Synthese und Struktur von $M^{II}[AuF_4]_2$ ($M^{II} = Cd, Hg$)

H. Bialowons und B. G. Müller*

Gießen, Institut für Anorganische und Analytische Chemie I der Universität

Bei der Redaktion eingegangen am 6. Mai 1997.

Professor Rudolf Hoppe zum 75. Geburtstag gewidmet

Inhaltsübersicht. $Cd[AuF_4]_2$ und das dazu isotype $Hg[AuF_4]_2$, beide gelb, kristallisieren tetragonal in der Raumgruppe P4/mcc- D_{4h}^2 (Nr. 124) mit a = 575.0 bzw.

575.6 pm, c = 1034.8 bzw. 1042.3 pm und Z = 2. Die Darstellung der Einkristalle erfolgte durch Festkörperreaktion der binären Fluoride im Goldrohr.

Synthesis and Structure of $M^{II}[AuF_4]_2$ ($M^{II} = Cd, Hg$)

Abstract. Cd[AuF₄]₂ and the isotypic compound Hg[AuF₄]₂, both are yellow, crystallize tetragonal in the space-group P4/mcc- D_{4h}^2 (No. 124) with a = 575.0/575.6 pm, c = 1034.8/ 1042.3 pm and Z = 2. The single-crystals were obtained by solid-state reactions in goldtubes.

1 Einleitung

Nachdem im Rahmen systematischer Untersuchungen des Systems MF_x (x = 1,2,3,4)/AuF₃ u.a. zunächst Verbindungen M[AuF₄]₂ mit M = Mg, Zn, Ba [1] dargestellt und anhand von Einkristall-Daten auch strukturell charakterisiert werden konnten, wurden die entsprechenden Versuche mit M = Ca, Sr, Ni, Pd, Cd, Hg, Cu, Ag durchgeführt. Fast alle dieser Verbindungen konnten inzwischen auch in Form von Einkristallen erhalten werden, über einige wurde bereits (M = Cu, Ni, Pd) [2, 3] bzw. wird in Kürze (M = Ag) [4] berichtet.

Aufgrund des eigenen Strukturtyps werden die beiden Fluoroaurate $M[AuF_4]_2$ (M = Cd, Hg) im folgenden gesondert beschrieben.

Prof. Dr. B. G. Müller Institut für Anorganische und Analytische Chemie der Justus-Liebig-Universität Heinrich-Buff-Ring 58 D-35392 Gießen

Keywords: Tetrafluoroaurates(III); single crystal investiga-

2 Darstellung der Proben

tion and structure determination

Cd[AuF₄]₂. CdCO₃ (99.5%, Merck p. a.) wird mehrmals in einer Platinschale mit 40% iger HF (p. a. Merck) abgeraucht, das noch wasserhaltige CdF₂ zerrieben, bei 150 °C zwei Tage im verdünnten (N₂) Fluorstrom getrocknet und anschließend im Monelautoklaven einen Tag lang bei etwa 400 °C quantitativ durchfluoriert.

Elementares Gold (99.99%, DEGUSSA) wird in einem Quarzrohr im Chlorstrom (Messer-Griesheim) bei 240 °C zu AuCl₃ umgesetzt, welches sich in Form rotbrauner Nadeln an den kühleren Teilen des Quarzrohres niederschlägt. Dieses wird in einem Korundschiffchen bei 250 °C im verdünnten Fluorstrom zu AuF₃ umgesetzt (t = 5 d).

Die binären Fluoride werden anschließend unter Argon im Verhältnis 1:2 gemischt, in ein Goldrohr eingeschweißt und in Schritten von 100 °C/d auf 400 °C geheizt. Nach 30tägigem Tempern wird um 30 °C pro Tag abgekühlt.

Hg[AuF₄]₂. HgCl₂ (99.5%, Merck p. a.) und elementares Gold (99.99%, DEGUSSA) werden im Verhältnis von 1:2 in Königswasser gelöst und mehmals mit konz. HCl abgeraucht. Die entstandenen Chloride

^{*} Korrespondenzadresse:

werden im verdünnten Fluorstrom fünf Tage bei 250 °C anfluoriert und anschließend einen Tag lang im Autoklaven bei 400 °C und ca. 400 bar mit elementarem F_2 (Solvay, Bad Wimpfen) vollständig zu Hg[AuF₄]₂ umgesetzt. Das gelbe Produkt wird in Goldrohre eingeschweißt, innerhalb von vier Tagen auf 400 °C geheizt, 30 Tage getempert und in Schritten von ca. 40 °C pro Tag abgekühlt.

Tabelle 1 Kristallographische Daten von Cd[AuF₄]₂

tetragonal Kristallsystem Kristallsystem tetragonal $P4/mcc-D_{4h}^2$ (Nr. 124) Raumgruppe Raumgruppe $P4/mcc-D_{4h}^2$ (Nr. 124) Gitterkonstanten Gitterkonstanten AED2-Daten [pm] a = 574.1; c = 1033.3AED2-Daten [pm] a = 576,9; c = 1044,0[Guinier-de Wolff-Daten] [pm] [a = 575,0(1)];[Guinier-de Wolff-Daten] [pm] [a = 575, 6(1)];[c = 1034,8(2)][c = 1042,3(2)] $\overline{Z} = 2$ Zahl der Formeleinheiten Zahl der Formeleinheiten $\mathbf{Z} = 2$ pro Elementarzelle pro Elementarzelle Kristallform, -farbe unregelmäßig, gelb Kristallform, -farbe unregelmäßig, gelb Siemens AED2 Diffraktometer Siemens AED2 Diffraktometer Linearer Absorptionskoeffizient 459.4 Linearer Absorptionskoeffizient 646,4 $\mu(Mo_{K\alpha}, cm^{-1})$ $\mu(Mo_{K\alpha}, cm^{-1})$ Strahlung Strahlung $Mo_{K\alpha}; \lambda = 71,073 \text{ pm}$ $Mo_{K\alpha}$; $\lambda = 71,073 \text{ pm}$ Korrektur der Intensitäten Polarisations- und Korrektur der Intensitäten Polarisations- und Lorentzkorrektur Lorentzkorrektur $3^\circ \le 2\Theta \le 64^\circ$ Meßbereich $3^\circ \le 2\theta \le 56, 1^\circ$ Meßbereich $-8 \le h \le 8; -8 \le k \le 8;$ Indexbereich $-5 \le h \le 7; -5 \le k \le 7;$ Indexbereich $-15 \le 1 \le 15$ $-13 \le l \le 13$ 4766, davon 664 syste-Anzahl der gemessene Reflexe 2266, davon 1012 syste-Anzahl der gemessene Reflexe matisch ausgelöscht matisch ausgelöscht Anzahl der symmetrie-229; 6,8% Anzahl der symmetrie-321; 15,6% unabhängigen Reflexe; Rm unabhängigen Reflexe; Rm Direkte Methoden, Lösungsverfahren Direkte Methoden. Lösungsverfahren Differenz-Fourier-Differenz-Fourier-Synthese Synthese keine Nicht berücksichtigte Reflexe Nicht berücksichtigte Reflexe keine I_0 (hkl) Anzahl der freien Parameter 17 Anzahl der freien Parameter 17

 $wR(F^2) = 12,4\%$ der Kristallgestalt mittels R(|F|) = 4.6%HABITUS [9] 7,72/-4,64 Gütefaktor $wR(F^2) = 6,0\%$ R(|F|) = 5,3%(möglicherweise wegen Max. und min. Restelektronen-1,24/-6,54 fehlender Absorptionskorrektur) dichte [e⁻/Å³]

Absorptionskorrektur

Tabelle 3 Lageparameter und Koeffizienten der "anisotropen" Temperaturfaktoren ($Å^2$) von Cd[AuF₄]₂. Standardabweichungen jeweils in der zweiten Zeile

Atom	x	у	Z	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cd	0	0	,25	,0126	,0126	,0131	0	0	0
			·	,0006	,0006	,0006			
Au	0	,5	0	,0132	,0095	,0157	0	0	-,0001
		,		,0005	,0005	,0005			,0002
F	,8555	,6922	,1285	,021	,018	,026	-,007	,001	,007
	,0008	,0008	,0004	,003	,002	,002	,002	,002	,002

Der "anisotrope" Temperaturfaktor hat die Form: $exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + ... + 2U_{12}hka^{*b^*})]$

keine

Numerisch, Optimierung

3 **Röntgenographische Untersuchungen**

Nach Präzessions- (hk0, hk1, 0kl, 1kl mit den Auslöschungsbedingungen 0kll = 2n und hhll = 2n) und Laue-Aufnahmen (Laue-Symmetrie 4/mmm) kristallisieren beide Verbindungen in der Raumgruppe $P4/mcc-D_{4h}^2$ (Nr. 124) bzw. $P4/cc-C_{4v}^5$ (Nr. 103). Anschließende Srukturrechnungen verweisen auf die zen-

Tabelle 2 Kristallographische Daten von $Hg[AuF_4]_2$

 I_{o} (hkl)

Gütefaktor

dichte [e⁻/Å³]

Absorptionskorrektur

Max. und min. Restelektronen-

Atom	x	у	Z	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Hg	0	0	,25	,0131	,0131	,0095	0	0	0
Au	0	,5	0	,0003 ,0132	,0003 ,0091	,0005 ,0138	0	0	,0023
F	.852	.688	.1279	,0004 ,024	,0003 ,020	,0004 ,025	011	.002	,0007 -,0002
	,002	,002	,0006	,004	,004	,005	,003	,003	,0028

Tabelle 4 Lageparameter und Koeffizienten der "anisotropen" Temperaturfaktoren ($Å^2$) von Hg[AuF₄]₂. Standardabweichungen jeweils in der zweiten Zeile.

Der "anisotrope" Temperaturfaktor hat die Form: $exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + ... + 2U_{12}hka^{*b^*})]$

Tabelle 5Motive der gegenseitigen Zuordnung [10] und
Koordinationszahlen C. N. von $Cd[AuF_4]_2$ [Abstände in pm]

Atom	F	C. N.	ECoN ^a)	MEFIR ^a)
Cd	8/1 232,5(4)	8	8,0	99,5
Au	4/1 191,8(4)	4	4,0	58,8
C. N.	2			
ECoN ^b)	2,0			
MEFIR ^b)	133,0			

^a) nur F⁻ als Ligand; ^b) nur Kationen als Liganden

Aus den nach den ECoN-Konzept [11] gewichteten Abstandsmitteln folgen mit $r(F^-) = 133 \text{ pm}$ als Startwerte: $r(Cd^{2+}) = 99,5 \text{ pm}; r(Au^{3+}) = 58,8 \text{ pm}.$

Tabelle 6Motive der gegenseitigen Zuordnung [10] undKoordinationszahlen C. N. von Hg[AuF4]2[Abstände in pm]

Atom	F	C. N.	ECoN ^a)	MEFIR ^a)
Hg	8/1 236,0(6)	8	8,0	103,0
Au	4/1 191,9(6)	4	4,0	58,7
C. N.	2			
ECoN ^b)	2,0			
MEFIR ^b)	133,0			

^a) nur F⁻ als Ligand; ^b) nur Kationen als Liganden

Aus den nach den ECoN-Konzept [11] gewichteten Abstandsmitteln folgen mit $r(F^-) = 133 \text{ pm}$ als Startwerte: $r(Hg^{2+}) = 103,0 \text{ pm}; r(Au^{3+}) = 58,7 \text{ pm}.$

trosymmetrische Raumgruppe. Die Lagen der Schweratome wurden mit Hilfe von Patterson-Methoden (SHELXS-86 [5]) bestimmt, die Punktlagen für F⁻ ergaben sich aus der Differenzfouriersynthese mittels SHELXL-93 [6]. Die aus Guinier-de Wolff-Aufnahmen (Cu_{Ka1}-Strahlung, innerer Standard SiO₂) abgeleiteten Gitterkonstanten stimmen sehr gut mit den Einkristalldaten überein (vgl. Tab. 1 und 2), sie wurden auch den entsprechenden Abstandsberechnung zugrunde gelegt (vgl. Tab. 5 und 6). Die Ergebnisse der röntgenographischen Untersuchungen sind in den Tabellen 1 und 2 wiedergegeben.

4 Strukturbeschreibung

Primärstruktur

Wie für Tetrafluoroaurate nicht anders zu erwarten ist Gold in beiden Verbindungen – wenn auch schwach verzerrt – quadratisch planar von vier F⁻ umgeben. Die vier Abstände d_{Au-F} sind jeweils von gleicher Länge (Vgl. Tab. 5, 6). Cd²⁺ bzw. Hg²⁺ ist in Form eines archimedischen Antiprismas von jeweils acht F⁻ umgeben, auch hier sind die jeweils acht Abstände d_{M-F} (M = Cd, Hg) untereinander gleich (vgl. Tab. 5, 6).

Sekundärstruktur

Die Struktur von M[AuF₄]₂ (M = Cd, Hg) leitet sich in sehr einfacher Weise von der K[BrF₄]-Struktur ab. K⁺ weist exakt die gleiche Umgebung auf wie Cd²⁺ bzw. Hg²⁺ und auch die Anordnung der [AuF₄]-Baugruppen ist die gleiche, allerdings bleibt die Hälfte der K⁺-Positionen unbesetzt. Daher kann man gemäß $M_{0.5}\square_{0.5}$ [AuF₄] diese beiden Verbindungen auch als geordnete Defektstruktur des K[BrF₄]-Typs auffassen. Diesen Zusammenhang kann man ferner mittels Gruppe-Untergruppebeziehung in ebenfalls einfacher Weise wiedergeben:

 $\begin{array}{l} K[AuF_4] \\ K[BrF_4]-Typ \ (I \ 4/m \ 2/c \ 2/m-D_{4h}^{16}) \\ & \underbrace{K_2} \quad M[AuF_4]_2M = Cd, \ Hg \\ & \underbrace{M_{0.5} \Box_{0.5} [AuF_4]} \ (P \ 4/m \ 2/c \ 2/c-D_{4h}^2) \end{array}$

Infolge der Teilbesetzung der K⁺-Lagen resultiert ein auffälliges Strukturmerkmal, nämlich die ungewöhnlich großen Kanäle längs [001] inmitten der Elementarzelle (Innendurchmesser ca. 480 pm) – vgl. Abb. 1.

Die gute Übereinstimmung der MAPLE-Werte [7, 8] der ternären Verbindung mit der Summe der binären (vgl. Tab. 7) ist eine weitere Bestätigung für den Strukturvorschlag.

Abb. 1 Blick durch den "Kanal" im Zentrum der Elementarzelle längs [001]

Tabelle 7MAPLE-Werte [7, 8]

	MAPLE (binär) [kcal/mol]	MAPLE (ternär) [kcal/mol]	Abweichung [%]
$Cd[AuF_4]_2 Hg[AuF_4]_2$	3510,9	3508,5	0,07
	3491,8	3484,3	0,2

5 Schlußbemerkumg

Nach der erfolgreichen Darstellung von $M[AuF_4]_2$ M = Cd, Hg (sowie kürzlich) Ni, Pd, Ag fehlen mit zweiwertigem Gegenkation lediglich noch die Verbindungen $M[AuF_4]_2$ mit M = Ca, Sr und Pb, deren Strukturaufklärung aufgrund schlechter Kristallqualität bzw. Kristallhabitus (schieferartig verwachsene, vielfach verzwillingte Plättchen) bisher nicht möglich war. Vorläufige Ergebnisse aus Pulveraufnahmen sowie schlechten Einkristallen deuten im Falle des Pb[AuF_4]_2 auf eine monokline Elementarzelle hin.

Wir danken der DFG, dem Fonds der Chemie und *Prof. Dr. Dr. hc. mult. Hoppe* für die Unterstützung mit Sachund Personalmitteln. Außerdem danken wir Herrn *Dr. W. Herrendorf* für die Kristallgestaltoptimierung mittels des Programms HABITUS [9] und die anschließende Absorptionskorrektur des Hg[AuF₄]₂-Datensatzes. Schließlich gilt unser Dank den Herren *Dr. M. Serafin* und *G. Koch* für die Datensammlung am AED-Vierkreisdiffraktometer.

Literatur

- [1] B. G. Müller, Z. Anorg. Allg. Chem. 1987, 555, 57.
- [2] B. G. Müller, Angew. Chem. 1987, 99, 685.
- [3] H. Bialowons, B. G. Müller, Z. Anorg. Allg. Chem. 1997, 623, 1223.
- [4] R. Fischer, B. G. Müller, Z. Anorg. Allg. Chem. 1997, 623, 1729.
- [5] G. M. Sheldrick, SHELXS-86, Program for Crystal Structure Determination, Göttingen 1986.
- [6] G. M. Sheldrick, SHELXS-93, Program for Crystal Structure Refinement, Göttingen **1993**.
- [7] R. Hoppe, Angew. Chem. 1966, 78, 52.
- [8] R. Hoppe, Crystal Structure and Chemical Bonding in Inorganic Chemistry, Amsterdam 1975, 127.
- [9] W. Herrendorf, HABITUS, Programm zur Optimierung der Kristallgestalt für die numerische Absorptionskorrektur, Dissertation, Universität Karlsruhe **1993**.
- [10] R. Hoppe, Angew. Chem. 1980, 92, 106.
- [11] R. Hoppe, Angew. Chem. 1970, 82, 7.