

PII S0025-5408(99)00231-7

ON A LEAD NICKEL MANGANESE TELLURIUM OXIDE $PbMn_2Ni_6Te_3O_{18}$ CONTAINING Mn^{2+} IN TRIGONAL PRISMATIC OXYGEN COORDINATION

B. Wedel¹*, K. Sugiyama², K. Hiraga², and K. Itagaki¹

¹Tohoku University, Institute for Advanced Materials Processing (IAMP), Katahira 2-1-1, Aoba-Ku, Sendai 980-8577, Japan

²Tohoku University, Institute for Materials Research (IMR), Katahira 2-1-1, Aoba-Ku, Sendai 980-8577, Japan

(Refereed)

(Received February 5, 1999; Accepted March 8, 1999)

ABSTRACT

A new lead manganese nickel tellurium oxide PbMn₂Ni₆Te₃O₁₈ is light green in color and crystallizes in hexagonal symmetry, space group $C_{6h}^2 P6_3/m$ (no. 176), with cell parameters a = 9.294(1), c = 8.823(1) Å, and Z = 2. The structure was determined from a single crystal X-ray study and refined to the conventional values R = 0.026 and $wR(F^2) = 0.046$. Ni²⁺ and Te⁶⁺ show octahedral and Mn²⁺ shows trigonal prismatic coordination by O²⁻. The crystal structure is featured by a $^{2}_{\infty}[Ni_6Te_3O_{18}]^{6-}$ network together with two kinds of channels along [001] with trigonal and hexagonal shape. Isolated face shared $[Mn_2O_9]^{14-}$ trigonal prismatic polyhedra doubles are located in the trigonal channels, while one-dimensional infinite chains of $[PbO_{6+6}]^{22-}$ oxygen cube dodecahedra are incorporated in the hexagonal channels. \odot 2000 *Elsevier Science Ltd*

KEYWORDS: A. inorganic compounds, A. oxides, C. X-ray diffraction, D. crystal structure

INTRODUCTION

We have recently characterized the quaternary lead(II) nickel tellurium oxide $Pb_3Ni_{4.5}Te_{2.5}O_{15}$ [1] with a stereo active lone pair located at Pb^{2+} and $Pb(Mn,Te)O_3$ [2]. The

^{*}To whom correspondence should be addressed.

lead manganese tellurium oxide shows a spherical symmetry of the lone pair, which indicates a s² character, and this compound crystallizes in the cubic perovskite type.

Reported quaternary nickel tellurium oxides are rare; only a few compounds have been reported. $BaMn_2NiO_6$ [3], Ba_2NiTeO_6 [4], and Sr_2NiTeO_6 [5] should be mentioned. Sr_2MnTeO_6 [6], Ba_2MnTeO_6 [2], and $(Mn_{2,4}Cu_{0.6})TeO_6$ [2] have to be named in the case of manganese(II) compounds.

The earth alkaline metal compounds crystallize in a small number of perovskite variants.

It was our aim to study the character of the lone pair in a lead tellurium oxo-compound containing manganese(II) and nickel(II) and to compare the character of the stereo active lone pair in $Pb_3Ni_{4.5}Te_{2.5}O_{15}$ with the character of the spherical lone pair in $Pb(Mn,Te)O_3$.

EXPERIMENTAL

The hitherto unknown compound $PbMn_2Ni_6Te_3O_{18}$ was synthesized as a polycrystalline powder and as single crystals in a solid-state reaction in air. Yellow PbO (Kanto Chemical Co. Inc.), basic NiCO₃ (Kanto Chemical Co. Inc.), basic MnCO₃, and TeO₂ (prepared by oxidation of tellurium metal (Kanto Chemical Co. Inc.) by concentrated HNO₃ in air at 473 K for 6 h [7]) were intimately mixed in the ratio 1:5:3:5 and ground thoroughly before being placed in a platinum crucible. This crucible was placed in a furnace and heated in air to 1073 K for 336 h. The furnace was allowed to cool to room temperature and the samples were then removed from the furnace. The high ratio of TeO₂ was necessary because of evaporation losses.

After cooling, many single crystals with different shapes and colors were found in the inhomogeneous reaction product. Besides a few light-green single crystals, there were various yellow, dark-red, and dark-green crystals. By energy-dispersive X-ray spectroscopy (Hitachi X650S, EDX system KEVEX 7000Q) and X-ray diffraction (XRD; Rigaku X-ray diffractometer RINT 2000), these crystals were identified as PbTeO₃ [8], Mn₃TeO₆ [9], and Pb₃Ni_{4.5}Te_{2.5}O₁₅ [1]. The light-green crystals were stable in air and suitable for single crystal X-ray diffraction analysis. They were selected for use under a polarized light microscope; one of them, with trigonal shape $(0.10 \times 0.09 \times 0.06 \text{ mm})$, was selected for this study. By energy-dispersive X-ray spectroscopy, a ratio Pb:Ni:Mn:Te = 1.1:6.3:2.0:3.1 was determined.

The symmetry and the lattice parameter were determined with oscillation and Weissenberg photographs, and imaging plate measurements (Rigaku Imaging plate CS, modified for the Institute of Material Research (IMR)). The crystal used for the final intensity measurement was mounted on the top of a glass fiber. Diffraction measurements at 293 K were made on a Rigaku AFC6S four-circle diffractometer using Mo K α radiation. The unit cell was determined by the least-squares procedure, applied to 25 randomly selected reflections (range 27.22° < 2 θ < 34.84°) obtained by using the AFC6 automatic search. Crystal data, data collection parameters, and the results of the analysis of PbMn₂Ni₆Te₃O₁₈ are listed in Table 1.

The compound PbMn₂Ni₆Te₃O₁₈ crystallizes in the hexagonal crystal system. The patterns observed in the data were consistent with the space groups $P6_3$, $P6_3/m$, or $P6_322$. The centric space group $P6_3/m$ was assumed and confirmed by the successful solution and refinement of the structure.

The structure was solved by a combination of direct methods and difference Fourier syntheses (SHELX package [10,11]). All atoms were refined with anisotropic thermal parameters. The positional parameters in $PbMn_2Ni_6Te_3O_{18}$ are listed in Table 2 and the

Formula	PbMn ₂ Ni ₆ Te ₃ O ₁₈
Crystal size (mm)	$0.10 \times 0.09 \times 0.06$
Formula weight	1340.13
Crystal system	hexagonal
Lattice parameters	
a (Å)	9.294(1)
<i>c</i> (Å)	8.823(1)
V (Å)	659.95(1)
Space group	<i>P</i> 6 ₃ / <i>m</i> (no. 176)
Z value	2
Index ranges	0 < h < 14; -14 < k < 12; 0 < l < 14
$\rho calc (g/cm^3)$	6.744
λ (Mo K α) (mm ⁻¹)	29.525
Temperature (K)	293
2θ max. (°)	70
Number of observations (I > 4σ)	817
Number of variables	52
Goodness of fit	1.043
Residuals: R; R _w	0.026; 0.046
Absorption correction	Ψ-scan [24]
Min/max absorption	0.6481/0.9843
Largest final peak and hole $(e/Å^3)$	1.185 and 1.116

TABLE 1Crystallographic Data for PbMn2Ni6Te3O18 [23]

selected interatomic bond distances and angles can be found in Table 3. The anisotropic thermal parameters are summarized in Table 4. The space group was determined by using the ABSEN program [12]; all structure plots appearing in this paper were performed by an ORTEP program [13] and STRUPOL [14].

DESCRIPTION OF THE STRUCTURE

The PbMn₂Ni₆Te₃O₁₈ crystal structure is a $^{3}_{\infty}$ [Ni₆Te₃O₁₈]⁶⁻ network consisting of edge and corner connected octahedra. Figure 1 shows a typical plane of the network composed by the

	1 Oshic	10311011111111111111111111111111111111					
Atom	Site	x	у	Z	U(eq)		
Pb	2b	0	0	0	23(1)		
Te	6h	0.3375(1)	0.3622(1)	3/4	4(1)		
Ni	12i	0.9880(1)	0.3482(1)	0.9110(1)	6(1)		
Mn	4f	1/3	2/3	0.0602(1)	7(1)		
O(1)	12i	0.1011(3)	0.3060(4)	0.0915(2)	8(1)		
O(2)	12i	0.1296(3)	0.6074(3)	0.9120	7(1)		
O(3)	6h	0.5810(5)	0.4485(5)	3/4	6(1)		
O(4)	6h	0.1073(5)	0.2923(5)	3/4	7(1)		

TABLE 2 Positional Parameter and U(eq) for PbMn₂Ni₆Te₃O₁₈

Interation	nic Distances (A) for $PDIVIn_2IN_6I$	$e_{3}O_{18}$
Pb–O(1) 6×	2.636(3)	Mn–O(2) 3×	2.138(2)
Pb–O(4) $6\times$	3.250(3)	Mn–O(3) 3×	2.335(2)
Te-O(4)	1.904(3)	Ni-O(4)	2.017(3)
Te–O(1) $2\times$	1.936(2)	Ni-O(1)	2.046(3)
Te–O(2) $2\times$	1.938(2)	Ni-O(2)	2.067(3)
Te-O(3)	1.987(3)	Ni-O(2)	2.094(3)
		Ni-O(1)	2.102(3)
		Ni-O(3)	2.117(3)

TABLE 3 Interatomic Distances (Å) for $PbMn_2Ni_6Te_3O_{18}$

Esd's given in parentheses.

edge and corner connection of the NiO₆¹⁰⁻ and TeO₆⁶⁻. Along the *c* axis these oxygen octahedra are connected so as to make double chains by showing their edges. The sequence of the metals in one chain is Ni²⁺–Ni²⁺–Te⁶⁺–Ni²⁺–Te⁶⁺; the second chain is connected over edges with the first and shifted by one octahedron. Figure 2a shows a double chain of the (Ni²⁺,Te⁶⁺) octahedra.

In the plane, the double chains are connected by corners and edges. Three oxygen octahedra of Ni²⁺ and three oxygen octahedra of Te⁶⁺ form a ring with trigonal shape. These rings build up channels parallel to [001] in which the Mn²⁺ ions are located. Three oxygens of NiO₆¹⁰⁻ and three oxygens of TeO₆⁶⁻ are connected by corners to form hexagonal rings. The Pb²⁺ ions are incorporated into the hexagonal channels formed by the double chains of NiO₆¹⁰⁻ and TeO₆⁶⁻ octahedra rings, which gives Pb²⁺ a 6 + 6 coordination by oxygen, consisting of six inner and six outer O²⁻ ions, forming a stretched cube octahedron. The high thermal parameter of Pb²⁺ found in the channel structure of PbMn₂Ni₆Te₃O₁₈ is not unusual for channel structures.

The manganese ions obtain a trigonal prismatic oxygen coordination in the channels, which is unusual for common Mn^{2+} coordination. Only a few examples of this trigonal prismatic coordination of Mn^{2+} are known so far, e.g., $Mn_5(PO_4)_3Cl_{0.9}OH_{0.1}$ [15], Mn_2GeO_4 [16], and $(Cu,Mn)_{3.66}Mo_3O_{12}$ [17]. Nevertheless, the coordination prisms are connected by their edges in these compounds. In PbMn₂Ni₆Te₃O₁₈, the prisms share a

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
Pb	13(1)	13(1)	45(1)	0	0	6(1)	
Te	4(1)	4(1)	3(1)	0	0	2(1)	
Ni	6(1)	6(1)	5(1)	1(1)	0(1)	3(1)	
Mn	7(1)	7(1)	7(1)	0	0	3(1)	
O1	7(1)	12(1)	6(1)	-1(1)	0(1)	6(1)	
O2	7(1)	6(1)	6(1)	-1(1)	-2(1)	2(1)	
O3	3(2)	6(2)	8(2)	0	0	3(1)	
O4	4(2)	10(2)	5(2)	0	0	2(1)	

TABLE 4 Anisotropic Displacement Factor $[Å^2 \times 10^3]$ for PbMn_Ni_Te₂O₁₀

Esd's given in parentheses.

FIG. 1

Perspective view along [001] in $PbMn_2Ni_6Te_3O_{18}$. Light octahedra = NiO_6^{10-} ; dark octahedra = TeO_6^{6-} ; big sphere with cross = Pb^{2+} ; small sphere with cross Mn^{2+} ; open sphere = O^{2-} .

common triangular face to form Mn_2O_6 dimers, a feature not previously observed in any compound. The Mn_2O_6 double prisms are connected by two empty prisms on each side, to form a ${}^1_{\infty}[Mn_2O_6 \text{ [empty]]}^{8-}$ chain. This sequence along [001] is demonstrated in Figure 2b.

Chains in PbMn₂Ni₆Te₃O₁₈. (a) ${}^{1}_{\infty}$ [Ni₆Te₃O₁₈]⁶⁻ chain; (b) ${}^{1}_{\infty}$ [Mn₂O₆ [empty]]⁸⁻ chain; (c) ${}^{1}_{\infty}$ [PbO₉]¹⁶⁻ chain along [001]. The symbols correspond to the symbols of Figure 1.

FIG. 3

(a) [001] plane of edge- and corner-connected octahedra of hexagonal tungsten bronze type structure; (b) of $Pb_3Ni_{4.5}Te_{2.5}O_{15}$.

According to a calculation of ECoN [18] values, the Pb^{2+} ions are coordinated by 12 oxygen ions. Six of them form an inner coordination sphere, the other six an outer sphere, resulting in [6 + 6] coordination. These PbO_{6+6} polyhedra share trigonal faces with two neighbors forming a ${}^{1}_{\infty}[PbO_{9}]^{16-}$ chain along [001] (Fig. 2c). Because of the symmetric shape of the oxygen coordination of Pb^{2+} , it is not possible to find a reasonable position of the lone pair in the coordination polyhedron with geometric or MAPLE [19,20] methods. Therefore we assume that the lone pair has a spherical s-orbital shape.

Finally, a similarity is noted between the present $PbMn_2Ni_6Te_3O_{18}$ structure, the well-known hexagonal tungsten bronze type structure [21,22], and the $Pb_3Ni_{4.5}Te_{2.5}O_{15}$ structure [1]. All of these three structures crystallize in hexagonal space groups, which are related to each other as subgroups and supergroups. The systematic absence conditions of them are the same. In $Pb_3Ni_{4.5}Te_{2.5}O_{15}$, there are only hexagonal channels along [001], while the tungsten bronze type structure contains hexagonal and trigonal channels like those in the $PbMn_2Ni_6Te_3O_{18}$ structure, except, in this case, the rings are built up by three polyhedra only and the atoms in these smaller rings do not have a trigonal prismatic oxygen coordination. Figure 3 shows the comparison of these structure types.

ACKNOWLEDGMENTS

The generous support given by the Japanese Ministry of Education is gratefully acknowledged. Special thanks is given to Mr. Y. Sato for the EPMA analysis and Dr. L. Wulff for helping to calculate the Coulomb part of the lattice energy and helpful discussions to prepare this paper.

REFERENCES

- 1. B. Wedel, K. Sugiyama, and Hk. Müller-Buschbaum, Z. Naturforsch. 53b, 527 (1998).
- 2. L. Wulff, B. Wedel, and Hk. Müller-Buschbaum, Z. Naturforsch. 53b, 49 (1998).
- Powder Diffraction File, Inorg. Phases, JSPDS International Center for Diffraction Data, Newton Square, PA 19073; File No. 44-0571, 1993.
- 4. P. Köhl, U. Müller, D. Reinen, Z. Anorg. Allg. Chem. 392, 124 (1972).
- 5. P. Köhl, U. Müller, D. Reinen, Z. Anorg. Allg. Chem. 378, 129 (1970).
- Powder Diffraction File, Inorg. Phases, JSPDS International Center for Diffraction Data, Newton Square, PA 19073; File No. 29-0897, 1993.
- 7. G. Brauer, Handbuch der Präparativen Anorganischen Chemie, Band 1, S. 436, 3. Auflage, Ferdinand Enke Verlag, Stuttgart, Germany (1975).
- M. Gaitan, A. Jerez, I. Noguerlas, C. Pico, and M.L. Veiga, Synth. React. Inorg. Met.- Org. Chem. 17, 479 (1987).
- 9. G. Bayer Z. Kristallogr. 124, 131 (1967).
- G.M. Sheldrick, SHELXS-86, Program for Crystal Structure Determination, University of Göttingen, Göttingen, Germany, 1986.
- 11. G.M. Sheldrick, SHELXL-93, Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, 1993.
- 12. P. McArdle, J. Appl. Crystallogr. 29, 306 (1996).
- 13. C.K. Johnson, ORTEP, Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustration, Report ORNL-3794, Oak Ridge National Laboratory, TN, 1965.
- 14. R.X. Fischer, J. Appl. Crystallogr. 18, 258 (1985).
- 15. G. Engel, J. Pretzsch, V. Gramlich, and W.H. Baur, Acta Crystallogr. B 31, 1854 (1975).
- 16. A.D. Wadsley, A.F. Reid, and A.E. Ringwood, Acta Crystallogr. B 24, 740 (1968).
- 17. O. Sedello and Hk. Müller-Buschbaum, Z. Naturforsch. 51b, 447 (1996).
- 18. R. Hoppe, Z. Kristallogr. 150, 23 (1979).
- 19. R. Hoppe, Angew. Chem. 78, 52 (1966).
- 20. R. Hoppe, Adv. Fluor. Chem. 6, 387 (1972).
- 21. V. Balraj and K. Vidyasagar, Inorg. Chem. 37, 4764 (1998).
- 22. A.J. Schultz and H. Horiuchi, Acta Crystallogr. C 42, 641 (1986).
- 23. Further information about the crystal structure analysis is deposited with Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, under file number CSD-410717.
- 24. A.C.T. North, D.C. Phillips, and F.S. Mathews, Acta Crystallogr. A 24, 351 (1968).