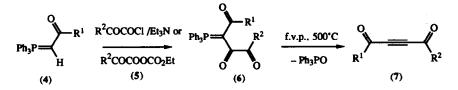

Pyrolysis of β, γ, β' -Trioxo Phosphorus Ylides: Convenient Synthesis of Symmetrical and Unsymmetrical Diacylalkynes

R. Alan Aitken^{*}, Hugues Hérion, Amaya Janosi, Swati V. Raut, Shirley Seth, Ian J. Shannon and Fiona C. Smith

Department of Chemistry, University of St. Andrews, St. Andrews, Fife, KY16 9ST, U.K.


Abstract: Flash vacuum pyrolysis of a series of 1,2,4-trioxo-3-triphenylphosphoranylidene--butane derivatives, formed by acylation of β -oxo-phosphorus ylides with α -oxo-acid chlorides, results in extrusion of Ph₂PO exclusively across the 2,3-position to give diacylalkynes.

Thermal extrusion of triphenylphosphine oxide from α -oxoalkylidenetriphenylphosphoranes 1 is a well established method for the synthesis of alkynes R¹C=CR² which proceeds particularly well using the technique of flash vacuum pyrolysis (f.v.p.). This has been successfully exploited for R¹ = H or alkyl,¹ aryl,^{2.3} CN,^{2.4} Cl or Br,⁵ SR,⁶ SeAr,⁷ OAr,⁸ and PO(OPh)₂.⁹ Where there are ester and keto carbonyl groups present as in 2 oxygen is eliminated exclusively from the latter to give acetylenic esters R²C=C-CO₂R¹ in good yield.^{2,10,11} The same applies for thioloester groups and this has allowed convenient synthesis of R²C=C-C(O)SMe.¹² In

3, where the choice is between two keto carbonyls, selectivity is not surprisingly poor and extrusion gives an almost equal mixture of $R^1COC \equiv CR^2$ and $R^1C \equiv CCOR^2$.¹³ We have now prepared representative examples of the next members of the series 6, with a keto or ester group on one side of phosphorus and an α -diketo or α -ketoester group on the other, and find that Ph₃PO is lost exclusively across the central position to give diacylalkynes 7.

The ylides 6, a new class of compound, were obtained in good to excellent yield (*Table*) as stable crystalline solids by reaction of the readily available ylides 4 in THF at room temperature either with acid chlorides in the presence of Et_3N for 6a-i, or mixed anhydride 5 formed *in situ* from sodium pyruvate and ethyl chloroformate in the case of 6j.

When the ylides 6 were subjected to f.v.p. at 500°C and 0.01 torr in a conventional flow system (contact time \approx 10 ms) extrusion took place across the central positions to give a mixture of Ph₃PO and alkynes 7 in good yield. In most cases the more volatile 7 was collected in the cold trap while Ph3PO remained at the furnace exit, but where necessary the components were readily separated by column chromatography or distillation. While the

Entry	R1	R ²	Formation of 6 yield (%) δ _P		Conversion to 7				
					yield (%)	δ _C C≡C		C=0	
8	Ph	Ph	72	+16.5	82	85.8		176.5	
b	Ph	OMe	96	+18.8	23	80.1	80.1	152.7	176.
С	Ph	OEt	95	+18.1	44	79.7	80.5	152.2	176.
d	OMic	Ph	61	+15.7	66	(as b)			
e f	OMe	OMe	68	+16.3	59	`74. 9		152.6	
f	OMc	OEt	98	+16.5	61	74.3	75.1	151.8	152.3
g	OEt	Ph	67	+15.6	52	(as c)			
g h	OEt	OMe	81	+16.2	70	(as f)			
i	OEt	OEt	91	+16.2	63	74.7		151.8	
j	OEt	Me	62	+15.2	23	77.9	80.8	152.2	182.5

mode of reaction for ester-stabilised ylides 6d-j is as expected, it is noteworthy that in cases a-c none of the alternative products R¹C=CCOCOR² were observed. This therefore provides a convenient two step route from ylides 4 and α -oxoacid derivatives 5 to symmetrical and unsymmetrical diacylalkynes 7. These are of considerable interest as dienophiles and dipolarophiles for cycloaddition reactions and the present method offers a competitive alternative to existing approaches.¹⁴

Acknowledgement

We thank the University of St. Andrews for a University Scholarship (to SVR) and The Royal Society for a Warren Research Fellowship (to RAA).

References and Notes

- 1. Aitken, R.A.; Atherton, J.I. J. Chem. Soc., Chem. Commun. 1985, 1140.
- Gough, S.T.D.; Trippett, S. J. Chem. Soc. 1962, 2333; J. Chem. Soc. 1964, 543.
 Trippett, S.; Walker, D.M. J. Chem. Soc. 1959, 3874; Akiyama, S.; Nakasuji, K.; Nakagawa, M. Bull. Chem. Soc. Jpn. 1971, 44, 2231; Kobayashi, Y.; Tamashita, T.; Takahashi, K.; Kuroda, H.; Kumadaki, I. Tetrahedron Lett. 1982, 23, 343; Xin, Y.; Wu, X.; Shen, Y. J. Fluorine Chem. 1988, 40, 15; Brittain, J.M.; Jones, R.A.; Taheri, S.A.N. Tetrahedron 1992, 48, 7609.
- Huang, Y.Z.; Shen, Y.; Ding, W.; Zheng, J. Tetrahedron Lett. 1981, 22, 5283; Shen, Y.; Zheng, J.; Huang, Y. J. Fluorine Chem. 1988, 41, 363.
- 5. Braga, A.L.; Comasseto, J.V. Synth. Commun. 1989, 19, 2877.

- Braga, A.L.; Comasseto, J.V.; Petragnani, N. Tetrahedron Lett. 1984, 25, 1111.
 Braga, A.L.; Comasseto, J.V.; Petragnani, N. Synthesis 1984, 240.
 Shen, Y.; Cen, W.; Huang, Y. Synthesis 1987, 626.
 Shen, Y.; Lin, Y.; Xin, Y. Tetrahedron Lett. 1985, 26, 5137.
 Märkl, G. Chem. Ber. 1961, 94, 3005; Henry, R.A. J. Chem. Eng. Data 1976, 21, 503; Bestmann, H.J.; Geissmann, C. Liebigs Ann. Chem. 1977, 282; Aitken, R.A.; Seth, S. Synlett. 1990, 212.
- 11. This may be partly due to these compounds existing predominantly in the configuration shown with the ester oxygen *anti* to phosphorus as recently demonstrated in the solid state by X-ray structure determination. See: Abell, A. D.; Trent, J. O.; Morris, K. B. J. Chem. Soc., Perkin Trans. 2 1991, 1077, and previous references therein.
- 12. Shen, Y.; Zheng, J. J. Fluorine Chem. 1987, 35, 513.
- 13. Chopard, P.A.; Searle, R.J.G.; Devitt, F.H. J. Org. Chem. 1965, 30, 1015; Shen, Y.; Cen, W.; Huang, Y. Synthesis 1985, 159.
- 14. Brandsma, L. Preparative Acetylenic Chemistry; Elsevier: Amsterdam. 1971. See also, for example, Dunn, P. J.; Rees, C. W. J. Chem. Soc., Perkin Trans. 1 1987, 1579.

(Received in UK 6 May 1993; accepted 9 July 1993)