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Organocatalysis approach to trifluoromethylation with fluoroform
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A B S T R A C T

The organic base methodology exploits an access to generate the ‘‘trifluoromethyl anion’’ for carbonyl,

ester, acid halide, epoxide, deuterium donor, and carbon dioxide substrates to afford the

trifluoromethylation products with good overall efficiency even in organocatalysis conditions. The

NMR analysis of the mixture of fluoroform and P4-base shows no change thereof. However, on

addition of electrophiles, the trifluoromethylation products were obtained efficiently.

� 2013 Published by Elsevier B.V.
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1. Introduction

Current attention has greatly been focused on organofluorine
compounds from the viewpoint of their fruitful applications in
pharmaceutical [1] and material [2] sciences. Especially fluor-
omethyl compounds are employed as highly potent analogs with
lipophilicity, membrane permeability, aqueous solubility, and
metabolic stability for hydrocarbon analogs [3]. Therefore, the
development of synthetic methods for fluoromethylation with
trifluoromethyl (CF3) substituent in particular into the hydrocar-
bon compounds is an increasingly important issue in modern
organofluorine chemistry [4]. Generally, synthetic methods of the
fluorine-containing compounds involve: (1) C–C bond forming
reactions with fluoromethylating reagents [5], (2) C–C bond
forming reactions employing fluorine-containing carbonyl com-
pounds as building blocks [6], and (3) C–F bond forming reactions
with fluorinating reagents [7]. The fluoromethylation, which can
be exploited in later stage fluorofunctionalization, is further
classified into nucleophilic, electrophilic, or radical reactions.
However, nucleophilic trifluoromethyl-metal reagents such as the
trifluoromethyl-lithium or -magnesium reagent [8] are generally
recognized unstable and hard to prepare owing to the facile a-
metal fluoride (M-F) elimination [9]. Therefore, trifluoromethylsi-
lane (Si-CF3) so called the Ruppert–Prakash reagents has been
widely used as the nucleophilic trifluoromethyl carbanion equiva-

lent via Si–C bond activation with fluoride [10]. Our direct
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approach, namely the activation of the parent trifluoromethane,
fluoroform, HFC-23 (H-CF3) as the simple and cheap trifluoro-
methyl carbanion source via deprotonation of a less acidic
(pKa = 25–28 in water) and hence relatively inert carbon–hydrogen
(C–H) bond with organic base catalysis to avoid the facile a-M-F
elimination is the subject of this communication. Fluoroform is a
by-product in manufacturing polymers such as Teflon and PVDF
(polyvinylidene difluoride). Furthermore, fluoroform has great
global-warming potential and long atmospheric lifetime. There-
fore fluoroform is a must-consume compound by trifluoromethy-
lation. This direct trifluoromethylation method with fluoroform is
hopefully applicable to the asymmetric trifluoromethylation by a
chiral organic base (Scheme 1). Trifluoromethylation with fluoro-
form to carbonyl compound has been originally reported by Shono
using an electrogenerated base or strong inorganic bases such as t-
BuOK in DMF [11]. Then, Normant [12] and Langlois [13]
emphasized the importance of DMF to provide the DMF adduct
of fluoroform as a reservoir. Recently, Grushin [14] and Prakash
[15] reported the direct cupration in DMF and silylation in THF,
ether, or toluene of fluoroform, respectively. Quite recently,
Shibata has just reported the carbonyl addition reaction of
fluoroform using P4-t-Bu base [16].

2. Results and discussions

The trifluoromethylation of carbonyl compounds 1 with
fluoroform was first scrutinized using an organic base such as
DBU (pKBH = 24.34 in acetonitrile), acyclic guanidine TMG
(pKBH = 23.3 in acetonitrile) and P4-t-Bu base (pKBH = 42.7 in
acetonitrile), and cyclic guanidine (methyl TBD (pKBH = 25.49 in
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Scheme 1. Organocatalysis of trifluoromethylation with fluoroform.

Scheme 2. Screening of organic bases.

Scheme 4. Scope of carbonyl substrates.
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acetonitrile) and TBD (pKBH = 26.03 in acetonitrile) and the
potassium salt (Scheme 2) [17]. However, the use of less basic
acyclic TMG (pKBH = 23.3) and cyclic methyl TBD (pKBH = 25.49)
and TBD (pKBH = 26.03) even as the potassium salt were found to be
not effective for the deprotonation of a less acidic (pKa = 25–28)
and hence inert C–H bond of fluoroform. By contrast, P4-t-Bu base
(pKBH = 42.7) led to the formation of trifluoromethylcarbinol (IR:
3376 cm�1) product 2a [10,16].

Several solvents such as DMSO, DMF, THF, ether, dioxane, and
less polar toluene were examined at �40 8C for 3 h (Scheme 3). THF
gave good yield of the trifluoromethylation product of carbonyl
compound. DMF gave moderate yield of the trifluoromethylation
products of carbonyl compounds, along with the formation of the
DMF adduct of fluoroform. Less polar solvent such as toluene gave
lower yield of the trifluoromethylation products 2. Amongst the
ethereal solvents thus examined, THF gave the best yield of the
trifluoromethylation product 2a.

Various carbonyl compounds were then scrutinized to give
good yields of the trifluoromethyl adducts 2 even with quaternary
carbon centers [22,23] (Scheme 4). Benzophenone gave virtually
quantitative yields of trifluoromethylation product 2d [13a]; Even
in the presence of a catalytic amount of P4-t-Bu base (50 and
Scheme 3. Screening of solvent.
30 mol%), the benzophenone adduct 2d was obtained in 80% and
56% yields at �40 8C for 24 and 48 h, respectively with the aid of
trimethylsilyl propyne (2.5 equiv.) [17c]. Even when enolizable
acetophenone and aliphatic carbaldehydes with acidic a-protons
(pKa = 19–20 in water) [18] were added to the solution of
fluoroform and P4-t-Bu base at �40 8C, a similar level of chemical
yields (95%, 48%, and 53%) of the trifluoromethylation products (2e
[13a], 2g [24] and 2h [12]) were obtained. A small amount of aldol
products accompanied, via deprotonation of enolizable aldehydes
with the trifluoromethyl anion as a base.

The effect of P4-t-Bu base was significant in the success of the
present trifluoromethylation (Scheme 5). Furthermore, the molar-
ity of P4-t-Bu base affects the ratio of the mono(trifluoromethyl) 4
[25]/the bis(trifluoromethyl) product 5 [26] in the reaction of
carboxylic acid esters and halides 3. Intriguingly, even with two
equivalents of base, the acid halides provided the mono(trifluor-
omethyl) ketonic (IR: 1763 cm�1) product 4 in 81% yield at �40 8C
for 1 h with negligible amount of formation of the bis(trifluor-
omethyl)carbinol (IR: 3389 and 3598 cm�1) product 5 in 7% yield.
After stirring the reaction mixture overnight (24 h), the bis(tri-
fluoromethyl) product 5 was obtained in 90% yield. That is also the
case with an aromatic ester to give mono(trifluoromethyl) ketone 4
in 58% yield at �40 8C for 3 h, however, on quench with
trimethylsilyl chloride. Otherwise, the intermediary hemiacetal
adduct of fluoroform was observed [19]. The selective formation of
the mono(trifluoromethyl) product 4 is in sharp contrast to the
formation of tertiary alcohols in the reaction of perfluoroalk-
yllithium reagents with aromatic esters [20].
Scheme 5. Mono- and bis-trifluoromethylation products from acid halides and

esters.



Scheme 6. Trifluoromethylation of carbon dioxide.

Scheme 7. Anomalous trifluoromethylation of epoxides.
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The reaction of fluoroform with carbon dioxide is noteworthy in
view of the fixation, via carbon–carbon bond formation, of carbon
dioxide, typical global-warming gas. The reaction of fluoroform
with carbon dioxide efficiently proceeds under the standard
reaction conditions even at low reaction temperature (Scheme 6).
The trifluoromethylation product, namely trifluoroacetic acid [19]
was obtained as an onium salt of P4-t-Bu base [CF3CO2

�/H+P4-t-Bu]
[21] in 78% yield based on the amount of P4-t-Bu base employed.

The reaction with styrene oxides 6 with not only electron-
withdrawing but also electron-donating substituents gave an
internal rather than terminal trifluoromethylation products
2 surprisingly with a quaternary carbon center [19] at higher
(40 8C) reaction temperature (Scheme 7). The reaction would
involve the nucleophilic attack of P4-t-Bu base at the terminal
carbon of styrene oxides and then hydride shift via a twitter ionic
intermediates 7 to give a methyl ketone intermediates 1. Thus,
(a)

(b)

(c)

(d)

-30-25-20-15-10-55 0 ppm

-71 -72 -73 -74 -75 -76 -77 -78 -79 -80 -81 -82 -83 -84 ppm

-30-25-20-15-10-55 0 ppm

-71 -72 -73 -74 -75 -76 -77 -78 -79 -80 -81 -82 -83 -84 ppm

Chart 1. 31P and 19F NMR (d8-THF): (a) 31P NMR of P4-t-Bu base; (b) 19F NMR of fluoroform; (c) 31P NMR of the mixture of P4-t-Bu base and fluoroform; (d) 19F NMR of the

mixture of P4-t-Bu base and fluoroform.
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Scheme 8. Wide scope of organocatalytic trifluoromethylation with fluoroform.
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styrene oxide 6e gave the internal trifluoromethylation product 2e
[26] with a quaternary carbon (13C NMR: 74.6 (q, J = 30.0 Hz) ppm)
center in 51% yield. Furthermore, styrene oxide 6j with an electron-
withdrawing p-trifluoromethyl substituent gave higher (69%) yield
of the internal trifluoromethylation product 2j [28]. p-Methoxy
styrene oxide 6k also gave the internal trifluoromethylation
product 2k [27]. In addition to styrene oxides 6, 3-phenylpropyr-
ene oxide gave 53% yield of the internal trifluoromethylation
product with a quaternary carbon (13C NMR: 73.7 (q,
J = 28.0 Hz) ppm) center [29] (Eq. (1)).

Deprotonation of fluoroform with P4-t-Bu base may be solvent
dependent as shown in 19F and 31P NMR analyses. The mixture of
fluoroform and P4-t-Bu base in d8-THF or d6-DMSO (pKa = 33 in
water) with co-solvent d8-THF surprisingly showed no change in
chemical shifts of both fluoroform and P4-t-Bu base themselves in
31P and 19F NMR analyses (Chart 1a and b vs. 1c and d). The absence
of proton–deuterium exchange in d6-DMSO and d8-THF is also due
to the lower acidity of these solvents. However, on addition of
benzophenone, the a-trifluoromethylation product 2a was
obtained in 92% yield.

Therefore, the following reaction mechanism based on the
equilibrium significantly shifted to the parent fluoroform and
P4-t-Bu base in THF is likely to involve (Scheme 8, Chart 1). A
binary complex of P4-t-Bu base and fluoroform, ‘‘CF3

�/H+P4-t-
Bu’’ was not sufficiently observed but the ternary complex of
P4-t-Bu base, fluoroform and an electrophile (El) could undergo
trifluoromethylation. The present reaction mechanism is thus
different from the previous nucleophilic trifluoromethylation
with the Ruppert–Prakash reagent, trifluoromethyl carbanion

equivalent via Si–C bond activation with fluoride [10] or
the trifluoromethyl-metal reagents [8]. Organic base-derived
onium salt would be operative to generate in situ the stable
‘‘trifluoromethyl anion equivalent’’ without metal–fluoride
interaction.

3. Conclusion

This novel methodology provides an access to ‘‘trifluoromethyl
anion’’ under the organic base reaction conditions and hence not
only quaternary [21] but also tertiary carbon centers could be
constructed. Fortunately, the trifluoromethylation is established
for enolizable carbonyl compounds, ester, acid halide, epoxide,
deuterium donor and carbon dioxide leading eventually to the
trifluoromethylation products with good overall efficiency even in
organocatalysis conditions. This trifluoromethylation with fluoro-
form is applicable to the asymmetric catalysis version, which will
be reported in due course. This methodology is thus compliment to
organometallic trifluoromethylation approach to a variety of
electrophiles.

Appendix A. Supplementary data

Supplementary data associated with this article can be found,

in the online version, at http://dx.doi.org/10.1016/j.jfluchem.2013.

07.018.
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