Russian Journal of Applied Chemistry, Vol. 77, No. 6, 2004, pp. 875–877. Translated from Zhurnal Prikladnoi Khimii, Vol. 77, No. 6, 2004, pp. 887–889. Original Russian Text Copyright © 2004 by Bulanov, Troshin, Balabanov.

## INORGANIC SYNTHESIS AND INDUSTRIAL INORGANIC CHEMISTRY

# Synthesis of High-Purity Calcium Hydride

A. D. Bulanov, O. Yu. Troshin, and V. V. Balabanov

Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhni Novgorod, Russia

Received December 4, 2003

Abstract—A procedure for synthesizing high-purity calcium hydride in high yield was suggested. The admixture composition of the resulting  $CaH_2$  was determined by laser mass spectrometry.

CaH<sub>2</sub> is used in laboratory practice as a desiccant that can take away water from crystal hydrates [1]. It is highly efficient in drying of hydrocarbons, ethers, and other solvents. Calcium hydride has found wide application as a reducing agent in preparing powders of certain metals (Ti, Zr, Nb, Ta, Mo, and W) from their oxides and halides [2, 3]. A method is known for converting silicon halide compounds (silicon tetrachloride, trichlorosilane, and silicon tetrafluoride) into silane by their reaction with CaH<sub>2</sub> [4]. In this case, admixtures of F<sub>2</sub>, H<sub>2</sub>O, O<sub>2</sub>, N<sub>2</sub>, AsH<sub>3</sub>, and PH<sub>3</sub> are removed from SiH<sub>4</sub> via their adsorption on a metal hydride [5]. In [6], calcium hydride was used as a reducing agent to obtain high-purity hydrides of monoisotopic silicon ( $^{28}SiH_4$ ,  $^{29}SiH_4$ , and  $^{30}SiH_4$ ) from monoisotopic  $SiF_4$  by the reaction

$$SiF_4 + 2CaH_2 \rightarrow SiH_4 + 2CaF_2.$$
 (1)

The choice of  $CaH_2$  was determined by the fact that, unlike NaF in the reaction with NaH,  $CaF_2$  does not react with monoisotopic SiF<sub>4</sub> to give  $CaSiF_6$  in synthesis of silane [7, 8]. Moreover,  $CaF_2$  reacts with a BF<sub>3</sub> admixture in silicon fluoride to give a stable  $Ca(BF_4)_2$  complex [4], which favors purification of the resulting SiH<sub>4</sub> to remove boron-containing admixtures. At the same time,  $CaH_2$  is the safest in handling, compared with other hydrides and metal aluminum hydrides.

The compound  $CaH_2$  is a light gray crystalline substance that does not react with oxygen up to 400– 500°C [9] and reacts with water to give CaO, Ca(OH)<sub>2</sub>, and hydrogen [10]. In synthesizing SiH<sub>4</sub> from SiF<sub>4</sub>, the reactions of SiF<sub>4</sub> with the products of CaH<sub>2</sub> hydrolysis are thermodynamically allowed [11]. It has been established experimentally that presence of several percent CaO in calcium hydride substantially decreases the yield of SiH<sub>4</sub>, and, therefore, there is no point in using commercial-grade CaH<sub>2</sub>. Moreover, an admixture of metal calcium in CaH<sub>2</sub> may result in thermal reduction of SiF<sub>4</sub> to give monoisotopic elementary silicon [12]. Therefore, development of a procedure for synthesizing active CaH<sub>2</sub> in high yield is a matter of current interest.

The reaction of Ca with  $H_2$  becomes noticeable at  $170-250^{\circ}$ C [10],  $\Delta H_f^{298}$ (CaH<sub>2</sub>) = -45.1 kcal mol<sup>-1</sup> [13]. For practical use, temperatures in the range from 250 to 700°C are recommended [14]. The hydrogenation of solid Ca to give a solid product is a topochemical process. Kinetic studies [15] revealed three stages of the reaction: formation of centers of CaH<sub>2</sub> crystallization on the surface of a sample (induction period), formation of a CaH<sub>2</sub> surface layer precluding a direct contact of  $H_2$  with Ca, and diffusion of  $H_2$  with the subsequent reaction at the Ca-CaH<sub>2</sub> interface (dissolution or formation of a chemical bond). The rate of Ca hydrogenation depends on temperature,  $H_2$  pressure, linear dimensions of a sample, internal structure of the metal, and admixtures present in calcium and hydrogen [15–17].

The admixtures of  $O_2$  and  $H_2O$  in hydrogen decrease the hydrogenation rate, because CaO formed on the surface of calcium hinders the diffusion of  $H_2$ . It was shown in [18] that 0.5% oxygen decelerates the reaction by a factor of 2.5, and 0.5%  $H_2O$ , by a factor of 6.

### EXPERIMENTAL

To obtain high-purity CaH<sub>2</sub>, we used distilled Ca in the form of 1.5-mm-thick shavings [TU (Technical Specifications) 95.768–80, manufactured by Mashinostroitel'nyi zavod Open Joint-Stock Company (Elekt-

Results of analysis by laser mass-spectrometry

| Element     | Content, at.%                                                        |                                                                |
|-------------|----------------------------------------------------------------------|----------------------------------------------------------------|
|             | Ca                                                                   | CaH <sub>2</sub>                                               |
| B<br>C<br>P | $< 8 \times 10^{-6}$<br>$< 3 \times 10^{-2}$<br>$< 1 \times 10^{-5}$ | $<1	imes 10^{-4} \le 8	imes 10^{-2} \ 1	imes 10^{-4}$          |
| F           | $7 \times 10^{-3}$<br>$1 \times 10^{-3}$                             | $\leq 1 \times 10^{-3}$<br>$\leq 1 \times 10^{-3}$             |
| Al          | $1 \times 10^{-5}$<br>$5 \times 10^{-5}$<br>$2 \times 10^{-3}$       | $1 \times 10^{-5}$<br>$4 \times 10^{-5}$<br>$2 \times 10^{-4}$ |
| Cl          | $2 \times 10^{-2}$<br>0.12                                           | $2 \times 10^{-2}$<br>$2 \times 10^{-2}$                       |
| Fe<br>Mn    | $1 \times 10^{-3}$<br>$1 \times 10^{-3}$                             | $5 \times 10^{-4}$<br>$7 \times 10^{-4}$                       |
| Cu<br>Zn    | $6 \times 10^{-4}$<br>2 × 10^{-4}                                    | $3 \times 10^{-3}$<br><1 × 10 <sup>-4</sup>                    |
| Sr<br>S     | $\frac{3 \times 10^{-2}}{1 \times 10^{-3}}$                          | $5 \times 10^{-3}$ $3 \times 10^{-4}$                          |

rostal')] and  $H_2$  purified by diffusion across a palladium membrane. The content of admixtures in calcium, as determined by laser mass spectrometry, is listed in the table.

The content of  $O_2$  and  $H_2O$  admixtures in purified hydrogen does not exceed  $10^{-4}$  mol %.

We synthesized  $CaH_2$  on an installation shown schematically in the figure. The main units of the installation are a cylinder with  $H_2$  *1*, a  $H_2$  purification unit 2, and a flange reactor 3. We controlled the pressure of  $H_2$  during the process with vacuum gages 4 and 5. The temperature of the resistance furnace 6 was set with an R-133 temperature control unit and monitored with a Chromel–Copel thermocouple 7.



Schematic of the installation for synthesis of  $CaH_2$ . (1–7) For explanations, see text; (8) receiver.

We synthesized  $CaH_2$  by the following procedure. A stainless-steel flange reactor was charged with 350-400 g of Ca, connected it to the installation, evacuated to  $10^{-1}$  mm Hg, and heated to  $360^{\circ}$ C within 0.5 h. According to [16], melted Ca in the form of shavings starts to react with H<sub>2</sub> at 400°C; hence, we hydrogenated Ca in the temperature range 400-450°C. We filled the reactor with purified  $H_2$  to a pressure of 5 atm and kept it for about 5 min. During this time, the pressure of  $H_2$  in the reactor decreased first gradually and then abruptly to 0.05-0.1 atm. The increase in the rate of  $H_2$  absorption is accounted for by the high rate of the hydrogenation reaction on the surface of Ca. In this stage of hydrogenation, we controlled the flow of  $H_2$  into the reactor in such a manner that the pressure of  $H_2$  in the reactor did not exceed 1 atm, since an elevated pressure of  $H_2$  results in a rise in temperature.

A rise in temperature may lead to caking of CaH<sub>2</sub>, which impedes its withdrawal from the reactor. After a layer of CaH<sub>2</sub> is formed on the surface of Ca, diffusion of H<sub>2</sub> to the Ca–CaH<sub>2</sub> interface begins, and the rate of H<sub>2</sub> absorption decreases. To complete the hydrogenation, we raised the H<sub>2</sub> pressure in the reactor to 10 atm, and the temperature to 480°C. We judged the completion of the hydrogenation reaction from the cessation of the H<sub>2</sub> absorption.

The yield of CaH<sub>2</sub> was calculated as the ratio of the weight of CaH<sub>2</sub> obtained in the experiment to its theoretical value. The yield of CaH<sub>2</sub> was 99.6  $\pm$  0.1%, i.e., the synthesis procedure results in an almost complete hydrogenation of Ca. The output capacity of the pilot installation for CaH<sub>2</sub> synthesis is 150 g of CaH<sub>2</sub> per hour.

The resulting  $CaH_2$  was analyzed by laser mass spectrometry for the content of admixtures. The results obtained are listed in the table. It can be seen that the main admixtures in  $CaH_2$  are C and Cl, whereas the content of metal admixtures is at the level of  $10^{-3}$  at.%.

After the process was complete, we placed the cooled reactor in a box purged with dried nitrogen and then ground the  $CaH_2$  obtained to powder with particle size of less than 0.6 mm. The powdered  $CaH_2$  was charged into the reactor in a flow of purified  $H_2$  in order to obtain silane.

An effective procedure for removal of carbon from metals [19] is their "washing" with purified  $H_2$ . The admixtures of hydrocarbons can be formed in the reaction of  $H_2$  with admixtures of metal carbides present in calcium:

$$M_n C_m(\text{solid}) + 2mH_2 = nM(\text{solid}) + mCH_4(\text{gas}). \quad (2)$$

In [20], CaH<sub>2</sub> was obtained in the reaction of calcium carbide with H<sub>2</sub> at 100–1000oC under an elevated pressure (up to 100 atm):

$$CaC_2 + 5H_2 \rightarrow CaH_2 + 2CH_4.$$
 (3)

Therefore, side reactions of hydrogenation of carbon and its compounds to give hydrocarbons can occur under the conditions of  $CaH_2$  synthesis.

In this study, we blew  $CaH_2$  with a flow of purified  $H_2$  at 250°C for 8 h in order to diminish the content of carbon admixtures. It was shown that, after contact with  $CaH_2$ , the content of hydrocarbon admixtures in  $H_2$  increases by two orders of magnitude, which allowed us to diminish the content of the most difficultly removable admixture of ethylene in silane by an order of magnitude.

#### CONCLUSIONS

(1) High-purity calcium hydride was obtained by hydrogenation of distilled metallic calcium with purified hydrogen.

(2) The main admixtures in  $CaH_2$  are C and Cl, whereas the content of metal admixtures is at the level of  $10^{-3}$  at.%. The procedure of "washing" of  $CaH_2$  was used to decrease the content of carbon admixture in it.

#### ACKNOWLEDGMENTS

The study was financially supported by the 6th Competition-examination of scientific projects of young scientists of the Russian Academy of Sciences, in the field of fundamental and applied research (grant no. 165).

#### REFERENCES

- 1. Hurd, D.T., An Introduction to the Chemistry of Hydrides, New York: Wiley, 1952.
- Meerson, G.A. and Kolchin, O.P., *Atomnaya Ener*giya, 1957, vol. 2, no. 3, pp. 253–259.
- 3. Bichara, M., Ann. Chim., 1956, vol. 1, p. 399.
- 4. RF Patent 2077483.
- 5. Jpn. Patent Aplication 58-120511.
- Devyatykh, G.G., Dianov, E.M., Bulanov, A.D., et al., Dokl. Ross. Acad. Nauk, 2003, vol. 391, no. 5, pp. 638–639.
- 7. EC Patent 0052808.
- 8. US Patent 4407783.
- 9. Gmelins Handbuch der Anorg Chemie: Calcium, 1956, vol. 28, pp. 28 and 271.
- 10. Mikheeva, V.I. and Kuznetsov, V.A., *Zh. Anal. Khim.*, 1965, vol. 20, no. 2, p. 200.
- Opalovsky, A.A., Labkov, E.U., Torosyan, S.S., and Dzhambek, A.A., *J. Therm. Anal.*, 1979, vol. 15, pp. 67–77.
- 12. US Patent 4446120.
- 13. Zhigach, A.F. and Stasinevich, D.S., *Khimiya Gidridov* (Chemistry of Hydrides), Leningrad: Khimiya, 1969.
- 14. Johnson, W.C., Stubbs, M.F., and Pechukas, A., J. Am. Chem. Soc., 1939, vol. 61, no. 2, p. 318.
- 15. Krestovnikov, E.P., *Trudy UNIKHIM*, 1958, no. 5, pp. 118–135.
- Efremkin, V.V. and Fefelova, G.F., *Trudy UNIKHIM*, 1958, no. 5, pp. 136–151.
- Teplenko, V.G., Kudinova, K.G., and Shikhanova, T.S., *Sbornik trudov TSNIICHermet* (Coll. of Works of TSNIICHermet), 1965, vol. 43, p. 135.
- 18. US Patent 2702740.
- 19. Devyatykh, G.G., Yushin, A.S., and Osipova, L.I., *Metally osoboi chistoty* (Special-Purity Metals), Moscow: Nauka, 1976, pp. 105–113.
- 20. Jpn. Patent Application 61-178401.