1,3-Oleoyl-2-palmitoyl-sn-glycerol (OPO)

Further examination of the profile of fatty acids released

from milk triglycerides by the metagenomic lipases sug-

gested an additional application for these enzymes.

Structured triglycerides such as OPO have application in

the food industry and can be synthesized by lipases that

exhibit FA specificity. The method used for synthesis of

OOP and OPO was transesterification of 1,3-diolein with

vinylpalmitate [19, 20[t1]]. The metagenomic lipases #1,

#8 and #10 were immobilized on Celite 545 and reacted

with substrates for 36 h. Lipase #1 showed only low

activity, whereas lipases #8 and #10 had good activity

under the reaction conditions. Lipase #10 yielded a mixture

of different triglycerides (Fig. 5) with PPP as the major

species. In contrast, #8 yielded mainly OOP and OPO

(approx. 10:1), with very low background of other tri-

glycerides. Thus the latter metagenomic enzyme exhibits

tight and potentially useful FA specificity.

The environmental metagenome contains enormous and

largely untapped functional diversity of enzymes. In this

work, 350 metagenomic lipases were screened with respect

to their fatty acid profile using milk fat as substrate. Further

characterization of selected enzymes revealed interesting

and novel properties that may have potential application in

a variety of fields. Accessing the metagenomic pool of

lipases and esterases can be an immediate source of novel

biocatalysts, or yield enzymes that can be further special-

ized by directed evolution.
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