Semisynthetic Aminoglycoside Antibacterials. Part 10.1,2 Synthesis of Novel 1-N-Aminoalkoxycarbonyl and 1-N-Aminoalkylcarboxamido Derivatives of Sisomicin, Gentamicin B, Gentamicin $\mathrm{C}_{1 \mathrm{a}}$, and Kanamycin A

By Alan K. Mallams,* James B. Morton, and Paul Reichert, Research Division, Schering-Plough Corporation, Bloomfield, New Jersey 07003, U.S.A.

Abstract

Suitably protected derivatives of sisomicin, 5-epi-sisomicin, gentamicin B, gentamicin C_{12}, and kanamycin A have been converted into a series of 1- N -alkoxycarbonyl, 1- N -aminoalkoxycarbonyl, 1- N -carboxamido, $1-\mathrm{N}$-alkylcarboxamido, and 1-N-aminoalkylcarboxamido derivatives. Representative thio-analogues have also been prepared. ${ }^{13} \mathrm{C}$ N.m.r. studies have revealed that these novel semisynthetic aminoglycosides have different solution conformations about the C-6-O glycosidic bond relative to the parent aminoglycosides from which they are derived.

The discovery of amikacin (1) ${ }^{3}$ and netilmicin (9) 4.5 gave a considerable impetus to the search for other novel 1- N-substituted aminoglycosides that hopefully would exhibit an improved spectrum of antibacterial activity as well as reduced toxicity, relative to the parent aminoglycosides. Thus the synthesis of a number of $1-\mathrm{N}-$ amino-acid analogues of butirosin ${ }^{6}$ and sisomicin (29) ${ }^{7}$ were reported. The synthesis of $1-N-[(S)-4$-amino- 2 hydroxybutyryl (HABA), 1-N-[(S)-3-amino-2-hydroxypropionyl] (HAPA), and a variety of simple 1-N-acyl derivatives of gentamicin $\mathrm{C}_{1},{ }^{8}$ gentamicin $\mathrm{C}_{12}(89),{ }^{9}$, gentamicin $\mathrm{B}(62),{ }^{10}$ sisomicin (29), ${ }^{9}$ verdamicin, ${ }^{9} 5$-epigentamicin $B,{ }^{11} 5$-epi-sisomicin (49), ${ }^{12}$ kamanycin A (8), ${ }^{13}$ and 5 -ep i-kanamycin A^{11} have also been reported. Butikacin (UK 18, 898) (2), a reduced analogue of amikacin (1), has also been synthesized ${ }^{14}$ and a number of other $1-N$-alkyl ${ }^{15,16}$ and $1-N$-acyl ${ }^{16-18}$ derivatives of aminoglycosides have been described in the patent literature. Novel 1-deamino-1-hydroxy, 1-deamino-1-epi-hydroxy-, and 1 -epi-amino-derivatives of aminoglycosides have also been described. ${ }^{1}$
We describe here the synthesis of a novel series of $1-\mathrm{N}$ alkoxycarbonyl, $1-\mathrm{N}$-aminoalkoxycarbonyl, $1-\mathrm{N}$-carboxamido, $1-\mathrm{N}$-alkylcarboxamido, and $1-\mathrm{N}$-aminoalkylcarboxamido derivatives of sisomicin (29), 5 -epi-sisomicin (49), gentamicin B (62), gentamicin $C_{1 a}$ (89), and kanamycin $\mathrm{A}(8)$. These derivatives were chosen in view of their close structural similarity to the $1-N-H A B A$ side-chain of amikacin (1). It was predicted that these compounds might be expected to be potent, broadspectrum antibacterials and this was indeed found to be the case. After completion of these studies a patent from Bayer AG appeared ${ }^{19}$ describing similar derivatives.
We selected 2 -aminoethanol (30) as the first choice of an intermediate for the synthesis of the $1-N$-aminoalkoxycarbonyl derivatives as this would lead to derivatives in which the terminal amino-group in the sidechain was at approximately the same distance from the cyclitol ring as in the HABA side chain of amikacin (1). Thus 2 -aminoethanol (30) was converted into 2-(2,2,2trichloroethoxycarbonylamino)ethanol (31) which on treatment with phosgene in the presence of triethylamine and N-hydroxysuccinimide afforded the active ester (32).

The 2 -aminoethanol (30) was also converted into the 4 methoxybenzyloxycarbonyl derivative (33) using 4-methoxybenzyl-S-(4,6-dimethylpyrimidin-2-yl) thiocarbonate, and the protected derivative (33) was then converted into the active ester (34). The active ester (34) was treated with $3,2^{\prime}, 6^{\prime}$-tris- N -(2,2,2-trichloroethoxycarbonyl)sisomicin (10) $20, *$ in methanol-water at $25{ }^{\circ} \mathrm{C}$ to give the protected trisaccharide (11) which on treatment with zinc in aqueous acetic acid afforded 1-N-(2aminoethoxycarbonyl)sisomicin (12). The latter was also prepared by condensing the active ester (34) with $3,2^{\prime}, 6^{\prime}$-tris- N-(4-methoxybenzyloxycarbonyl)sisomicin
(13) ${ }^{20, *}$ to give the protected sisomicin derivative (14) which was then deprotected by treatment with trifluoroacetic acid. The ${ }^{13} \mathrm{C}$ n.m.r. data for (12) and for the other derivatives prepared in this study are given in Table 1 and it is clear from the protonation shifts that the substituent is located on the 1 -amino-group in each case.

In order to prepare an N-alkyl analogue of (12), 2ethylaminoethanol (35) was converted into the 4methoxybenzyloxycarbonyl derivative (36) which was then converted into the active ester (37) and condensed with $\quad 3,2^{\prime}, 6^{\prime}$-tris- N-(4-methoxybenzyloxycarbonyl)sisomicin (13) to give $1-\mathrm{N}$-(2-ethylaminoethoxycarbonyl)sisomicin (15) after deprotection with trifluoroacetic acid.

Two unsubstituted alkyloxycarbonyl derivatives of sisomicin were prepared next. N-(Methoxycarbonyloxy)succinimide (40) was prepared by treating N hydroxysuccinimide with methyl chloroformate in the presence of pyridine and it was then condensed with $3,2^{\prime}, 6^{\prime}$-tris- N-(4-methoxybenzyloxycarbonyl)sisomicin (13) in methanol-water to afford, after deprotection with trifluoroacetic acid, 1-N-methoxycarbonylsisomicin (16). In a similar manner N-(ethoxycarbonyloxy)succinimide (41) was treated with (13) to give $1-N$-ethoxycarbonylsisomicin (17).
In all the above instances using succinimide active esters, condensation occurred exclusively at the 1-

[^0]

(1) $R^{1}=H, \quad R^{2}=$

(2) $R^{1}=\mathrm{H}, \mathrm{R}^{2}={ }^{\mathrm{OH}}{ }^{\mathrm{OH}}$
(3) $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}$
(4) $R^{1}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{2}={ }_{0}^{\circ} \mathrm{NHCO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$
(5) $R^{\top}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p), \quad \mathrm{R}^{2}=\mathrm{H}$
(6) $R^{1}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p), \mathrm{R}^{2}=\prod_{0}^{0} \mathrm{NHCO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p)$
(7) $R^{1}=\mathrm{H}, \mathrm{R}^{2}=\prod_{0}^{0} \mathrm{NH}_{2}$
(8) $R^{1}=R^{2}=H$
(9) $R^{1}=R^{2}=H, \quad R^{3}=E t$
(10) $R^{1}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CCl}_{3}, R^{2}=\mathrm{R}^{3}=\mathrm{H}$
(11) $R^{1}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CCl}_{3}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}={ }_{0}^{\text {O}} \mathrm{NHCO}_{2} \mathrm{CH}_{2} \mathrm{CCl}_{3}$
(12) $R^{1}=R^{2}=H, R^{3}=N_{2}$
(13) $R^{1}=\mathrm{C}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p), \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$
(14) $R^{1}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p), \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=`{ }^{\circ} \mathrm{NHCO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p)$
(15) $R^{1}=R^{2}=\mathrm{H}, \mathrm{R}^{3}=` \mathrm{NH} \cap \mathrm{Me}$
(16) $R^{1}=R^{2}=H, R^{3}=\prod_{0}^{0} M e$
(17) $R^{1}=R^{2}=H, R^{3}={ }_{0}^{0} \sim \mathrm{Me}$
(18) $R^{1}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(\rho), \mathrm{R}^{2}=\mathrm{H}_{1} \mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CCl}_{3}$
(19) $R^{1}=R^{2}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p), \mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CCl}_{3}$
(20) $R^{1}=R^{2}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p), \mathrm{R}^{3}=\mathrm{H}$
(21) $R^{1}=R^{2}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p), \mathrm{R}^{3}={ }_{S} \mathrm{NHCO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p)$
(22) $R^{1}=R^{2}=\mathrm{H}, \mathrm{R}^{3}=\prod_{S} \mathrm{NH}_{2}$
(23) $R^{1}=R^{2}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p), R^{3}={ }_{0}^{\mathrm{S}} \mathrm{NHCO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p)$
(24) $R^{1}=R^{2}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p), \quad R^{3}=\prod_{S}^{5} \mathrm{NHCO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p)$
(25) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}={ }_{\mathrm{O}}^{\mathrm{NH}} \mathrm{NH}_{2}$
(26) $R^{1}=A c, R^{2}=R^{3}=H$
(27) $R^{1}=R^{2}=H, R^{3}=$ CONH $_{2}$
(28) $R^{1}=R^{2}=H, R^{3}=$ CONHMe
(29) $R^{1}=R^{2}=R^{3}=H$
amino-group in spite of the fact that the $3^{\prime \prime}$-amino-group was unprotected. In order to prepare some thioanalogues of (12) we needed to first protect the $3^{\prime \prime}$-aminogroup, as imidazole reagents were to be used and these are known usually to react preferentially at the $3^{\prime \prime}$-aminogroup, when both the 1 - and $3^{\prime \prime}$-amino groups are unprotected. ${ }^{21}$ This was accomplished by treating $3,2^{\prime}, 6^{\prime}-$ tris- N -(4-methoxybenzyloxycarbonyl)sisomicin (13) with

(30) $R^{1}=R^{2}=R^{3}=H$
(31) $R^{1}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CCl}_{3}, R^{2}=\mathrm{R}^{3}=\mathrm{H}$

(33) $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(\rho), \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$
(34) $R^{\prime}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p), R^{2}=\mathrm{H}, R^{3}=\mathrm{CO}_{2} \mathrm{~N}^{\prime}$
(35) $R^{1}=R^{3}=H, R^{2}=E t$
(36) $R^{1}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p), \mathrm{R}^{2}=\mathrm{Et}, \mathrm{R}^{3}=\mathrm{H}$
(37) $R^{1}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p), \mathrm{R}^{2}=\mathrm{Et}, \mathrm{R}^{3}=\mathrm{CO}_{2}$
(38) $R^{1}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$
(39)

N-(2,2,2-trichloroethoxycarbonyloxy)succinimide (42) to
give the $1-\mathrm{N}-(2,2,2$-trichloroethoxycarbonyl) derivative(18). The latter, on treatment with 4 -methoxybenzyl-S-(4,6-dimethylpyrimidin-2-yl)thiocarbonate in dimethyl sulphoxide containing triethylamine, afforded the $3^{\prime \prime}$ - N-(methoxybenzyloxycarbonyl) derivative (19), which on treatment with zinc in 10% acetic acid-methanol gave the desired $3,2^{\prime}, 6^{\prime}, 3^{\prime \prime}$-tetrakis- N-(4-methoxybenzyloxycarbonyl)sisomicin (20).

The conversion of 2-(4-methoxybenzyloxycarbonylamino)ethanol (33) into 1-[2-(4-methoxybenzyloxycarbonylamino)ethoxythiocarbonyl $]$ imidazole (43) was effected smoothly using $N N^{\prime}$-thiocarbonyldi-imidazole. The imidazole derivative (43) after treatment with triethyloxonium tetrafluoroborate * in dichloromethane was condensed with the tetra-protected sisomicin derivative (20) to give the protected intermediate (21) in good yield. No reaction occurred in the absence of the triethyloxonium tetrafluoroborate. Deprotection of (21) with trifluoroacetic acid afforded 1-N-(2-aminoethoxythiocarbonyl)sisomicin (22).

2-Aminoethanethiol hydrochloride was converted into

* We thank Dr. S. W. McCombie for helpful suggestions.
the 4-methoxybenzyloxycarbonyl derivative (46) which on treatment with $N N^{\prime}$-carbonyldi-imidazole afforded 1-[2-(4-methoxybenzyloxycarbonylamino)ethanethiocarbonyl]imidazole (44). The latter failed to condense with $3,2^{\prime}, 6^{\prime}, 3^{\prime \prime}$-tetrakis- N-(4-methoxybenzyloxycarbonyl)sisomicin (20) either with or without triethyloxonium tetrafluoroborate. An alternative synthetic route was therefore investigated. The thiol (46) was treated with phosgene in the presence of triethylamine to give the crude thiocarbonyl chloride (47) which was used without further purification to prepare $3,2^{\prime}, 6^{\prime}, 3^{\prime \prime}$-tetrakis-$N$-(4-methoxybenzyloxycarbonyl)-1-N-[2-(4-methoxy-
benzyloxycarbonylamino)ethanethiocarbonyl]sisomicin
(23) in the presence of sodium carbonate using aqueous

acetone as the solvent. Attempted deprotection of (23) using trifluoroacetic acid under a variety of conditions led to complex mixtures of products that were not further investigated.

We next attempted to prepare a dithio-analogue of (12) in the following manner: The thiol (46) was treated with $N N^{\prime}$-thiocarbonyldi-imidazole to give 1-[2-(4-methoxy-benzyloxycarbonylamino)ethanethiothiocarbonyl]imidazole (45). The latter after treatment with triethyloxonium tetrafluoroborate was condensed with $3,2^{\prime}, 6^{\prime}, 3^{\prime \prime}$-tetrakis- N-(4-methoxybenzyloxycarbonyl)sisomicin (20) to give $3,2^{\prime}, 6^{\prime}, 3^{\prime \prime}$-tetrakis- N-(4-methoxy-benzyloxycarbonyl)-1-N-[2-(4-methoxybenzyloxycar-
bonylamino)ethanethiothiocarbonyl]sisomicin (24) in nigh yield. Deprotection of (24) with trifluoroacetic acid afforded 1-N : 3- N -thiocarbonylsisomicin (48) as the only isolatable product of the reaction.

(48)

(49) $R^{1}=R^{2}=H$
(50) $R^{1}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CCl}_{3}, \quad R^{2}=\mathrm{H}$
(51)

(52)

It has been demonstrated in these laboratories ${ }^{22}$ that epimerization of the 5 -hydroxy-group in sisomicin produces an antibacterial derivative (49) that is more potent than sisomicin and which has a vastly improved spectrum of activity against resistant strains of bacteria. The 5-epi-analogue of (12) was therefore synthesized as follows. $3,2^{\prime}, 6^{\prime}$-Tris- N-(2,2,2-trichloroethoxycarbonyl)-5-episisomicin (50) on treatment with the succinimide ester (32) afforded the protected derivative (51) which on deprotection with zinc in acetic acid-methanol gave 1-N-(2-aminoethoxycarbonyl)-5-epi-sisomicin (52).

In order to further expand the structure-activity relationships of the $1-\mathrm{N}$-aminoalkyloxycarbonyl derivatives, a variety of such derivatives was prepared using protected gentamicin B derivatives as substrates. $\quad 3,6^{\prime}$ -

[^1]Bis- N-benzyloxycarbonylgentamicin $\mathrm{B}(53)^{20, *}$ on treatment with N-(2,2,2-trichloroethoxycarbonyloxy)succinimide (42) gave $3,6^{\prime}$-bis- N-benzyloxycarbonyl- $1-N$ -(2,2,2-trichloroethoxycarbonyl)gentamicin B (54). The latter, on treatment with benzyl chloroformate in the presence of sodium carbonate, gave $3,6^{\prime}, 3^{\prime \prime}$-tris- N -benzyloxycarbonyl-1- $N(2,2,2$-trichloroethoxycarbonyl)gentamicin B (55) which on reduction with zinc in aqueous acetic acid gave $3,6^{\prime}, 3^{\prime \prime}$-tris- N-benzyloxycarbonylgentamicin B (56). 2-Benzyloxycarbonylaminoethanol (38) was prepared in the usual way and converted into the succinimide active ester (39). The latter was condensed with each of the protected gentamicin B derivatives (56) and (53) to give the protected derivatives (57) and (58) respectively. Catalytic hydrogenation of the protected derivatives (57) and (58) gave $1-\mathrm{N}$-(2aminoethoxycarbonyl)gentamicin B (59) in each case.

Several extended-chain derivatives were prepared next. 3-Aminopropanol (73) was converted into 3benzyloxycarbonylaminopropanol (74) which was in turn converted into the succinimide active ester (75). The latter was condensed with $3,6^{\prime}, 3^{\prime \prime}$-tris- N-benzyloxycarbonylgentamicin $\mathrm{B}(56)$ in dimethylformamide in the presence of triethylamine to give the protected derivative (60) which on catalytic hydrogenation afforded $1-\mathrm{N}$ -(3-aminopropoxycarbonyl)gentamicin B (61). In a similar manner 4 -aminobutan-1-ol (76) was converted via 4 -benzyloxylcarbonylaminobutan-1-ol (77) into the succinimide active ester (78) which was condensed with (53) to give the protected derivative (63). The latter on catalytic hydrogenation afforded 1-N-(4-aminobutoxycarbonyl)gentamicin B (64).

Two analogues having the amino-group at the 2 -position in the side-chain with an extended alkyl chain were synthesized next. ($2 R$)-2-Aminobutan-1-ol (79) was converted into the N-benzyloxycarbonyl derivative (80) which was used to synthesize the succinimide active ester (81). Condensation of the latter with (53) gave the protected derivative (65) which on catalytic hydrogenation afforded (2R)-1-N-(2-aminobutoxycarbonyl)gentamicin B (66). (2S)-2-Amino-4-methylpentan-1-ol (82) was converted into the N-benzyloxycarbonyl derivative (83) which was then converted into the succinimide active ester (84). The latter was condensed with (53) to give the protected derivative (67) which on catalytic hydrogenation afforded (2S)-1-N-(2-amino-4methylpentyloxycarbonyl)gentamicin B (68).

The $1-N$-aminoalkoxycarbonyl derivatives of gent$\operatorname{amicin} \mathrm{C}_{\mathbf{1}_{a}}$ and kanamycin A were prepared next. $\quad 3,2^{\prime}, 6^{\prime}-$ Tris- N-(2,2,2-trichloroethoxycarbonyl)gentamicin $\quad \mathrm{C}_{1 \mathrm{a}}$ (85) on treatment with the active ester (32) gave (86) which was deprotected with zinc in acetic acid-methanol to give 1-N-(2-aminoethoxycarbonyl)gentamicin $\mathrm{C}_{1 \mathrm{a}}$ (87). Similarly $3,6^{\prime}$-bis- N-benzyloxycarbonylkanamycin A (3) ${ }^{20, *}$ on treatment with the active ester (39) gave (4) which was catalytically hydrogenated to give 1-N-(2-aminoethoxycarbonyl)kanamycin A (7). The active ester (34) was also condensed with $3,6^{\prime}$-bis- N-(4-methoxybenzyloxycarbonyl)kanamycin A (5) ${ }^{20, *}$ to give (6)
(53)
$R^{1}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}, \quad \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$
(55)
(56) $R^{1}=R^{2}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{3}=\mathrm{H}$
(57)

(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)

$R^{\prime}=R^{2}=R^{3}=H$

(66)

(67)
(68)

(69)

(70)

(71)
$\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{CMe}_{3}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$
(72)
which on treatment with trifluoroactic acid afforded 1-N-(2-aminoethoxycarbonyl)kanamycin A (7).

We next turned our attention to the preparation of a series of 1 - N-carboxamido-analogues. Thus $3,2^{\prime}, 6^{\prime}, 3^{\prime \prime}-$ tetrakis- N -(4-methoxybenzyloxycarbonyl) sisomicin (20) was treated with 2 -azidoethyl isocyanate (90) in dimethylformamide containing triethylamine, followed by reduction with triphenylphosphine, hydrolysis with concentrated ammonium hydroxide, and deprotection with trifluoroacetic acid, to give 1-N-(2-aminoethylcarboxamido)sisomicin (25). Some 1-N-(2-aminoethylcarboxamido)garamine (92) was formed as a by-product in the above reaction. Treatment of $3,2^{\prime}, 6^{\prime}$-tri- N-acetylsisomicin (26) ${ }^{20, *}$ with silicon tetraisocyanate in dimethylformamide at $0{ }^{\circ} \mathrm{C}$, followed by alkaline hydrolysis afforded 1-N-carboxamidosisomicin (27). The use of methyl isocyanate afforded 1-N-(methylcarboxamido)-
sisomicin (28). Condensation of 2 -azidoethyl isocyanate (90), prepared from 2 -chloroethyl isocyanate (91), with $3,6^{\prime}, 3^{\prime \prime}$-tris- N-benzyloxycarbonylgentamicin B (56) gave the protected derivative (69). Catalytic hydrogenation of (69) gave $1-N$-(2-aminoethylcarboxamido)gentamicin B (70). Treatment of $3,6^{\prime}$-bis- N-t-butoxycarbonylgentamicin $\mathrm{B}(71)^{20, *}$ with silicon tetraisocyanate, followed by deprotection with trifluoroacetic acid, gave $1-N$-carboxamidogentamicin B (72). A thiocarbox-amido-analogue of gentamicin $\mathrm{C}_{1 \mathrm{a}}$ was also prepared by treatment of $3,2^{\prime}, 6^{\prime}$-tris- N-(2,2,2-trichloroethoxycarbonyl)gentamicin $\mathrm{C}_{1 a}$ (85) ${ }^{20, *}$ with ethyl isothiocyanate in tetrahydrofuran, followed by reduction with zinc in acetic acid-methanol to give 1-N-(ethylthiocarboxamido) gentamicin $C_{1 a}$ (88). From the protonation shifts

[^2]
(73) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
(74) $R^{1}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}$
(75)

(76) $R^{1}=R^{2}=H$
(77) $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}$

(79) $R^{1}=R^{2}=H$
(80) $R^{1}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}$
(81)

(82) $R^{\prime}=R^{2}=H$
(84)

in the ${ }^{13} \mathrm{C}$ n.m.r. spectrum (Table 1) it is evident that the substituent is located on the 1-amino-group.

In order to assign unambiguously the ${ }^{13} \mathrm{C}$ n.m.r. data (Table l) in the case of the gentamicin B derivatives where δ_{C} for $\mathrm{C}-\mathrm{l}^{\prime}$ and $\mathrm{C}-1^{\prime \prime}$ are very close, it was necessary to synthesize 1-N-(2-aminoethoxycarbonyl)garamine (93) as a model. Thus $3,2^{\prime}, 6^{\prime}$-tris- N-(4-methoxybenzyloxycarbonyl)sisomicin (13) was treated with the active ester (34), and the crude product (14) was directly hydrolyzed using Amberlite IR $120\left(\mathrm{H}^{+}\right)$resin to the corresponding garamine derivative (94). Deprotection of the latter with trifuoroacetic acid gave 1-N-(2aminoethoxycarbonyl)garamine (93). Model 2-deoxystreptamine derivatives were also needed in order to
study the solution conformations of these novel $1-\mathrm{N}$ substituted aminoglycosides and these were prepared as follows. 2-Deoxystreptamine (96) was converted into the (\pm)- mono- N-(4-methoxybenzyloxycarbonyl) derivative (97) and the latter on treatment with the active ester (34) followed by deprotection with trifluoroacetic acid, gave $(\pm)-1(3)-N$-(2-aminoethoxycarbonyl)-2-deoxystreptamine (99). Acetylation of (96) with N acetylimidazole gave (土)-1(3)-N-acetyl-2-deoxystreptamine (100). Catalytic hydrogenation of $(2 R)-3,6$-trisN -benzyloxycarbonyl-1- N -(2-benzyloxycarbonylaminobutoxycarbonyl)gentamicin $\mathrm{B}(65)$ in the presence of $1 \mathrm{~m}-$ hydrochloric acid gave $(2 R)-1-N$-(2-aminobutoxy-carbonyl)-2-deoxystreptamine (101). The ${ }^{13} \mathrm{C}$ n.m.r. data for the above model garamine and 2 -deoxystreptamine derivatives are given in Table 1.

The ${ }^{13} \mathrm{C}$ n.m.r. data for these novel $1-\mathrm{N}$-alkyloxycarbonyl and 1-N-alkylcarboxamido derivatives (Table 1) clearly indicate that the substituents are located on the l-amino-group in each case. The usual β-protonation shift of -8.0 to -8.3 for $\mathrm{C}-2$ in the unsubstituted aminoglycosides resulting from protonation of both the 1 - and 3 -amino-groups, has decreased to -4.0 to -4.9 in the 1 NHCOR derivatives, as no protonation is occurring at the 1 -amino-group in these derivatives. The normal β protonation shift of $\mathrm{C}-6$ of -3.5 to -3.9 for the unsubstituted aminoglycosides does not occur as anticipated, in the $1-N H C O R$ derivatives. Instead C- 6 experiences a much smaller shielding in the 1 -NHCOR derivatives of 0 to -1.8 which appears to be characteristic of these derivatives, as the 1-NHCOR-2-deoxystreptamine derivatives also exhibit similar shieldings at C-6 at acidic pH (Table 1).

In order to study the rotamer populations about the glycosidic linkages it was necessary to calculate the $\Delta \delta_{\mathrm{C}}$ values in going from the 1-NHCOR-2-deoxystreptamine to the 1-NHCOR-trisaccharides. Selected examples are given in Table 2 along with reference $\Delta \delta_{\mathrm{C}}$ values derived in going from 2-deoxystreptamine to the unsubstituted aminoglycosides used as substrates in this study. In all cases the data refer to fully decarbonated free bases.* Comparison of the chemical shifts of $1-N-(2$-amino-ethoxycarbonyl)-2-deoxystreptamine (99), (\pm)-1(3)-N-acetyl-2-deoxystreptamine (100) and (2R)-1-N-(2-amino-butoxycarbonyl)-2-deoxystreptamine (101) revealed almost identical chemical shift values for C-2-C-6 in each case. Substituent effects were evident at C-1 in these derivatives as the nature of the side-chain varied and this was to be expected. We were therefore in a position to use the chemical shifts of C-3, C.4, C-5, and C-6 of (101) as base-line data for determining the solution conformations of these 1 -NHCOR aminoglycosides without having to consider the nature of R.

We shall consider first the rotamers about the $\mathrm{C}-4-\mathrm{O}$ glycosidic bond. From the observed shielding at C-3

[^3]
(85) $R^{1}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CCl}_{3}, \quad \mathrm{R}^{2}=\mathrm{H}$
(86) $R^{1}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CCl}_{3}, \quad R^{2}=\prod_{0}^{0} \mathrm{NHCO}_{2} \mathrm{CH}_{2} \mathrm{CCl}_{3}$
(87)

(88)

(89) $R^{1}=R^{2}=H$
(90) $R=N_{3}$
(91) $\mathrm{R}=\mathrm{Cl}$

(92) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=` \prod_{0}^{`} \mathrm{NH} \sim \mathrm{NH}_{2}$
(93) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=`{ }_{\mathrm{O}} \mathrm{NH}_{2}$
(94) $R^{1}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p), R^{2}=\prod_{0}^{\mathrm{O}} \mathrm{NHCO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p)$
(95) $R^{1}=R^{2}=H$

(96) $R^{\prime}=R^{2}=H$
(97) $R^{\prime}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(\rho), \mathrm{R}^{2}=\mathrm{H}(\pm)$
(98)
$R^{\prime}=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p), R^{2}=` \mathrm{~K}^{0} \mathrm{NHCO}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p)$
(99)

(100) $R^{1}=A c, R^{2}=H(\pm)$
(101)

and the deshielding of +9.8 to +10.2 at $\mathrm{C}-4$ in gentamicin B (62), gentamicin $C_{1 a}$ (89), and kanamycin $A(8)$ it is evident that these derivatives all exhibit rotamer a about the $\mathrm{C}-4-\mathrm{O}$ glycosidic bond, when no substituent is present on the 1-amino-group. ${ }^{1,23-32}$ From the data in Tables 1 and 2 it is evident that no change occurs in the rotamer a about the $\mathrm{C}-4-\mathrm{O}$ glycosidic bond in the $1-$ NHCOR substituted derivatives of gentamicin $B(62)$, gentamicin $\mathrm{C}_{\mathbf{1 a}_{\mathfrak{a}}}(89)$, and kanamycin A (8) upon introduction of the side-chain. In sisomicin (29) the sisosamine adopts a different rotamer in which the sugar has rotated in a clockwise direction about the $\mathrm{O}-\mathrm{C}-4$ bond relative to the gentamicins and kanamycin $\mathrm{A}(8) .{ }^{32}$ Shielding is still observed at C-3 while the deshielding at C-4 has been reduced to +6.7 . These effects will be discussed in detail in the following paper. ${ }^{32}$ For illustrative purposes
the conformation may be represented by the approximate rotamer b.* Introduction of the 1-NHCOR substituents in the sisomicin series (Tables 1 and 2) resulted in no change in the observed shielding of -1.2 for $\mathrm{C}-3$ and in the observed deshielding of +6.6 for $\mathrm{C}-4$ using (12) as the example, indicating that these derivatives have the same solution conformation about the $\mathrm{O}-\mathrm{C}-4$ glycosidic bond as does the parent unsubstituted sisomicin (29). In the case of 5 -epi-sisomicin (49), epimerization of the 5 -hydroxy-group results in a marked clockwise rotation of the sisosamine unit about the $\mathrm{O}-\mathrm{C}-4$ glycosidic bond and it is felt that the solution conform-

* It is not possible to define the exact torsion angles in these rotamers from the data available to us, and consequently all rotamers are approximate diagrammatic representations which are compatible with the ${ }^{13} \mathrm{C}$ n.m.r. data and do not imply torsion angles. ${ }^{32}$

Table 2
$\Delta \delta_{\mathrm{C}}$ Values for 1-NHCOR-2-deoxystreptamine \longrightarrow 1-NHCOR-trisaccharide ${ }^{a}$

| Carbon | $(96) \rightarrow(29)$ | $(96) \rightarrow(62)$ | $(96) \rightarrow(89)$ | $(96) \rightarrow(8)$ | $(99) \rightarrow(12)$ | $(99) \rightarrow(59)$ | $(99) \rightarrow(7)$ | $(99) \rightarrow(93)$ | $(101) \rightarrow(66$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}-1$ | +0.1 | -0.1 | +0.1 | -0.3 | +0.4 | -0.5 | -0.6 | -0.3 | +0.2 |
| $\mathrm{C}-2$ | -0.6 | -0.4 | -0.3 | -0.8 | 0 | +0.2 | +0.1 | +0.6 | -1.2 |
| $\mathrm{C}-3$ | -1.3 | -1.7 | -1.0 | -1.8 | -1.2 | -1.6 | -1.6 | +0.2 | |
| $\mathrm{C}-4$ | +6.7 | +10.2 | +9.8 | +10.1 | +6.6 | +10.1 | +9.6 | +0.2 | +9.6 |
| $\mathrm{C}-5$ | -1.3 | -1.8 | -1.2 | -1.7 | -1.0 | -1.6 | -1.4 | -1.4 | -1.5 |
| $\mathrm{C}-6$ | +9.2 | +9.0 | +9.3 | +9.6 | +5.9 | +5.6 | +6.6 | +5.9 | +5.7 |

a
ation is best represented by rotamer $c .{ }^{22,32,33}$ Although the corresponding 1-N-(2-aminoethoxycarbonyl)-2-de-oxy-5-ep i-streptamine was not available for comparison purposes, it is quite clear from the chemical shifts (Table 1) of 1-N-(2-aminoethoxycarbonyl)-5-epi-sisomicin (52) that it also adopts the same rotamer c as 5 -epi-sisomicin (49), about the $\mathrm{C}-4-\mathrm{O}$ glycosidic bond. Rotamers a, b, and c all satisfy the requirements of the exo-anomeric effect. ${ }^{34-37}$

We shall next consider the rotamers about the $\mathrm{C}-6-\mathrm{O}$ glycosidic bond where significant differences are observed between the unsubstituted aminoglycosides and their 1NHCOR derivatives. In sisomicin (29), 5 -epi-sisomicin (52), gentamicin $B(62)$, gentamicin $\mathrm{C}_{1 \mathrm{a}}$ (89), and kanamycin A (8) the 6 - O-glycoside adopts rotamer d about the $\mathrm{C}-6-\mathrm{O}$ glycosidic bond ${ }^{1,22-23}$ resulting in shielding of C-5 and a deshielding of +9.0 to +9.6 at C-6 (Table 2). Introduction of the $1-N H C O R$ substituents to any of the above substrates results in a significant clockwise rotation of the $6-O$-glycoside about the $\mathrm{O}-\mathrm{C}-6$ glycosidic bond. The solution conformations of these 1-NHCOR derivatives are best represented by the approximate rotamer e^{32} which results in shielding of C-5 and a significant reduction in the deshielding of $\mathrm{C}-6$ to +5.6 to +6.6 (Table 2). This is best explained by assuming that the normal deshielding of C-6 due to glycosylation at this position is being counteracted by a shielding component due to the clockwise rotation of the 6 - 0 -glycoside about the $\mathrm{O}-\mathrm{C}-6$ glycosidic bond in these $1-\mathrm{NHCOR}$ derivatives. The net result of this shielding interaction between the $\mathrm{C}-\mathbf{1}^{\prime \prime}-\mathrm{O}-5^{\prime \prime}$ and $\mathrm{C}-6-\mathrm{H}-6$ systems is to produce reduced deshielding at $\mathrm{C}-6$. Similarly increased interaction between the $\mathrm{C}-1-\mathrm{H}-\mathrm{I}^{\prime \prime}$ and $\mathrm{C}-6-\mathrm{C}-1-\mathrm{NHCOR}$ systems when the sugar rotates in a clockwise direction about the $\mathrm{O}-\mathrm{C}-6$ glycosidic bond results in shielding of $\mathrm{C}-1^{\prime \prime}$ in all of the 1 -NHCOR derivatives, relative to the unsubstituted aminoglycosides (Table l). ${ }^{32}$ We feel that conversion of the $1-\mathrm{NH}_{2}$ group into a $1-\mathrm{NHCOR}$ group may result in reduced dipolar repulsion between the 1 -substituent and the dipole of the $\mathrm{C}-1^{\prime \prime}-\mathrm{O}-\mathrm{C}-6$ glycosidic oxygen, leading to the observed clockwise rotation of the 6 -O-glycoside about the $\mathrm{O}-\mathrm{C}-6$ bond in the 1-NHCOR derivatives. Both rotamers d and e satisfy the requirements of the exo-anomeric effect. ${ }^{34-37}$

From ${ }^{13} \mathrm{C}$ n.m.r. data it is evident to us that all $1-N$-acetyl, $9,321-N$-HABA, and $1-N$-HAPA $8,9,10,32,38$ derivatives of aminoglycosides also exhibit rotamer e about the $\mathrm{C}-6-\mathrm{O}$ glycosidic bond although this has never been pointed out before. Naito ${ }^{38}$ secently showed that
the 'Nagabhushan-Daniels Rule' ${ }^{39}$ could not be successfully applied to $1-N-H A B A$ and $1-N$-acetyl derivatives of kanamycin $A(8)$ and the anomalies in these and other N-acyl derivatives were ascribed to δ effects produced by acylation of the amino-groups. From the chemical-shift values reported by Naito ${ }^{38}$ for kanamycin A (8) it is evident (see Table 1) that his sample of kanamycin $\mathrm{A}(8)$ was partially carbonated which renders the $\Delta \delta_{\mathrm{C}}$ values unreliable. Nagabhushan has published ${ }^{13} \mathrm{C}$ n.m.r. data for $1-N-H A B A$ and $1-N-H A P A ~ d e r i v a t i v e s$ of gentamicin $\mathrm{B},{ }^{10}$ but it should be noted that both the samples of gentamicin $B(62)$ and kanamycin $A(8)$ were partially carbonated (see Table 1) and owing to the similarity in the chemical shifts for the anomeric signals for $\mathrm{C}-\mathrm{l}^{\prime}$ and $\mathrm{C}-1^{\prime \prime}$ in the $1-N-\mathrm{HABA}$ and $1-N-\mathrm{HAPA}$ derivatives, these could not be unambiguously assigned with the data available at that time, and were in fact misassigned. The Nagabhushan-Daniels Rule ${ }^{39}$ merely points to the much larger shielding of $\mathrm{C}-\mathrm{l}^{\prime}$ and C-4 relative to $\mathrm{C}-1^{\prime \prime}$ and C-6 for the series of compounds that were studied, upon protonation of the amino-groups. However, in the case of these 1-NHCOR derivatives the greater shieldings of $\mathrm{C}-\mathrm{l}^{\prime}$ and $\mathrm{C}-4$ relative to $\mathrm{C}-\mathrm{l}^{\prime \prime}$ and $\mathrm{C}-6$ are still evident, but because these derivatives adopt a different solution conformation about the C-6-O glycosidic bond relative to the parent unsubstituted aminoglycosides, ${ }^{32}$ the numerical values of $\Delta \delta_{\mathrm{C}}$ are no longer the same. The factors affecting the NagabhusanDaniels Rule as applied to the magnitude of changes in $\Delta \delta_{\mathrm{C}}$ for $\mathrm{C}-1^{\prime}, \mathrm{C}-4, \mathrm{C}-1^{\prime \prime}$, and C-6 will be discussed more fully in the following paper. ${ }^{32}$

It is evident from the studies reported here and from those in the subsequent paper, ${ }^{32}$ that careful examination of the ${ }^{13} \mathrm{C}$ n.m.r. data has given us new insights into the solution conformations of $1-$ NHCOR-substituted aminoglycosides including the clinically important drug amikacin (l). Further discussion of changes in conformation that occur at acidic pH will be found in the following paper in this series. ${ }^{32}$.

The novel $1-N$-aminoalkoxycarbonyl and $1-N$-aminoalkylcarboxamido derivatives described in this paper are highly potent antibacterials having a greatly improved spectrum of activity against resistant strains of bacteria and their antibacterial activity has been described elsewhere. ${ }^{2,40-42}$

EXPERIMENTAL

Physical data were recorded as described in Part 7. ${ }^{30}$
2-(2,2,2-Trichloroethoxycarbonylamino)ethanol (31).-2-
Aminoethanol (30) (20 g) and sodium carbonate (27.8 g) were dissolved in acetone-water ($4: 1 \mathrm{v} / \mathrm{v} ; 500 \mathrm{ml}$) and $2,2,2$-trichloroethyl chloroformate (104.2 g) was added dropwise to the stirred solution at $0^{\circ} \mathrm{C}$ over 0.5 h . The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for a further 3 h . The solids were filtered off and washed with acetone and the filtrate was evaporated to dryness. The resulting gum was taken up in chloroform $(500 \mathrm{ml})$ and washed with water $(3 \times 100 \mathrm{ml})$. The chloroform solution was evaporated to dryness to give 2-(2,2,2-trichloroethoxycarbonylamino)ethanol (31) (64.5 g, 83%) as a gum (Found: C, 26.25; H, 3.6; Cl, 44.2; N, 6.1.
$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{Cl}_{3} \mathrm{NO}_{3}$ requires $\mathrm{C}, 25.40 ; \mathrm{H}, \mathbf{3 . 4} ; \mathrm{Cl}, \mathbf{4 5 . 0} ; \mathrm{N}, 5.9 \%$), $\nu_{\text {max. }}$ (film) $3300,2910,1700,1520,1240,1140$, and 1055 $\mathrm{cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 3.43\left(2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.77$ $\left(2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{HOC} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{NH}\right)$, and $4.77(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CCl}_{3}\right)$.

N -[2-(2,2,2-Trichloroethoxycarbonylamino ethoxycarbonyloxy]succinimide (32).-2-(2,2,2-Trichloroethoxycarbonylamino)ethanol (31) (10 g) was dissolved in methylene chloride (159 ml) containing phosgene (1 mol equiv.) and triethylamine (5 ml) and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . The solution was evaporated to dryness and the resulting gum was taken up in ethyl acetate and filtered. The filtrate was added dropwise to a solution of N-hydroxysuccinimide (4.83 g) in ethyl acetate (100 ml) containing pyridine (10 ml) and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . The solution was filtered and the filtrate was evaporated to dryness and azeotroped with toluene to afford the active ester (32) ($14.2 \mathrm{~g}, 89 \%$) as a viscous gum. A portion was purified by preparative t.l.c. on silica gel using $20 \% \mathrm{v} / \mathrm{v}$ ethyl acetate-methylene chloride as the eluant to give an analytical sample as a waxy solid (Found: C, 31.9; H, 3.3; $\mathrm{Cl}, 28.1 ; \mathrm{N}, 7.8 . \quad \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $\mathrm{C}, 31.8 ; \mathrm{H}, 2.9$; $\mathrm{Cl}, 28.1 ; \mathrm{N}, 7.4 \%$); $\nu_{\max }$ (film) $3330,2950,1820,1790$, $1740,1725,1530$, and $1220 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 2.83(4 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 3.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 4.47(2 \mathrm{H}, \mathrm{t}$, $\left.J 7.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right)$, and $4.78\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CCl}_{3}\right)$.

2-(4-Methoxybenzyloxycarbonylamino)ethanol (33).-2-
Aminoethanol (30) (1.5 g) was dissolved in water (200 ml) containing triethylamine $(4.83 \mathrm{~g})$ and 4 -methoxybenzyl-S(4,6 -dimethylpyrimidin-2-yl)thiocarbonate $(10.67 \mathrm{~g})^{43}$ in dioxan (200 ml) was adde 3 to the stirred solution. Stirring was continued for 2 h at $25^{\circ} \mathrm{C}$ and the mixture was evaporated to dryness. The residue was dissolved in chloroform and extracted with 0.1 m -hydrochloric acid ($3 \times 25 \mathrm{ml}$). The chloroform was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give the (4-methoxybenzyloxycarbonyl derivative (33) as a waxy yellow solid ($6.39 \mathrm{~g}, 89 \%$). An analytical sample of (33) was obtained by preparative t.l.c. on silica gel using $5 \% \mathrm{v} / \mathrm{v}$ methanol-chloroform as the eluant, as a yellow crystalline solid, m.p. $75-78{ }^{\circ} \mathrm{C}$ (Found: C, 58.75 ; $\mathrm{H}, 6.45 ; \mathrm{N}, 6.35 . \quad \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires C, $58.66 ; \mathrm{H}, 6.71$; N, 6.22%), $\nu_{\text {max. }}$ (Nujol) $3250,1680,1535,1240$, and 1050 $\mathrm{cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 2.40(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.71\left(2 \mathrm{H}, \mathrm{t}, J 5 \mathrm{~Hz}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.82(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right), 5.06\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OCO}\right), 6.90(2 \mathrm{H}, \mathrm{d}$, $\left.J 9 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OCO}\right)$, and $7.35(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OCO}$).
N-[2-(4-Methoxybenzyloxycarbonylamino)ethoxycarbonyloxy]succinimide (34).-2-(4-Methoxybenzyloxycarbonylamino) ethanol (33) (5 g) was dissolved in methylene chloride containing phosgene ($\mathbf{3} \mathrm{mol}$ equiv.) and triethylamine ($\mathbf{2 . 6}$ ml) and the mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 3 h . The solution was evaporated to dryness and the resulting gum was taken up in ethyl acetate and the mixture filtered. The filtrate was added dropwise to a stirred solution of N hydroxysuccinimide (2.55 g) in ethyl acetate (50 ml) containing pyridine (10 ml) and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . The mixture was filtered and the filtrate was evaporated to dryness to give the active ester (34) as a gum $(7.07 \mathrm{~g}, 87 \%)$. An analytical sample was obtained by preparative t.l.c. on silica gel using $20 \% \mathrm{v} / \mathrm{v}$ ethyl acetatemethylene chloride as the eluant (Found: C, 52.35; H, $5.2 ; \mathrm{N}, 7.6 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{8}$ requires $\mathrm{C}, 52.46 ; \mathrm{H}, 4.95 ; \mathrm{N}$, 7.65%), $v_{\max .}($ film) $3300,1800,1780,1730,1700,1500$, 1230 , and $1210 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 2.76\left(4 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{CH}_{2}-\right.$
$\mathrm{CO}), 3.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 4.36$ $\left(2 \mathrm{H}, \mathrm{t}, J 5 \mathrm{~Hz}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 5.02\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-\right.$ $\mathrm{OCO}), 5.48(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 6.82\left(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right.$ $\left.\mathrm{CH}_{2} \mathrm{OCO}\right)$, and $7.27\left(2 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OCO}\right)$.

1-N-[2-(2,2,2-Trichloroethoxycarbonylamino) ethoxycar-bonyl]-3, $2^{\prime}, 6^{\prime}$-tris-N-(2,2,2-trichloroethoxycarbonyl)sisomicin (11).-3, $2^{\prime}, 6^{\prime}$-Tris- N-(2,2,2-trichloroethoxycarbonyl) sisomicin (10) (1.7 g) ${ }^{20, *}$ was dissolved in methanol-water ($1: 1 \mathrm{v} / \mathrm{v}$) (15 ml) containing N-[2-(2,2,2-trichloroethoxycarbonylamino)ethoxycarbonyloxy]succinimide (32) (906 mg) and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 3.5 h . The solution was evaporated to dryness and the residue was chromatographed on a silica gel column ($15 \times 2.5 \mathrm{~cm}$) using $7 \% \mathrm{v} / \mathrm{v}$ methanol-chloroform as the eluant to give the protected trisaccharide (11) ($1.87 \mathrm{~g}, 89 \%$) as an amorphous solid (Found: C, $32.8 ; \mathrm{H}, 3.7$; Cl, $35.0 ; \mathrm{N}, 6.35 . \mathrm{C}_{34} \mathrm{H}_{46}$ $\mathrm{Cl}_{12} \mathrm{~N}_{6} \mathrm{O}_{17}$ requires C, $33.0 ; \mathrm{H}, 3.75 ; \mathrm{Cl}, 34.4 ; \mathrm{N}, 6.80 \%$), $[x]_{\mathrm{D}}{ }^{26}+77.5^{\circ}(\mathrm{MeOH}), v_{\max .}$ (Nujol) 3 350, 2970,2900 , $1740,1560,1530,1250$, and $1050 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CD}_{3} \mathrm{OD}\right) 1.17$ $\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.53\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right)$, and $4.75(8 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CCl}_{3}$).
$3,2^{\prime}, 6^{\prime}-$ Tris-N-(4-methoxybenzyloxycarbonyl)-1-N-[2-(4methoxybenzyloxycarbonylamino)ethoxycarbonyl]sisomicin (14).- $3,2^{\prime}, 6^{\prime}$-Tris- N-(4-methoxybenzyloxycarbonyl)sisomicin (13) (1 g) ${ }^{20, *}$ was dissolved in aqueous methanol (1:1 v/v) (15 ml) containing N-[2-(4-methoxybenzyloxycarbonylamino) ethoxycarbonyloxy]succinimide (34) (389 mg). The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h , whereupon additional reagent (34) (39 mg) was added. After stirring for a further 1 h the mixture was evaporated to dryness and the residue was chromatographed on a silica-gel column ($60 \times 2.5 \mathrm{~cm}$) using $7 \% \mathrm{v} / \mathrm{v}$ methanolchloroform as the eluant to give the protected sisomicin derivative (14) ($807 \mathrm{mg}, 64 \%$) as amorphous solid (Found: C, $56.95 ; \mathrm{H}, 6.1 ; \mathrm{N}, 6.75 . \quad \mathrm{C}_{58} \mathrm{H}_{74} \mathrm{~N}_{6} \mathrm{O}_{21} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ requires C, $56.78 ; \mathrm{H}, 6.41 ; \mathrm{N}, 6.85 \%),[\alpha]_{\mathrm{D}}{ }^{26}+69.3^{\circ}(\mathrm{DMSO}), \nu_{\text {max }}$ (Nujol) $3250,1690,1680,1530,1510,1240$, and 1030 $\mathrm{cm}^{-1}, \delta\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 1.00\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 3.75(12 \mathrm{H}, \mathrm{s}$, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}$), $4.94\left(8 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right), 6.88(8 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)$, and $7.26\left(8 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)$.

1-N-(2-Aminoethoxycarbonyl)sisomicin (12).-(a) 1-N-[2-(2,2,2-Trichloroethoxycarbonylamino) ethoxycarbonyl]-
$3,2^{\prime}, 6^{\prime}$-tris- N-(2,2,2-trichloroethoxycarbonyl)sisomicin (11) (1.77 g) was dissolved in 90% aqueous acetic acid (50 ml) containing activated zinc powder (1.86 g) and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was filtered through a bed of Celite and the filtrate was evaporated to dryness. The residue was dissolved in water (10 ml) and a $10 \%(\mathrm{w} / \mathrm{v})$ aqueous sodium carbonate was added until the pH reached 10.0 . The solids were filtered off and the filtrate was evaporated to dryness. The residue was chromatographed on a silica-gel column ($60 \times 2.5 \mathrm{~cm}$) using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution (2:1:1v/v) as the eluant to give 1-N-(2-aminoethoxycarbonyl)sisomicin (12) (110 mg, 14%) as an amorphous solid after passage over Amberlite IRA 40IS $\left(\mathrm{OH}^{-}\right)$resin and lyophilization (Found: C, 46.9; $\mathrm{H}, 8.2$; $\mathrm{N}, 14.7 . \quad \mathrm{C}_{22} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 46.5$; H , $7.80 ; \mathrm{N}, 14.8 \%),\left[\alpha_{\mathrm{D}}{ }^{26}+138.8^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right), \nu_{\text {max. }}(\mathrm{KBr}) 3350\right.$, $3275,1705,1680$, and $1045 \mathrm{~cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.22(3 \mathrm{H}, \mathrm{s}$, $\left.4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.50\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right), 2.57\left(1 \mathrm{H}, \mathrm{d}, J_{2^{\prime \prime}, 3^{\prime \prime}} 11 \mathrm{~Hz}\right.$, $\left.3^{\prime \prime}-\mathrm{H}\right), 2.85\left(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 3.70(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{1^{\prime \prime} 2^{\prime \prime}} 4, J_{2^{\prime \prime}, 3^{\prime \prime}} 11 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}\right), 4.10\left(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{CO}_{2^{-}}\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$), $4.13\left(\mathrm{H}, \mathrm{d}, J_{5^{\prime \prime}}\right.$ eq, $\left.\mathrm{s}^{\prime \prime} x x 12 \mathrm{~Hz}, 5^{\prime \prime} e q-\mathrm{H}\right), 4.90$

* Note as on page 2186.
($1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$), $5.11\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime \prime}, 2^{\prime \prime}} 4 \mathrm{~Hz}, 1^{\prime \prime}-\mathrm{H}\right)$, and 5.33 ($1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 3.5 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}$).
(b) $3,2^{\prime}, 6^{\prime}$-Tris- N-(4-methoxybenzyloxycarbonyl)-1-N-[2-(4-methoxybenzyloxycarbonylamino)ethoxycarbonyl]sisomicin (14) (500 mg) was added to trifluoroacetic acid (2 ml) at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 5 min . The solution was added dropwise to diethyl ether $(150 \mathrm{ml})$ and the result ing precipitate was filtered off and chromatographed on a silica-gel column ($160 \times 2.5 \mathrm{~cm}$) using the lower phase of a chloroform-methanol-14\% ammonium hydroxide solution (2:1:1 $\mathrm{v} / \mathrm{v})$ as the eluant to give $1-N$ - $(2$-aminoethoxycarbonyl)sisomicin (12) ($91 \mathrm{mg}, 41 \%$) as an amorphous solid after passage over Amberlite IRA $40 \mathrm{IS}\left(\mathrm{OH}^{-}\right)$resin followed by lyophilization. The product was identical with that prepared in (a) above.
2-[N-(4-Methoxybenzyloxycarbonyl)ethylamino]ethanol (36). -2-Ethylaminoethanol (35) (10 g) was dissolved in dioxanwater ($1: 1 \mathrm{v} / \mathrm{v}$) $(200 \mathrm{ml})$ containing 4-methoxybenzyl-S-(4,6-dimethylpyrimidin-2-yl) thiocarbonate (34.2 g$)^{43}$ and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h . The solution was evaporated to dryness and the gum was chromatographed on a silica-gel column ($60 \times 3 \mathrm{~cm}$) using dichloromethane as the eluant to give the amine (36) ($19 \mathrm{~g}, 67 \%$) as a waxy solid (Found: C, 61.4; H, 7.55; N, 5.65. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires $\mathrm{C}, 61.65 ; \mathrm{H}, 7.56 ; \mathrm{N}, 5.53 \%$), ${ }_{\text {max. }}$ (film) 3430 , 1690 , and $1250 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 1.08\left(3 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{CH}_{3^{-}}\right.$ $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.30\left(2 \mathrm{H}, \mathrm{q}, J 6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 3.42(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.62\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $3.87(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$), $5.02\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right)$, and 6.81 and $7.23\left(4 \mathrm{H}, 2 \mathrm{~m}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right)$.
$\mathrm{N}-\{2-[\mathrm{N}-(4-$ Methoxybenzyloxycarbonyl)ethylamino]ethoxycarbonyloxy succinimide (37).-2-[N-(4-Methoxybenzyloxycarbonyl)ethylamino]ethanol (36) (13 g) was dissolved in dichloromethane (200 ml) containing phosgene (3 mol equiv.). Triethylamine (7 ml) was added dropwise over 0.5 h and the mixture was then stirred at $25^{\circ} \mathrm{C}$ for 2 h . The solution was evaporated to dryness and the residue was dissolved in ethyl acetate and filtered. The filtrate was added dropwise to a solution of N-hydroxysuccinimide $(5.9 \mathrm{~g})$ in ethyl acetate (150 ml) containing pyridine (25 ml). The mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h and then filtered. The filtrate was evaporated to dryness to give the active ester (37) ($18.3 \mathrm{~g}, 90 \%$) as a gum. An analytical sample was prepared by preparative t.l.c. on silica gel using $20 \% \mathrm{v} / \mathrm{v}$ ethyl acetate-dichloromethane as the eluant (Found: C, 54.7; $\mathrm{H}, 5.4 ; \mathrm{N}, 6.85 . \quad \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8}$ requires C, $54.83 ; \mathrm{H}$, $5.62 ; \mathrm{N}, 7.10 \%)$, $\nu_{\text {max. }}$ (film) 1740 and $1220 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right)$ $1.32\left(3 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right)$, $2.88\left(4 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{CH}_{2}-\right.$ $\mathrm{CO}), 3.45\left(2 \mathrm{H}, \mathrm{q}, J 6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 3.73(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 4.50(2 \mathrm{H}, \mathrm{t}$, $\left.J 6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 5.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right)$, and 6.92 and $7.39\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right)$.

1-N-(2-Ethylaminoethoxycarbonyl)sisomicin (15).-3, $2^{\prime}, 6^{\prime}-$ Tris- N -(4-methoxybenzyloxycarbonyl(sisomicin (13) (2 g) was dissolved in methanol-water ($1: 1 \mathrm{v} / \mathrm{v}$) (10 ml) containing $N-\{2-[N-(4$-methoxybenzyloxycarbonyl)ethylamino]ethoxycarbonyloxy\}succinimide (37) (922 mg) and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 18 h . The solution was evaporated to dryness and the residue was dissolved in trifluoroacetic acid (30 ml). After 0.5 h at $25^{\circ} \mathrm{C}$, the solution was evaporated to dryness and the residue was chromatographed on an Amberlite CG-50 $\left(\mathrm{NH}_{2}\right)$ resin column ($60 \times$ 5 cm) using gradient elution with aqueous ammonium hydroxide ($0.01-0.35 \mathrm{~m}$) to give $1-\mathrm{N}$-(2-ethylaminoethoxycarbonyl)sisomicin (15) ($263 \mathrm{mg}, \mathbf{2 2 \%}$) as an amorphous
solid after passage over Amberlite IRA 40IS (OH^{-}) resin followed by lyophilization (Found: C, 47.95; H, 7.1; N, 12.95. $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{9} \cdot 2 \mathrm{CO}_{2}$ requires $\mathrm{C}, 47.99 ; \mathrm{H}, 7.13 ; \mathrm{N}$, $12.91 \%),[\alpha]_{\mathrm{D}}{ }^{26}+135.2^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right), \nu_{\text {max. }}(\mathrm{KBr}) 3350,1700$, 1590,1050 , and $1000 \mathrm{~cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.09(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 1.22\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.50\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right)$, $2.54\left(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C} H_{2} \mathrm{~N}\right), 2.82(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 4.13\left(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 4.83(1 \mathrm{H}$, $\left.\mathrm{m}, 4^{\prime}-\mathrm{H}\right), 5.09\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime \prime} \text { eq. } 2^{\prime \prime} a x} 4 \mathrm{~Hz}, 1^{\prime \prime} e q-\mathrm{H}\right)$, and $5.25(1 \mathrm{H}$, d, $\left.J_{1^{\prime} e q .2^{\prime} a, c} 3.5 \mathrm{~Hz}, \mathrm{l}^{\prime} e q-\mathrm{H}\right)$.

N -(Methoxycarbonyloxy) succinimide (40).-Methyl chloroformate (10 g) was added dropwise to a stirred solution of N-hydroxysuccinimide (12.2 g) dissolved in ethyl acetate $(100 \mathrm{ml})$ containing pyridine $(10 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. After the addition was completed the reaction was stirred at $25{ }^{\circ} \mathrm{C}$ for 2 h . The solution was evaporated to dryness to give N (methoxycarbonyloxy)succinimide (40) ($12.8 \mathrm{~g}, 55 \%$) which crystallized, m.p. $84-86^{\circ} \mathrm{C}$ (Found: C, 41.65 ; H, 3.95 ; N, 8.35. $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}_{5}$ requires $\mathrm{C}, 41.63$; $\mathrm{H}, 4.08$; $\mathrm{N}, 8.09 \%$), $\nu_{\text {mar. }}\left(\mathrm{CHCl}_{3}\right) 1805,1780,1735$, and $1020 \mathrm{~cm}^{-1} \delta\left(\mathrm{CDCl}_{3}\right)$ $2.80\left(4 \mathrm{H}, \mathrm{s}, \mathrm{COCH} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CO}\right)$ and $3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right)$.

1-N-Methoxycarbonylsisomicin (16).-3, $2^{\prime}, 6^{\prime}-$ Tris- N-(4methoxybenzyloxycarbonyl) sisomicin (13) (5 g) was dissolved in methanol-water ($1: 1 \mathrm{v} / \mathrm{v}$) (50 ml) containing N (methoxycarbonyloxy)succinimide (40) (920 mg) and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . The solution was evaporated to dryness and azeotroped with toluene. The residue was dissolved in trifluoroacetic acid (10 ml). After 5 min at $25^{\circ} \mathrm{C}$, the solution was evaporated to dryness and the residue was chromatographed on a silica-gel column ($120 \times 2 \mathrm{~cm}$) using chloroform-methanol- 3% ammonium hydroxide solution ($1: 2: 1 \mathrm{v} / \mathrm{v}$) as the eluant. The product was rechromatographed on a silica-gel column (110 $\times 2.5$ cm) using the lower phase of a chloroform-methanolconcentrated ammonium hydroxide solution (1:1:1v/v) as the eluant to give $1-\mathrm{N}$-methoxycarbonylsisomicin (16) (616 $\mathrm{mg}, \mathbf{2 3} \%$) as an amorphous solid after passage over Amberlite IRA 40IS $\left(\mathrm{OH}^{-}\right)$resin followed by lyophilization (Found: $\mathrm{C}, 46.9 ; \mathrm{H}, 7.75 ; \mathrm{N}, 13.1 . \quad \mathrm{C}_{21} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{9}$ requires $\mathrm{C}, 46.56$; $\mathrm{H}, 8.00 ; \mathrm{N}, 12.93 \%),[\alpha]_{\mathrm{p}}{ }^{26}+152.3^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right), v_{\text {max }} 3350,1710$, 1530 , and $1000 \mathrm{~cm}^{-1}$), $\delta\left(\mathrm{D}_{2} \mathrm{O}\right) \mathrm{I} .10\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.40$ $\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right), 2.46\left(1 \mathrm{H}, \mathrm{d}, J_{2^{\prime \prime} a x .3^{\prime \prime} a x} 10.5 \mathrm{~Hz}, 3^{\prime \prime} a x-\mathrm{H}\right)$, $3.18\left(1 \mathrm{H}, \mathrm{d}, J_{5^{\prime \prime} a x, 5^{\prime \prime} e q} 12.5 \mathrm{~Hz}, 5^{\prime \prime} a x-\mathrm{H}\right), 3.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}{ }^{-}\right.$ OCO), $3.60\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime \prime}\left(q .2^{\prime \prime} \alpha x\right.} 4, J_{2^{\prime \prime} a x, \mathrm{~s}^{\prime \prime} a x} 10.5 \mathrm{~Hz}, 2^{\prime \prime} a x-\mathrm{H}\right)$, $4.01\left(1 \mathrm{H}, \mathrm{d}, J_{5^{\prime \prime} u x, 5^{\prime \prime} e q} 12.5 \mathrm{~Hz}, 5^{\prime \prime} e q-\mathrm{H}\right), 4.79\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right)$, $5.01\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime \prime} e q .2^{\prime \prime} a x} 4 \mathrm{~Hz}, 1^{\prime \prime} e q-\mathrm{H}\right)$, and $5.25(1 \mathrm{H}, \mathrm{d}$, $\left.J_{1^{\prime} e q, 2^{\prime} u x} 3 \mathrm{~Hz}, 1^{\prime} e q-\mathrm{H}\right)$.

N-(Ethoxycarbonyloxy)succinimide (41).-Ethyl chloroformate (10 g) was added dropwise to a stirred solution of N-hydroxysuccinimide (10.6 g) dissolved in ethyl acetate $(100 \mathrm{ml})$ containing pyridine $(10 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. After the addition was completed the reaction was stirred at $25^{\circ} \mathrm{C}$ for 2 h . The solution was evaporated to dryness to give N (ethoxycarbonyloxy) succinimide (41) ($14.6 \mathrm{~g}, 67 \%$) which crystallized, m.p. $47-51^{\circ} \mathrm{C}$ (Found: C, 44.95 ; H, 4.85 ; N, 7.8. $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{5}$ requires $\mathrm{C}, 44.92 ; \mathrm{H}, 4.85 ; \mathrm{N}, 7.48 \%$), $\nu_{\text {nax. }}$ $\left(\mathrm{CHCl}_{3}\right) 1808,1785,1740$, and $1020 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 1.38$ $\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 2.80\left(4 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right)$, and $4.33\left(2 \mathrm{H}, q, J 7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH} \mathrm{C}_{2} \mathrm{O}\right)$.

1-N-Ethoxycarbonylsisomicin
(17). $-3,2^{\prime}, 6^{\prime}-$ Tris- $\mathrm{N}-(4-$ methoxybenzyloxycarbonyl)sisomicin (13) (5 g) was dissolved in methanol-water ($1: 1 \mathrm{v} / \mathrm{v}$) (50 ml) containing N (ethoxycarbonyloxy)succinimide (41) (995 mg) and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . The solution was evaporated to dryness and azeotroped with toluene. The
residue was dissolved in trifluoroacetic acid (10 ml). After 5 min at $25^{\circ} \mathrm{C}$, the solution was evaporated to dryness and the residue was chromatographed on a silica-gel column ($120 \times 2 \mathrm{~cm}$) using chloroform-methanol- 3% ammonium hydroxide solution ($1: 2: 1 \mathrm{v} / \mathrm{v}$) as the eluant. The product was rechromatographed on a silica-gel column (110 $\times 2.5$ (cm using the lower phase of a chloroform-methanol-14\% ammonium hydroxide solution (2:1:1v/v) as the eluant to give 1-N-ethoxycarbonylsisomicin (17) ($582 \mathrm{mg}, 21 \%$) as an amorphous solid after passage over Amberlite IRA 40IS $\left(\mathrm{OH}^{-}\right)$resin followed by lyophilization (Found: C, 49.9; H, 7.9; $\mathrm{N}, 13.4 . \quad \mathrm{C}_{22} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{9}$ requires $\mathrm{C}, 50.21 ; \mathrm{H}, 7.85$; N , $13.31 \%),[\alpha]_{D}{ }^{26}+136.2^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right), v_{\max .}(\mathrm{KBr}) 3350,1700$, 1535 , and $1050 \mathrm{~cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.09\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 1.12$ $\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 2.39\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right), 2.45(1 \mathrm{H}$, d, $\left.J_{2^{\prime \prime} u x, 3^{\prime \prime} u r} 10.5 \mathrm{~Hz}, 3^{\prime \prime} a x-\mathrm{H}\right), 3.18\left(1 \mathrm{H}, \mathrm{d}, J_{5^{\prime \prime} a x, 5^{\prime \prime} e q} 12.5 \mathrm{~Hz}\right.$, $\left.5^{\prime \prime} a x-\mathrm{H}\right), 3.59\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime \prime}\left(q, 2^{\prime \prime} a x\right.} 4, J_{2^{\prime \prime} a x, 3^{\prime \prime} a x} 10.5 \mathrm{~Hz}\right.$, $\left.2^{\prime \prime} a x-\mathrm{H}\right), 3.99\left(1 \mathrm{H}, \mathrm{d}, J_{5^{\prime \prime}} a x . \mathrm{b}^{\prime^{\prime \prime}} e q 12.5 \mathrm{~Hz}, 5^{\prime \prime} e q-\mathrm{H}\right), 4.00(2 \mathrm{H}$, $\left.\mathrm{q}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 4.78\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 5.01(1 \mathrm{H}, \mathrm{d}$, $\left.J_{1^{\prime \prime} e q, 2^{\prime \prime} a x} 4 \mathrm{~Hz}, 1^{\prime \prime} e q-\mathrm{H}\right)$, and $5.24\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime \prime} e q, 2^{\prime \prime} a x} 3 \mathrm{~Hz}\right.$, $\mathrm{I}^{\prime} e q-\mathrm{H}$).
$3,2^{\prime}, 6^{\prime}-T r i s-N-(4-m e t h o x y b e n z y l o x y c a r b o n y l)-1-N-(2,2,2-$ trichloroethoxycarbonyl) sisomicin (18).-3, $2^{\prime}, 6^{\prime}$-Tris- N-(4methoxybenzyloxycarbonyl)sisomicin (13) (4 g) was dissolved in methanol-water ($1: 1 \mathrm{v} / \mathrm{v}$) $(100 \mathrm{ml})$ containing N -(2,2,2-trichloroethoxycarbonyloxy)succinimide (42) (1.35 g) and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h . The solution was evaporated to dryness and the residue was chromatographed on a silica-gel column ($60 \times 3 \mathrm{~cm}$) using 3% meth-anol-chloroform as the eluant to give the 1-(trichloroethoxycarbonyl) derivative (18) ($4.1 \mathrm{~g}, 86 \%$) as an amorphous solid (Found: C, $51.0 ; \mathrm{H}, 5.5 ; \mathrm{Cl}, 9.0 ; \mathrm{N}, 5.9 . \quad \mathrm{C}_{49} \mathrm{H}_{62} \mathrm{Cl}_{3}-$ $\mathrm{N}_{5} \mathrm{O}_{18}-2 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 51.09 ; \mathrm{H}, 5.77 ; \mathrm{Cl}, 9.23 ; \mathrm{N}, 6.08 \%$), $[\alpha]_{\mathrm{D}}{ }^{26}+71.3^{\circ}(\mathrm{DMSO}), \nu_{\text {max. }}(\mathrm{KBr}) 3330,1705,1690,1515$, 1245 , and $1035 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 1.13\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right)$, $2.61\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right), 3.77,3.79$, and $3.81\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}{ }^{-}\right.$ $\left.\mathrm{OCH}_{3}\right), 4.67\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CCl}_{3}\right), 4.99\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)$, and 6.85 and $7.22\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)$.
$3,2^{\prime}, 6^{\prime}, 3^{\prime \prime}$-Tetrakis-N-(4-methoxybenzyloxycarbonyl) $1-\mathrm{N}$ -(2,2,2-trichloroethoxycarbonyl) sisomicin (19).-3, $2^{\prime}, 6^{\prime}$-Tris- N -(4-methoxybenzyloxycarbonyl)-1- N-(2,2,2-trichloroethoxycarbonyl)sisomicin (18) (0.5 g) was dissolved in dimethyl sulphoxide (50 ml) containing triethylamine (46 mg) and 4-methoxybenzyl-S-(4,6-dimethylpyrimidin-2-yl)thiocarbonate $(150 \mathrm{mg})^{43}$ and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 18 h . The mixture was washed with ether and the residual gum was chromatographed on a silica-gel column (30×2.5 cm) using 6% methanol in chloroform as the eluant to give the $3^{\prime \prime}-\mathrm{N}$-(4-methoxybenzyloxycarbonyl) derivative (19) (418 $\mathrm{mg}, 73 \%$) as an amorphous solid (Found: C, 53.65 ; H, 5.7 ; $\mathrm{Cl}, 7.3 ; \mathrm{N}, 5.3 . \quad \mathrm{C}_{58} \mathrm{H}_{70} \mathrm{Cl}_{3} \mathrm{~N}_{5} \mathrm{O}_{21} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C, $53.71 ; \mathrm{H}$, $5.60 ; \mathrm{N}, 5.40 ; \mathrm{Cl}, 8.20 \%),[\alpha]_{\mathrm{D}}{ }^{26}+71.2^{\circ}$ (DMSO), $\nu_{\text {max. }}(\mathrm{KBr})$ $3325,1710,1690,1535,1515,1240$, and $1030 \mathrm{~cm}^{-1}$, δ $\left(\mathrm{CDCl}_{3}\right) 1.08\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 3.01\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right), 3.77$ and $3.80\left(12 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)$, $4.68\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CCl}_{3}\right)$, 4.95 and $5.03\left(8 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)$, and 6.83 and 7.23 ($16 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}$).
$3,2^{\prime}, 6^{\prime}, 3^{\prime \prime}$-Tetrakis-N-(4-methoxybenzyloxycarbonyl) sisomicin (20).-3, $2^{\prime}, 6^{\prime}, 3^{\prime \prime}$-Tetrakis- N-(4-methoxybenzyloxy-carbonyl)-1-N-(2,2,2-trichloroethoxycarbonyl)sisomicin (19) (200 mg) was dissolved in 10% acetic acid in methanol (2 ml) and activated zinc (100 mg) was added. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h and it was then filtered and the filtrate was evaporated to dryness. The residue was chromatographed on a silica-gel column ($30 \times 2.5 \mathrm{~cm}$) using $6 \% \mathrm{v} / \mathrm{v}$
methanol-chloroform as the eluant to give the acetate salt of (21) (119 mg). The latter was dissolved in chloroform (5 ml) and the solution was stirred with 14% ammonium hydroxide solution (10 ml) at $25^{\circ} \mathrm{C}$ for 18 h . The chloroform layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated to a volume of $c a .1 \mathrm{ml}$. The latter was added dropwise to diethyl ether (10 ml) and the precipitate was filtered off to afford the tetra-protected sisomicin derivative (20) ($89 \mathrm{mg}, 51 \%$) as an amorphous solid (Found: C, 59.5; $\mathrm{H}, 6.35 ; \mathrm{N}, 6.05 . \quad \mathrm{C}_{55} \mathrm{H}_{69} \mathrm{~N}_{5} \mathrm{O}_{19}$ requires $\mathrm{C}, 59.85 ; \mathrm{H}, 6.30$; $\mathrm{N}, 6.30 \%),[\alpha]_{\mathrm{D}}{ }^{26}+92.9^{\circ}\left(\mathrm{CHCl}_{3}\right), v_{\text {max }}(\mathrm{KBr}) 3360,1715$, $1690,1510,1240$, and $1030 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 1.07(3 \mathrm{H}, \mathrm{s}$, $\left.4^{\prime \prime}-\mathrm{CH}_{3}\right), 3.03\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right), 3.77$ and $3.79(12 \mathrm{H}, 2 \mathrm{~s}$, $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right), 4.99\left(8 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)$, and 6.83 and $7.24\left(16 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)$.

1-[2-(4-Methoxybenzyloxycarbonylamino)ethoxythiocarbonyl]imidazole (43).--2-(4-Methoxybenzyloxycarbonylamino)ethanol (33) (2 g) was dissolved in dry tetrahydrofuran (10 ml) containing $N N^{\prime}$-thiocarbonyldi-imidazole $(1.58 \mathrm{~g})$ and the mixture was heated under reflux for 2 h . The reaction mixture was evaporated to dryness and then taken up in dichloromethane (100 ml) and washed with 5% tartaric acid solution ($3 \times 25 \mathrm{ml}$). The dichloromethane extract was evaporated to dryness to afford $1-\mathrm{N}-[2-(4-$ methoxybenzyloxycarbonylaminolethoxythiocarbonyl]imidazole (43) $(2.53 \mathrm{~g}, 85 \%)$ as a waxy solid (Found: C, 53.9 ; H, 5.05 ; $\mathrm{N}, 12.7 ; \mathrm{S}, 9.85 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 53.73 ; \mathrm{H}, 5.11$; $\mathrm{N}, 12.5 \mathrm{~J} ; \mathrm{S}, 9.56 \%)$, $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3450,1725,1615,1515$, and $1250 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 3.67\left(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{NHCH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 4.69(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}$, $\left.\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 5.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 6.87$ and 7.29 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 7.01\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}=\right), 7.60(1 \mathrm{H}$, $\left.\mathrm{m}, 5^{\prime}-\mathrm{CH}=\right)$, and $8.33\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{CH}=\mathrm{N}\right)$.
$3,2^{\prime}, 6^{\prime}, 3^{\prime \prime}$-Tetrakis-N-(4-methoxybenzyloxycarbonyl)-1-N-[2-(methoxybenzyloxycarbonylamino)ethoxythiocarbonyl]sisomicin (21).-1-N-[2-(4-Methoxybenzyloxycarbonylamino) ethoxythiocarbonyl]imidazole (43) (2.4 g) was dissolved in dry dichloromethane (10 ml) containing triethyloxonium tetrafluoroborate (870 mg) and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 0.5 h . $\quad 3,2^{\prime}, 6^{\prime}, 3^{\prime \prime}$-Tetrakis- N-(4 -methoxybenzyloxycarbonyl)sisomicin (20) (2 g) was added and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 18 h . The solution was evaporated to dryness and the residue was chromatographed on a silica-gel column ($120 \times 2.5 \mathrm{~cm}$) using $2 \% \mathrm{v} / \mathrm{v}$ methanol-chloroform as the eluant to give the tetra-protected intermediate (21) ($2.2 \mathrm{~g}, 75 \%$) as an amorphous solid (Found: $\mathrm{C}, 56.25 ; \mathrm{H}, 5.95 ; \mathrm{N}, 6.65 ; \mathrm{S}, 3.0 . \mathrm{C}_{67} \mathrm{H}_{82} \mathrm{~N}_{6} \mathrm{O}_{23} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 56.41 ; \mathrm{H}, 6.22 ; \mathrm{N}, 5.89 ; \mathrm{S}, 2.25 \%),[\alpha]_{\mathrm{D}}{ }^{26}$ $+64.5^{\circ}\left(\mathrm{CHCl}_{3}\right), \nu_{\text {max. }}(\mathrm{KBr}) 3350,1700,1515,1250$, and $1030 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 1.08 \mathrm{br}\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.98 \mathrm{br}(3 \mathrm{H}$, s, $\left.3^{\prime \prime}-\mathrm{NCH}_{3}\right), 3.80\left(15 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 4.98(10 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$), and 6.84 and $7.27\left(20 \mathrm{H}, 2 \mathrm{~m}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}-\right.$ CH_{2}).

1-N-(2-Aminoethoxythiocarbonyl)sisomicin (22).$3,2^{\prime}, 6^{\prime}, 3^{\prime \prime}$-Tetrakis- N-(4-methoxybenzyloxycarbonyl)-1-N-[2-(4-methoxybenzyloxycarbonylamino)ethoxythiocar-
bonyl]sisomicin (21) (2.1 g) was dissolved in trifluoroacetic acid (10 ml) and, after 3 min at $25^{\circ} \mathrm{C}$, the solution was evaporated to dryness. The residue was chromatographed on a silica-gel column ($120 \times 2 \mathrm{~cm}$) using the lower phase of a chloroform-methanol-14\% ammonium hydroxide solution (2:1:1 v/v) as the eluant to give 1-N-(2-aminoethoxythiocarbonyl)sisomicin (22) ($143 \mathrm{mg}, 14 \%$) as amorphous solid after passage over Amberlite IRA 40IS $\left(\mathrm{OH}^{-}\right)$resin followed by lyophilization (Found: C, 41.1; H, 6.8; N,
$12.35 ; \mathrm{S}, 4.25 . \quad \mathrm{C}_{22} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{~S} \cdot \mathrm{CO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 41.43$; $\mathrm{H}, 6.95 ; \mathrm{N}, 12.60 ; \mathrm{S}, 4.80 \%),\left[x_{\mathrm{D}}{ }^{26}+102.9^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right), \nu_{\text {max }}\right.$. (KBr) $3280,1690,1550$, and $1050 \mathrm{~cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.26(3 \mathrm{H}$, $\left.\mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.63\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right), 2.80\left(\mathrm{IH}, \mathrm{d}, J_{2^{\prime \prime \prime}\left(a x, 3^{\prime \prime} a x\right.} 11\right.$ $\left.\mathrm{Hz}, 3^{\prime \prime} a x-\mathrm{H}\right), 3.30\left(1 \mathrm{H}, \mathrm{d}, J_{5^{\prime \prime}} u x .5^{\prime \prime}\right.$ eq $\left.12 \mathrm{~Hz}, 5^{\prime \prime} a x-\mathrm{H}\right)$, $c a$. $3.68\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 3.79\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime \prime}{ }_{e q .2^{\prime \prime}}(x)} 4\right.$, $\left.J_{2^{\prime \prime} a x, 3^{\prime \prime} u x} 11 \mathrm{~Hz}, 2^{\prime \prime} a x-\mathrm{H}\right), 4.07\left(1 \mathrm{H}, \mathrm{d}, J_{5^{\prime \prime}}{ }^{\prime} u x, 5^{\prime \prime}{ }^{\prime \prime}{ }^{\prime} 12 \mathrm{~Hz}\right.$, $\left.5^{\prime \prime} e q-\mathrm{H}\right), 5.01\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 5.07\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime \prime} e q, 2^{\prime \prime} a x} 4 \mathrm{~Hz}\right.$, $\left.1^{\prime \prime} e q-\mathrm{H}\right)$, and $5.39\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} e q, z^{\prime} a x} 3 \mathrm{~Hz}, 1^{\prime} e q-\mathrm{H}\right)$.

2-(4-Methoxybenzyloxycarbonylamino)ethanethiol (46).-2Aminoethanethiol hydrochloride (10 g) was dissolved in dichloromethane (200 ml) containing 4-methoxybenzyl-S-(4,6-dimethylpyrimidin-2-yl)thiocarbonate $\begin{array}{lll}(26.75 & \text { g) } .^{43}\end{array}$ Triethylamine (8.88 g) was added dropwise over 0.5 h and the reaction was then stirred at $25^{\circ} \mathrm{C}$ for 3 h . The solution was evaporated to dryness and the residue was dissolved in ethyl acetate (200 ml) and filtered. The filtrate was evaporated and the residue was chromatographed on a silica-gel column ($30 \times 5 \mathrm{~cm}$) using dichloromethane as the eluant to give the thiol (46) $(20 \mathrm{~g}, 94 \%)$ as a pale yellow solid (Found: C, $55.0 ; \mathrm{H}, 6.25 ; \mathrm{N}, 5.85 ; \mathrm{S}, 13.05 . \mathrm{C}_{11} \mathrm{H}_{15^{-}}$ $\mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 54.75 ; \mathrm{H}, 6.27 ; \mathrm{N}, 5.80 ; \mathrm{S}, 13.29 \%$), $v_{\text {max. }}$ (Nujol) 3320,1690 , and $1240 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 1.38(1 \mathrm{H}$, $\left.\mathrm{t}, J 5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{SH}\right), 2.62\left(2 \mathrm{H}\right.$, dt, $J 6$ and $8 \mathrm{~Hz}, \mathrm{NHCH}_{2} \mathrm{CH}_{2}-$ $\mathrm{SH}), 3.38\left(2 \mathrm{H}, \mathrm{dt}, J 6\right.$ and $\left.6 \mathrm{~Hz}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{SH}\right), 3.82(3 \mathrm{H}$. s, $\left.\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 5.06\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right)$, and 6.92 and $7.37\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right)$.

1-[2-(4-Methoxybenzyloxycarbonylamino)ethancthiocarbonyllimidazole (44).-2-(4-Methoxybenzyloxycarbonylamino) ethanethiol (46) (3 g) was dissolved in dry tetrahydrofuran (200 ml) containing $N N^{\prime}$-carbonyldi-imidazole (6 g). The reaction mixture was gradually heated to reflux over 2 h and then evaporated to dryness. The residue was dissolved in dichloromethane (200 ml) and extracted with 5% tartaric acid solution ($3 \times 50 \mathrm{ml}$). The dichloromethane layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated to give 1-[2-(4-methoxybenzyloxycarbonylamino)ethanethiocarbonyl]imidazole (44) $(3.45 \mathrm{~g}, 83 \%)$ as a solid (Found: C, $54.15 ; \mathrm{H}, 5.35 ; \mathrm{N}, 12.4 ; \mathrm{S}, 9.55 . \quad \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 53.73 ; \mathrm{H}, 5.11 ; \mathrm{N}, 12.51 ; \mathrm{S}, 9.56 \%)$, $\nu_{\max }\left(\mathrm{CHCl}_{3}\right)$ $3470,1725,1615,1515$, and $1250 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 3.20-$ $3.50\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right)$, $5.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 6.82$ and $7.29\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}-\right.$ $\left.\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 7.08\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}=\right), 7.42\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{CH}=\right)$, and $8.17\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{CH}=\right)$.
$3,2^{\prime}, 6^{\prime}, 3^{\prime \prime}$-Tetrakis-N-(4-methoxybenzyloxycarbonyl)-1-N-[2-(4-methoxybenzyloxycarbonylamino)ethanethiocarbonyl $]$]sisomicin (23).-2-(4-Methoxybenzyloxycarbonylamino)ethanethiol (46) (1 g) was dissolved in 0.9 m phosgene in dichloromethane (30 ml) and triethylamine (1.1 ml) was added dropwise over 0.5 h . The mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 1 h and then evaporated to afford 2 -(4-methoxybenzyloxycarbonylamino)ethanethiocarbonyl chloride (47) as a yellow gum which was used without further purification.
$3,2^{\prime}, 6^{\prime}, 3^{\prime \prime}$-Tetrakis- N-(4-methoxybenzyloxycarbonyl)sisomicin (20) (2g) was dissolved in acetone-water (3:1v/v) $(20 \mathrm{ml})$ containing sodium carbonate $(954 \mathrm{mg})$ and $2-(4-$ methoxybenzyloxycarbonylamino)ethanethiocarbonyl chloride (47) (1.64 g) was added. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . The solution was evaporated to dryness and chromatographed on a silica-gel column ($120 \times 2 \mathrm{~cm}$) using $5 \% \mathrm{v} / \mathrm{v}$ methanol-chloroform as the eluant to give the tetra-protected sisomicin derivative (23) ($777 \mathrm{mg}, 37 \%$) as an amorphous solid (C, $57.1 ; \mathrm{H}, 5.85$; N, $6.75 ; \mathrm{S}, 1.55 . \mathrm{C}_{58} \mathrm{H}_{74} \mathrm{~N}_{6} \mathrm{O}_{20} \mathrm{~S}$ requires: $\mathrm{C}, 57.7 ; \mathrm{H}, 6.2 ; \mathrm{N}$,
$6.95 ; \mathrm{S}, 2.7 \%),[\alpha]_{\mathrm{D}}{ }^{26}+68.7^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}\right), \nu_{\text {naxx }}(\mathrm{KBr}) 3325$, $1695,1505,1240$, and $1025 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CD}_{3} \mathrm{OD}\right) 0.97 \mathrm{br}(3 \mathrm{H}$, $\left.\mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.98 \mathrm{br}\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right), 3.76\left(15 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 4.97\left(10 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right)$, and 6.83 and 7.24 ($20 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$)

1-[2-(4-Methoxybenzyloxycarbonylamino)ethanethiothiocarbonyl]imidazole (45).-2-(4-Methoxybenzyloxycarbonylamino) ethanethiol (46) (3 g) was dissolved in dry tetrahydrofuran (200 ml) containing $N N^{\prime}$-thiocarbonyldi-imidazole (6.6 g). The reaction mixture was gradually heated to reflux over 2 h and then evaporated to dryness. The residue was dissolved in dichloromethane (200 ml) and extracted with 5% tartaric acid solution ($3 \times 50 \mathrm{ml}$). The dichloromethane layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated to give the thiocarbonylimidazole (45) ($3.79 \mathrm{~g}, 87 \%$) as a waxy solid (Found: C, $51.95 ; \mathrm{H}, 4.8 ; \mathrm{N}, 11.95 ; \mathrm{S}, 16.5 . \mathrm{C}_{15} \mathrm{H}_{17}{ }^{-}$ $\mathrm{N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires $\mathrm{C}, 51.26 ; \mathrm{H}, 4.88 ; \mathrm{N}, 12.00 ; \mathrm{S}, 18.24 \%$), $\nabla_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3480,1725,1615,1515$, and $1250 \mathrm{~cm}^{-1}, \delta$ $\left(\mathrm{CDCl}_{3}\right) 3.76\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OC}_{6}-\right.$ $\left.\mathrm{H}_{4} \mathrm{CH}_{2}\right), 5.28\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 7.26$ and $7.62(4 \mathrm{H}$, $\left.2 \mathrm{~m}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 7.41\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}=\right), 7.60(1 \mathrm{H}, \mathrm{m}$, $\left.5^{\prime}-\mathrm{CH}=\right)$, and $8.10\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{CH}=\right)$.
$3,2^{\prime}, 6^{\prime}, 3^{\prime \prime}$-Tetrakis- N -(4-methoxybenzyloxycarbonyl)-1-N- $[2-$ (4-methoxybenzyloxycarbonylamino)ethanethiothiocarbonyl]sisomicin (24).-1-[2-(4-Methoxybenzyloxycarbonylamino)ethanethiothiocarbonyl]imidazole (45) (3g) was dissolved in dry dichloromethane $(10 \mathrm{ml})$ containing triethyloxonium tetrafluoroborate (984 mg) and the mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 0.5 h . $3,2^{\prime}, 6^{\prime}, 3^{\prime \prime}$-Tetrakis- N-(4-methoxybenzyloxycarbonyl) sisomicin (20) (2 g) was added and the reaction was stirred at $25{ }^{\circ} \mathrm{C}$ for 18 h . The solution was concentrated to dryness and the residue was chromatographed on a silica-gel column ($120 \times 2.5 \mathrm{~cm}$) using $2 \% \mathrm{v} / \mathrm{v}$ methanolchloroform as the eluant to give the protected thiocarbonylsisomicin derivative (24) ($1.84 \mathrm{~g}, 73 \%$) as an amorphous solid (Found: C, $56.5 ; \mathrm{H}, 5.65 ; \mathrm{N}, 6.55 ; \mathrm{S}, 4.55 . \mathrm{C}_{67} \mathrm{H}_{82}{ }^{-}$ $\mathrm{N}_{6} \mathrm{O}_{22} \mathrm{~S}_{2}$ requires C, $58.02 ; \mathrm{H}, 5.96 ; \mathrm{N}, 6.06 ; \mathrm{S}, 4.62 \%$), $[\alpha]_{\mathrm{D}}{ }^{26}+67.1^{\circ}\left(\mathrm{CHCl}_{3}\right), \nu_{\text {max. }}(\mathrm{KBr}) 3325,1690,1510,1240$, and $1025 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 1.08 \mathrm{br}\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.99 \mathrm{br}$ $\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right), 3.79\left(15 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 5.00(10 \mathrm{H}$, s, $\left.\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right)$, and 6.86 and $7.28\left(20 \mathrm{H}, 2 \mathrm{~m}, \mathrm{CH}_{3} \mathrm{O}-\right.$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$).

I-N:3-N-Thiocarbonylsisomicin (48).--3, $2^{\prime}, 6^{\prime}, 3^{\prime \prime}$-Tetrakis-$N$-(4-methoxybenzyloxycarbonyl)-1-N-[2-(4-methoxybenxyloxycarbonylamino) ethanethiothiocarbonyl]sisomicin
 After 3 min at $25^{\circ} \mathrm{C}$, the solution was evaporated to dryness and the residue was chromatographed on a silica-gel column ($30 \times 2.5 \mathrm{~cm}$) using the lower phase of a chloroform-methanol-14\% ammonium hydroxide solution (2:1:1v/v) as the eluant to give $1-\mathrm{N}: 3-\mathrm{N}$-thiocarbonylsisomicin (48) (47 $\mathrm{mg}, 8 \%$) as an amorphous solid after passage over Amberlite IRA 40IS $\left(\mathrm{OH}^{-}\right)$resin followed by lyophilization (Found: C , $47.1 ; \mathrm{H}, 7.45 ; \mathrm{N}, 14.0 ; \mathrm{S}, 5.7 . \quad \mathrm{C}_{20} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S} \cdot \mathrm{H}_{2} \mathrm{O}$ requires: $\mathrm{C}, 47.32 ; \mathrm{H}, 7.35 ; \mathrm{N}, 13.80 ; \mathrm{S}, 6.32 \%),[\alpha]_{\mathrm{N}}{ }^{26}$ $+142.9^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right), \nu_{\max .}(\mathrm{KBr}) 3300,1680,1530$, and 1050 $\mathrm{cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right) \mathrm{d} .19\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.33\left(1 \mathrm{H}, \mathrm{d}, J_{2^{\prime \prime} a x .3^{\prime \prime} a x}\right.$ $\left.10.5 \mathrm{~Hz}, 3^{\prime \prime} a x-\mathrm{H}\right), 2.49\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right), 3.37(1 \mathrm{H}, \mathrm{d}$, $\left.J_{5^{\prime \prime} a r, 5^{\prime \prime}+q} 12.5 \mathrm{~Hz}, 5^{\prime \prime} a x-\mathrm{H}\right), 4.84\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.97(1 \mathrm{H}$, d, $\left.J_{1^{\prime \prime} e q, 2^{\prime \prime} a x} 4 \mathrm{~Hz}, 1^{\prime \prime} e q-\mathrm{H}\right)$, and $5.11\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}\left(q, 2^{\prime} a x\right.} 3 \mathrm{~Hz}\right.$, $\left.\mathbf{1}^{\prime} e q-\mathrm{H}\right)$.

1-N-[2-(2,2,2-Trichloroethoxycarbonylamino)ethoxycar-bonyl]-3, 2', 6^{\prime}-tris-N-(2,2,2-trichloroethoxycarbonyl)-5-episisomicin (51)- $3,2^{\prime}, 6^{\prime}$-Tris- N-(2,2,2-trichloroethoxycar-bonyl)-5-epi-sisomicin (50) $(1.58 \mathrm{~g}) *$ was dissolved in
methanol-water $(1: 1 \mathrm{v} / \mathrm{v})(15 \mathrm{ml}) . \quad N-[2-(2,2,2-$ Trichloroethoxycarbonylamino) ethoxycarbonyloxy]succinimide (32) (597 mg) was added and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h , whereupon additional reagent (32) (60 mg) was added. After a total of 2 h the mixture was evaporated to dryness and the residue was chromatographed on a silica-gel column ($60 \times 2.5 \mathrm{~cm}$) using 7% methanol-chloroform as the eluant to give the protected 5 -epi-sisomicin (51) (1.53 g , 76%) as an amorphous solid (Found: C, 33.5; H, 3.9; Cl, $33.6 ; \mathrm{N}, 6.85 . \quad \mathrm{C}_{34} \mathrm{H}_{46} \mathrm{Cl}_{12} \mathrm{~N}_{6} \mathrm{O}_{17}$ requires C, $33.04 ; \mathrm{H}, 3.75$; $\mathrm{Cl}, 34.42 ; \mathrm{N}, 6.80 \%),\left[\alpha_{\mathrm{D}}{ }^{26}+74.3^{\circ}\left(\mathrm{CHCl}_{3}\right)\right.$, $\nu_{\text {max. }}$ (Nujol) $3300,1710,1680,1520$, and $\left.1040 \mathrm{~cm}^{-1}, \delta\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)$ $4.78\left(8 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CCl}_{3}\right)$.

1-N-(2-Aminoethoxycarbonyl)-5-epi-sisomicin (52).-1-N-[2-(2,2,2-Trichloroethoxycarbonylamino)ethoxycarbonyl]$3,2^{\prime}, 6^{\prime}$-tris- N-(2,2,2-trichloroethoxycarbonyl)-5-epi-sisomicin (51) (1.52 g) was dissolved in acetic acid-methanol $(1: 4 \mathrm{v} / \mathrm{v})(50 \mathrm{ml})$ containing activated zinc powder $(0.78 \mathrm{~g})$ and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 18 h . Additional zinc powder $(0.39 \mathrm{~g})$ was added and the mixture was stirred for a further 4 h . The mixture was filtered through Celite and the filtrate and washings were concentrated and then dissolved in methanol (10 ml). Concentrated ammonium hydroxide was added until the pH reached 7.0. The mixture was evaporated to dryness and the residue was taken up in water (2 ml) and chromatographed on an Amberlite CG- $50\left(\mathrm{NH}_{2}\right)$ resin column ($30 \times 3.5 \mathrm{~cm}$). The column was initially eluted with water (11) and the aqueous eluant was saved. Elution with $0.1 \mathrm{M}-, 0.15 \mathrm{~m}-, 0.2 \mathrm{M}-, 0.25 \mathrm{M}-, 0.3 \mathrm{M}$, and 0.35 m -ammonium hydroxide $(500 \mathrm{ml}$ each) gave the product in the latter fraction $(22 \mathrm{mg})$. The initial aqueous eluant was evaporated to dryness and the residue was dissolved in water (5 ml). A 5% aqueous sodium hydrogen carbonate solution was added until the pH reached 7.0 and the mixture was filtered. The filtrate was evaporated to dryness and the solids were stirred with ethanol-free chloroform and refiltered. The filtrate was evaporated to dryness and the residue was chromatographed on a silica-gel column $(120 \times 2.5 \mathrm{~cm})$ using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution $(2: 1: 1 \mathrm{v} / \mathrm{v})$ as the eluant to give the product $(52)(80 \mathrm{mg})$. The combined fractions ($102 \mathrm{mg}, 16 \%$) of $1-\mathrm{N}$-(2 -amino-ethoxycarbonyl)-5-epi-sisomicin (52) were obtained as an amorphous solid after passage over Amberlite IRA 40IS $\left(\mathrm{OH}^{-}\right)$resin followed by lyophilization (Found: C, 47.45; H, 8.2; $\mathrm{N}, 15.2$. $\mathrm{C}_{22} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{10} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 47.64, \mathrm{H}, 8.36$; $\mathrm{N}, 15.15 \%),\left[\alpha_{\mathrm{D}}{ }^{26}+148.5^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right), \nu_{\text {max. }}(\mathrm{KBr}) 3350,1700\right.$, 1680 , and $1040 \mathrm{~cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.21\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.49$ $\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right), 2.59\left(1 \mathrm{H}, \mathrm{d}, J_{2^{\prime \prime} a x .3^{\prime \prime} a x} 11 \mathrm{~Hz}, 3^{\prime \prime} a x-\mathrm{H}\right)$, $2.84\left(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 4.08(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 4.31(1 \mathrm{H}, \mathrm{m}, 5 e q-\mathrm{H}), 4.87\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right)$, $5.01\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime \prime} e q, 2^{\prime \prime} a x} 4 \mathrm{~Hz}, 1^{\prime \prime} e q-\mathrm{H}\right)$, and $5.10(1 \mathrm{H}, \mathrm{d}$, $\left.J_{1^{\prime} \in q, 2^{\prime} a x} 2 \mathrm{~Hz}, 1^{\prime} e q-\mathrm{H}\right)$.

3, 6^{\prime}-Bis-N-benzyloxycarbonyl-1-N-(2,2,2-trichloroethoxycarbonyl)gentamicin B (54).-3, 6^{\prime} - Bis- N-benzyloxycarbonylgentamicin $\mathrm{B}(53)(10.73 \mathrm{~g})^{20,} \dagger$ was dissolved in dry dimethylformamide $\left(800^{\circ} \mathrm{ml}\right) . \quad N-(2,2,2$-Trichloroethoxycarbonyloxy)succinimide (42) (3.6 g) was added and the mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 2 h with exclusion of moisture. The mixture was evaporated to dryness and the gum was chromatographed on a silica-gel column $(120 \times 5 \mathrm{~cm})$ using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution

[^4]\dagger Note as on page 2186.
(2:1:1 v / v) as the eluant to give $3,6^{\prime}$-bis- N-benzyloxy-carbonyl-1-N-(2,2,2-trichloroethoxycarbonyl)gentamicin B (54) ($8.2 \mathrm{~g}, 62 \%$) as an amorphous solid (Found: C, 49.55 ; $\mathrm{H}, 5.9 ; \mathrm{Cl}, 10.25 ; \mathrm{N}, 6.0 . \mathrm{C}_{38} \mathrm{H}_{51} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O}_{16}$ requires C , $49.29 ; \mathrm{H}, 5.55 ; \mathrm{Cl}, 11.49 ; \mathrm{N}, 6.05 \%),[\alpha]_{\mathrm{D}}{ }^{26}+70.8^{\circ}$ $(\mathrm{MeOH}), \nu_{\max }(\mathrm{KBr}) 3375,1705,1520$, and $1040 \mathrm{~cm}^{-1}$, $\delta\left(\mathrm{CDCl}_{3}\right) 0.94\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.35\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right)$, $4.88\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CCl}_{3}\right)$, and $7.15(10 \mathrm{H}$, s, $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$).

3, $6^{\prime} 3^{\prime \prime}$-Tris-N'-benzyloxycarbonyl-1-N-(2,2,2-trichloroethoxycarbonyl)gentamicin B (55).-3,6'-Bis- N-benzyloxy-carbonyl-1- N-(2,2,2-trichloroethoxycarbonyl)gentamicin B (54) (8.0 g) and sodium carbonate (4.55 g) were dissolved in acetone-water ($1: 1 \mathrm{v} / \mathrm{v}$) $(400 \mathrm{ml})$. Benzyl chloroformate $(4.4 \mathrm{~g})$ was added dropwise to the stirred solution at $0{ }^{\circ} \mathrm{C}$ over 0.5 h . The mixture was stirred at $25^{\circ} \mathrm{C}$ for 18 h , and it was then concentrated and extracted with chloroform. The chloroform extracts were washed with water and evaporated to dryness. The resulting solid was chromatographed on a silica gel column ($30 \times 2 \mathrm{~cm}$) using 7% v/v methanolchloroform as the eluant to give the $3,6^{\prime}, 3^{\prime \prime}$-tri-N-benzyloxycarbonyl derivative (55) ($8.5 \mathrm{~g}, 93 \%$) as an amorphous solid (Found: $\mathrm{C}, 52.3 ; \mathrm{H}, 5.5 ; \mathrm{Cl}, 9.65 ; \mathrm{N}, 5.15 . \quad \mathrm{C}_{46} \mathrm{H}_{57} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O}_{18}$ requires $\mathrm{C}, 52.10 ; \mathrm{H}, 5.42 ; \mathrm{Cl}, 10.03 ; \mathrm{N}, 5.28 \%),[\alpha]_{\mathrm{D}}{ }^{26}$ $+74.7^{\circ}(\mathrm{MeOH}), \nu_{\max }(\mathrm{KBr}) 3410,1700,1520$, and 1050 $\mathrm{cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 1.00 \mathrm{br}\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 3.00 \mathrm{br}(3 \mathrm{H}, \mathrm{s}$, $3^{\prime \prime}-\mathrm{NCH}_{3}$), $5.03 \mathrm{br}\left(8 \mathrm{H}\right.$, s, $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ and $\mathrm{CH}_{2} \mathrm{CCl}_{3}$), and $7.29 \mathrm{br}\left(15 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$).
$3,6^{\prime}, 3^{\prime \prime}$-Tris-N-benzyloxyaarbonylgentamicin B (56).$3,6^{\prime}, 3^{\prime \prime}$-Tris- N-benzyloxycarbonyl-1- N - (2,2,2-trichloroethoxycarbonyl)gentamicin $B(55)(8.0 \mathrm{~g})$ was dissolved in acetic acid-water ($9: 1 \mathrm{v} / \mathrm{v})(500 \mathrm{ml})$ and activated zinc $(10.41 \mathrm{~g})$ was added. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 7 h whereupon additional activated zinc (10.41 g) was added. The mixture was stirred at $25^{\circ} \mathrm{C}$ for a further 16 h . Additional activated zinc (20.82 g) was added and the reaction was continued for a further 25 h . The mixture was concentrated and after addition of methanol, it was filtered. The solids were washed with methanol and the combined filtrates were evaporated and the residue was chromatographed on a silica-gel column ($160 \times 5 \mathrm{~cm}$) using the lower phase of a chloroform-methanol-7\% ammonium hydroxide solution (2:1:1 v/v) as the eluant to give $3,6^{\prime}, 3^{\prime \prime}$-tris- N benzyloxycarbonylgentamicin $\mathrm{B}(56)(3.8 \mathrm{~g}, 57 \%)$ as an amorphous solid (Found: C, 55.55 ; H, 6.15; N, 5.8 . $\mathrm{C}_{43} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{16} \cdot \mathrm{CO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 55.81 ; \mathrm{H}, 6.17 ; \mathrm{N}$, $5.92 \%),\left[\alpha_{\mathrm{D}}{ }^{26}+83.3^{\circ}(\mathrm{MeOH}), v_{\text {max. }}(\mathrm{KBr}) 3400,1700\right.$, 1520 , and $1050 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 1.03 \mathrm{br}\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right)$, 3.02br ($3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}$), $5.05 \mathrm{br}\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, and $7.25 \mathrm{br}\left(15 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$.

2-Benzyloxycarbonylaminoethanol (38). ${ }^{44}-2$-Aminoethanol (30) $(20 \mathrm{~g})$ and sodium carbonate (84.8 g) were dissolved in acetone-water ($1: 1 \mathrm{v} / \mathrm{v}$) $(500 \mathrm{ml})$ and benzyl chloroformate (83.9 g) was added dropwise to the stirred solution at $0^{\circ} \mathrm{C}$ over 0.5 h . The mixture was stirred at $0^{\circ} \mathrm{C}$ for a further 2.5 h . The solids were filtered off and washed with acetone and the filtrate was evaporated to dryness. The resulting gum was taken up in chloroform and filtered. The filtrate was evaporated to dryness. The residue was chromatographed on a silica-gel column ($140 \times 5 \mathrm{~cm}$) using chloroform and then $10 \% \mathrm{v} / \mathrm{v}$ methanol-chloroform as the eluant to give 2-benzyloxycarbonylaminoethanol (38) ($37.7 \mathrm{~g}, 59 \%$) which crystallized from hexane as needles, m.p. $53-55{ }^{\circ} \mathrm{C}$ (Found: C, $60.15 ; \mathrm{H}, 6.7$; N, $7.55 . \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires C , $61.53 ; \mathrm{H}, 6.71 ; \mathrm{N}, 7.18 \%)$, $v_{\text {max. }}\left(\mathrm{CCl}_{4}\right) 3450,3325,1720$,

1510 , and $1245 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 3.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{HOCH}_{2} \mathrm{CH}_{2^{-}}\right.$ $\mathrm{NH}), 3.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 5.07\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, and $7.31\left(5 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$.

N -(2-Benzyloxycarbonylaminoethoxycarbonyloxy)succinimide (39).-2-Benzyloxycarbonylaminoethanol (38) (10 g) was dissolved in methylene chloride (200 ml) containing phosgene (15.2 g) and triethylamine (5 ml) and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . The solution was evaporated to dryness and the resulting gum was taken up in ethyl acetate and filtered. The filtrate (200 ml) was added in portions to a solution of N-hydroxysuccinimide (5.9 g) in ethyl acetate (100 ml) containing pyridine (10 ml) and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . The solution was filtered and the filtrate was evaporated to dryness and azeotroped with toluene. The gum was chromatographed rapidly on a silica-gel column ($110 \times 5 \mathrm{~cm}$) using 10% increasing to 15% v/v ethyl acetate-methylene chloride as the eluant to give the active ester (39) ($6.1 \mathrm{~g}, 35 \%$) as a gum (Found: C, 53.65; H, 5.15; N, 7.95. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires C, $53.57 ; \mathrm{H}, 4.80 ; \mathrm{N}, 8.33 \%), \nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3430,3005$, l 750,1510 , and $1220 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 2.75\left(4 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2}{ }^{-}\right.$ $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 3.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{C} \mathrm{H}_{2} \mathrm{NH}\right), 4.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}{ }^{-}\right.$ $\left.\mathrm{CH}_{2} \mathrm{NH}\right), 5.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, and $7.35\left(5 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$.
$3,6^{\prime}, 3^{\prime \prime}$-Tris-N-benzyloxycarbonyl-1-N-(2-benzyloxycar-
bonylaminoethoxycarbonyl)gentamicin B (57).-3, $6^{\prime}, 3^{\prime \prime}$-Tris-$N$-benzyloxycarbonylgentamicin $\mathrm{B}(56)(2.0 \mathrm{~g})$ was dissolved in dry dimethylformamide (100 ml), and triethylamine (228 mg) and N-(2-benzyloxycarbonylaminoethoxycarbonyloxy) succinimide (39) (759 mg) were added and the mixture was stirred under dry argon at $25^{\circ} \mathrm{C}$ for 3 h . The solution was evaporated to dryness and the residue was chromatographed on a silica-gel column ($110 \times 2.5 \mathrm{~cm}$) using the lower phase of a chloroform-methanol-7\% ammonium hydroxide solution (2:1:1v/v) as the eluant to give the protected gentamicin B derivative (57) ($1.94 \mathrm{~g}, 78 \%$) as an amorphous solid (Found: C, 58.25; H, 6.0; N, 6.1. $\mathrm{C}_{54} \mathrm{H}_{67} \mathrm{~N}_{5} \mathrm{O}_{20}$ requires C, $\left.58.63 ; \mathrm{H}, 6.11 ; \mathrm{N}, 6.33 \%\right),[\alpha]_{\mathrm{D}}{ }^{26}$ $+60.7^{\circ}(\mathrm{MeOH}), \nu_{\max }(\mathrm{KBr}) 3350,1695,1515$, and 1040 $\mathrm{cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 1.00 \mathrm{br}\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.95 \mathrm{br}(3 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime \prime}-\mathrm{NCH}_{3}\right), 5.00$ br $\left(8 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, and $7.25 \mathrm{br}(20 \mathrm{H}$, s, $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$).

3, 6^{\prime}-Bis-N-benzyloxycarbonyl-1-N-(2-benzyloxycarbonylaminoethoxycarbonyl)gentamicin B (58).-3, 6^{\prime}-Bis- N-benzyloxycarbonylgentamicin $B(53)(200 \mathrm{mg})$ was dissolved in methanol-water ($1: 1 \mathrm{v} / \mathrm{v}$) $(5 \mathrm{ml})$ and triethylamine was added until the mixture reached $\mathrm{pH} 10 . \quad N$-(2-Benzyloxycarbonylaminoethoxycarbonyloxy) succinimide (39) (98 mg) was added and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . The solution was evaporated to dryness and the residue was chromatographed on a silica-gel column ($120 \times 2 \mathrm{~cm}$) using the lower phase of a chloroform-methanol-7\% ammonium hydroxide solution ($2: 1: 1 \mathrm{v} / \mathrm{v}$) as the eluant to give the protected derivative (58) ($181 \mathrm{mg}, 70 \%$) as an amorphous solid (Found: C, 54.85; H, 6.35; N, 7.3. $\mathrm{C}_{46} \mathrm{H}_{61} \mathrm{~N}_{5} \mathrm{O}_{18}{ }^{\circ}$ $3 \mathrm{H}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 54.70 ; \mathrm{H}, 6.69 ; \mathrm{N}, 6.93 \%\right) .[\alpha]_{\mathrm{n}}{ }^{26}+63.4^{\circ}$ $(\mathrm{MeOH}), \nu_{\max }(\mathrm{KBr}) 3310,1700,1540$, and $1045 \mathrm{~cm}^{-1}$, $\delta\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 1.00 \mathrm{br}\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.50 \mathrm{br}(3 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime \prime}-\mathrm{NCH}_{3}\right), 5.00 \mathrm{br}\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, and $7.30 \mathrm{br}(15 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$).

1-N-(2-Aminoethoxycarbonyl)gentamicin $\quad B \quad$ (59).-(a) $3,6^{\prime}, 3^{\prime \prime}$-Tris- N-benzyloxycarbonyl-1- N-(2 -benzyloxycarbonylaminoethoxycarbonyl)gentamicin B (57) (1.84 g) was dissolved in methanol (50 ml) and 10% palladium-carbon $(1.28 \mathrm{~g})$ was added. The mixture was hydrogenated at 55 lbf in ${ }^{-2}$ at $25^{\circ} \mathrm{C}$ for 18 h . The catalyst was filtered off and
washed with methanol, and the filtrate was evaporated to dryness. The residue was chromatographed on a silica-gel column ($120 \times 2 \mathrm{~cm}$) using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution ($1: 1: 1 \mathrm{v} / \mathrm{v}$) as the eluant to give 1-N-(2-aminoethoxycarbonyl)gentamicin $B(59)$ as an amorphous solid after passage over Amberlite IRA 40IS (OH^{-}) resin followed by lyophilization ($773 \mathrm{mg}, 82 \%$) (Found: C, 41.95 ; H, 6.75 ; N, 10.3. $\mathrm{C}_{22} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{12} \cdot 2 \mathrm{CO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 41.57 ; \mathrm{H}, 6.83$; $\mathrm{N}, 10.10 \%),[\alpha]_{\mathrm{D}}^{26}+130.4^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right), \nu_{\max .}(\mathrm{KBr}) 3350,1700$, 1535 , and $1045 \mathrm{~cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right), 1.20\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.50$ $\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right), 2.88\left(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 4.11$ $\left(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 5.10\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime \prime}, 2^{\prime \prime}} 4 \mathrm{~Hz}\right.$, $\left.1^{\prime \prime}-\mathrm{H}\right)$, and $5.33\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 3.5 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right)$.
(b) 3,6'-Bis- N-benzyloxycarbonyl-1- N-(2-benzyloxycarbonylaminoethoxycarbonyl)gentamicin B (58) (50 mg) was dissolved in methanol (10 ml) and 10% palladiumcarbon (30 mg) was added. Dry hydrogen chloride (4 mol equiv.) in methanol was added and the mixture was hydrogenated at $55 \mathrm{lbf}_{\mathrm{in}}{ }^{-2}$ at $25^{\circ} \mathrm{C}$ for 18 h . The reaction was worked up as in (a) above to afford 1-N-(2-aminoethoxycarbonyl)gentamicin B (59).

3-Benzyloxycarbonylaminopropanol (74).-3-Aminopropanol (73) (20 g) and sodium carbonate (22.6 g) were dissolved in acetone-water ($4: 1 \mathrm{v} / \mathrm{v}$) (500 ml) and benzyl chloroformate (68.3 g) was added dropwise to the stirred solution at $0^{\circ} \mathrm{C}$ over 0.5 h . The mixture was stirred at $0^{\circ} \mathrm{C}$ for a further 2.5 h . The solids were filtered off and washed with acetone, and the filtrate was evaporated to dryness. The resulting gum was taken up in chloroform and washed with water. The chloroform solution was evaporated and the residue was triturated with hexane to give 3-benzyloxycarbonylaminopropanol (74) ($47.5 \mathrm{~g}, 85 \%$) as crystals, m.p. 47-49 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 63.12, \mathrm{H}, 6.9$; $\mathrm{N}, 6.7 . \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires $\mathrm{C}, 63.14 ; \mathrm{H}, 7.23 ; \mathrm{N}, 6.69 \%$), m/e $209\left(M^{+\bullet}\right)$, $\nu_{\text {max }}$ (KBr) 3320,1680 , and $1535 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 1.67(2 \mathrm{H}, \mathrm{m}$, $\left.J 7.5 \mathrm{~Hz}, 2-\mathrm{CH}_{2}\right) 3.28\left(2 \mathrm{H}, \mathrm{dt}, J 7.5 \mathrm{~Hz}, 3-\mathrm{CH}_{2}\right), 3.62(2 \mathrm{H}$, $\left.\mathrm{t}, J 7.5 \mathrm{~Hz}, 1-\mathrm{CH}_{2}\right), 5.08\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, and $7.34(5 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$).

N-(3-Benzyloxycarbonylaminopropyloxycarbonyloxy)succinimide (75).-3-Benzyloxycarbonylaminopropanol (74) $(10 \mathrm{~g})$ was dissolved in methylene chloride $(178 \mathrm{ml})$ containing phosgene (14.2 g) and triethylamine (5 ml), and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . The solution was evaporated to dryness and the resulting gum was taken up in ethyl acetate and filtered. The filtrate was added dropwise to a solution of N-hydroxysuccinimide (5.5 g) in ethyl acetate $(100 \mathrm{ml})$ containing pyridine $(10 \mathrm{ml})$, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . The solution was filtered and the filtrate was evaporated to dryness and azeotroped with toluene to afford the active ester (75) ($15.9 \mathrm{~g}, 95 \%$). A portion (500 mg) of the material was subjected to preparative t.l.c. on silica gel using $20 \% \mathrm{v} / \mathrm{v}$ ethyl acetate-methylene chloride as the eluant to afford an analytical sample (Found: C, $54.3 ; \mathrm{H}, 5.5 ; \mathrm{N}, 8.35 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $\mathrm{C}, 54.85$; $\mathrm{H}, 5.18$; $\mathrm{N}, 8.00 \%$), m/e $350\left(M^{+\cdot}\right), v_{\text {max. }}$ (film) 3300,1780 , $1750,1740,1710,1520$, and $1210 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 1.92$ $\left(2 \mathrm{H}, \mathrm{m}, J 7.5 \mathrm{~Hz}, 2-\mathrm{CH}_{2}\right), 2.73\left(4 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{C} \mathrm{H}_{2} \mathrm{CO}\right), 3.30$ $\left(2 \mathrm{H}, \mathrm{dt}, J 7.5 \mathrm{~Hz}, 3-\mathrm{CH}_{2}\right), 4.35\left(2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, 1-\mathrm{CH}_{2}\right)$, $5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, and $7.36\left(5 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$.

3,6', $3^{\prime \prime}$-Tris-N-(benzyloxycarbonylaminopropyloxycarbonyl)gentamicin $B(60) .-3,6^{\prime}, 3^{\prime \prime}$-Tris- N-benzyloxycarbonylgentamicin $B(56)(1.8 \mathrm{~g})$ was dissolved in dry dimethylformamide (100 ml), and triethylamine (210 mg) and $\mathrm{N}-(3-$ benzyloxycarbonylaminopropyloxy)succinimide (75) (780
mg) were added and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 18 h . The solution was evaporated to dryness and the residue was chromatographed on a silica-gel column $(110 \times 3.5 \mathrm{~cm})$ using chloroform-methanol-7\% ammonium hydroxide solution ($2: 1: 1 \mathrm{v} / \mathrm{v}$) as the eluant to give the protected gentamicin B derivative (60) ($1.56 \mathrm{~g}, 68 \%$) as an amorphous solid (Found: C, 58.8; H, 6.2; N, 6.3. $\mathrm{C}_{55} \mathrm{H}_{69^{-}}$ $\mathrm{N}_{5} \mathrm{O}_{20}$ requires C, $\left.59.0 ; \mathrm{H}, 6.2 ; \mathrm{N}, 6.25 \%\right),[\alpha]_{\mathrm{D}}{ }^{26}+47.2^{\circ}$ $\left(\mathrm{CHCl}_{3}\right), v_{\text {max. }}(\mathrm{KBr}) 3350,1700$, and $1050 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right)$ $1.00 \mathrm{br}\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right.$), $2.95 \mathrm{br}\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{CH}_{3}\right.$), 5.01 br $\left(8 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, and $7.25 \mathrm{br}\left(20 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$.

1-N-(3-Aminopropyloxycarbonyl)gentamicin $\quad B \quad$ (61).$3,6^{\prime}, 3^{\prime \prime}$-Tris- N-benzyloxycarbonyl-1- N -(3-benzyloxycarbonylaminopropyloxycarbonyl)gentamicin B (60) (1.47 g) was dissolved in methanol (50 ml) and 10% palladiumcarbon (880 mg) was added. The mixture was hydrogenated at $55 \mathrm{lbf} \mathrm{in}^{-2}$ at $25^{\circ} \mathrm{C}$ for 18 h . Additional 10% palladium-carbon (880 mg) was added and the hydrogenation was continued for a further 18 h . The catalyst was filtered off and washed with methanol, and the filtrate was evaporated to dryness. The residue was chromatographed on a silica-gel column ($120 \times 2 \mathrm{~cm}$) using chloroform-methanol-concentrated ammonium hydroxide ($2: 1: 1 \mathrm{v} / \mathrm{v}$) as the eluant to give 1-N-(3-aminopropyloxycarbonyl)gentamicin B (61) ($421 \mathrm{mg}, 35 \%$) as an amorphous solid after passage over Amberlite IRA 40IS $\left(\mathrm{OH}^{-}\right)$resin followed by lyophilization (Found: C, 44.75; H, 7.45; N, 11.2 . $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{12} \cdot \mathrm{CO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C , $44.65 ; \mathrm{H}, 7.34 ; \mathrm{N}$, $10.85 \%),[\alpha]_{\mathrm{D}}{ }^{26}+125.7^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right), \nu_{\text {max. }}(\mathrm{KBr}) 3350,1700$, and $1050 \mathrm{~cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.18\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 1.73(2 \mathrm{H}, \mathrm{m}$, $\left.J 7.5 \mathrm{~Hz}, 2^{\prime \prime \prime}-\mathrm{CH}_{2}\right), 2.47\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right), 4.09(2 \mathrm{H}, \mathrm{t}$, $\left.J 7.5 \mathrm{~Hz}, 1^{\prime \prime \prime}-\mathrm{CH}_{2}\right), 5.06\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime \prime}, 2^{\prime \prime}} 4 \mathrm{~Hz}, 1^{\prime \prime}-\mathrm{H}\right)$, and $5.28\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, z^{\prime}} 3.5 \mathrm{~Hz}, \mathrm{~J}^{\prime}-\mathrm{H}\right)$. The more polar fractions from the column contained gentamicin B (62) (226 mg , 23%).
4-Benzyloxycarbonylaminobutan-1-ol (77).-4-Amino-butan-1-ol (76) (20 g) was dissolved in acetone-water (4:1 $\mathrm{v} / \mathrm{v})(500 \mathrm{ml})$ and sodium carbonate (19.3 g) was added. Benzyl chloroformate (58.1 g) was added dropwise to the stirred solution at $0{ }^{\circ} \mathrm{C}$ over 0.5 h . The mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h and was then filtered and the filtrate was evaporated to give 4-benzyloxycarbonylaminobutan-1-ol (77) ($42.6 \mathrm{~g}, 85 \%$) as an amorphous solid, m.p. $80-81{ }^{\circ} \mathrm{C}$ (Found: C, 64.45; H, 8.05; N, 6.1. $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{3}$ requires C, $64.56 ; \mathrm{H}, 7.67 ; \mathrm{N}, 6.27 \%)$, $m / e 223\left(M^{+\cdot}\right)$, $\nu_{\max }$ $(\mathrm{KBr}) 3325,1690,1545$, and $1060 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 1.56$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{ZNHCH}_{2}\left[\mathrm{CH}_{2}\right]_{2} \mathrm{CH}_{2} \mathrm{OH}$), $1.73 \mathrm{br}(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, $3.18\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{NHCH}_{2}\left[\mathrm{CH}_{2}\right]_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$, $3.60(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{ZNHCH}_{2}\left[\mathrm{CH}_{2}\right]_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 5.09\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)$, and 7.38 ($5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$).
N-(4-Benzyloxycarbonylaminobutyloxycarbonyloxy)succinimide (78).-4-Benzyloxycarbonylaminobutan-1-ol (77) (10 g) was dissolved in a solution of phosgene (3 mol equiv.) in dichloromethane (2.0 ml). Triethylamine (5 ml) was added dropwise to the solution and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . The excess of phosgene was removed with a stream of dry nitrogen and the solution was evaporated to dryness. The gum was taken up in ethyl acetate (100 ml), filtered, and then added dropwise to N-hydroxysuccinimide $(5.2 \mathrm{~g})$ in ethyl acetate (100 ml) containing pyridine (10 ml). After 1 h at $25^{\circ} \mathrm{C}$ the mixture was filtered, the filtrate was evaporated, and the residue was azeotroped with toluene to give the active ester (78) ($15.3 \mathrm{~g}, 93 \%$) as a gum. Preparative t.l.c. chromatography on silica gel using $20 \% \mathrm{v} / \mathrm{v}$ ethyl acetate-dichloromethane as the eluant afforded an analytical
sample (Found: C, 55.9; H, 5.95; N, 7.2. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires (,$~ 56.05 ; \mathrm{H}, 5.53 ; \mathrm{N}, 7.69 \%$), m/e $364\left(M^{+}\right)$, $\nu_{\text {max }}$ (film) $3350,1830,1780,1720,1530$, and $1220 \mathrm{~cm}^{-1}$, $\delta\left(\mathrm{CDCl}_{3}\right) 1.68\left(4 \mathrm{H}, \mathrm{m}, \mathrm{ZNHCH}_{2}\left[\mathrm{CH}_{2}\right]_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.74(4 \mathrm{H}, \mathrm{s}$, $\left.\left.\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 3.23(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{NHCH})_{2}\right), 4.36(2 \mathrm{H}, \mathrm{t}, J$ $\left.7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 5.07\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)$, and $7.40(5 \mathrm{H}, \mathrm{s}$, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$).

3, 6^{\prime}-Bis-N-benzyloxycarbonyl-1-N-(4-benzyloxycarbonylaminobutyloxycarbonyl)gentamicin B (63)--3, 6^{\prime}-Bis-Nbenzyloxycarbonylgentamicin $\mathrm{B}^{(53)}(1.5 \mathrm{~g})^{20, *}$ was dissolved in methanol-water ($1: 1 \mathrm{v} / \mathrm{v}$) $(100 \mathrm{ml})$ and triethylamine was added until the pH reached 9.0 . N-(4Benzyloxycarbonylaminobutyloxycarbonyloxy)succinimide (78) (729 mg) was added and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . Additional succinimide reagent (78) (729 mg) was added and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 18 h . The solution was evaporated to dryness and the residue was chromatographed on a silica-gel column ($60 \times 3.5 \mathrm{~cm}$) using the lower phase of a chloroform-methanol-14\% ammonium hydroxide solution ($2: 1: 1 \mathrm{v} / \mathrm{v}$) as the eluant to give the protected gentamicin B derivative (63) ($1.58 \mathrm{~g}, 79 \%$) as an amorphous solid (Found: C, 57.35 ; H, 6.45 ; N, 6.95. $\mathrm{C}_{48} \mathrm{H}_{65} \mathrm{~N}_{5} \mathrm{O}_{18}$ requires $\mathrm{C}, 57.65 ; \mathrm{H}, 6.55 ; \mathrm{N}, 7.00 \%$), $[\alpha]_{1}{ }^{26}+51.8^{\circ}\left(\mathrm{CHCl}_{3}\right), \nu_{\max }(\mathrm{KBr}) 3320,1700,1530$, and $1050 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 1.09 \mathrm{br}\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 1.50 \mathrm{br}(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{ZNHCH}_{2}\left[\mathrm{CH}_{2}\right]_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.49 \mathrm{br}\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right), 5.01 \mathrm{br}$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$), and $7.15-7.28\left(15 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right.$).

1-N-(4-Aminobutyloxycarbonyl)gentamicin B (64).-3, 6^{\prime} -Bis-N-benzyloxycarbonyl-1-N-(4-benzyloxycarbonylaminobutyloxycarbonyl)gentamicin $B(63)(1.48 \mathrm{~g})$ was dissolved in methanol-water ($1: 1 \mathrm{v} / \mathrm{v}$) (50 ml) containing l m hydrochloric acid $(6.0 \mathrm{ml})$ and 10% palladium-carbon $(0.89 \mathrm{~g})$ was added. The mixture was hydrogenated at $55 \mathrm{lbf} \mathrm{in}^{-2}$ at $25{ }^{\circ} \mathrm{C}$ for 2 h . Additional 10% palladiumcarbon (0.89 g) was added and the hydrogenation was continued for a further 16 h . The catalyst was filtered off and washed with aqueous methanol. The combined filtrates were treated with Amberlite IRA 40IS (OH^{-}) resin until pH 11.0 and then filtered. The filtrate was concentrated and the residue was chromatographed first on a silica-gel column ($60 \times 2.5 \mathrm{~cm}$) and then on a column ($110 \times 2.5 \mathrm{~cm}$) using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution ($1: 1: 1 \mathrm{v} / \mathrm{v}$) as the eluant in each case to give $1-\mathrm{N}-(4-$ aminobutyloxycarbonyl)gentamicin $B(64)(456 \mathrm{mg}, 52 \%)$ as an amorphous solid after passage over Amberlite IRA 40IS $\left(\mathrm{OH}^{-}\right)$followed by lyophilization (Found: C, 44.65; H, $7.5 ; \mathrm{N}, 10.45 . \mathrm{C}_{24} \mathrm{H}_{4} \mathrm{~N}_{5} \mathrm{O}_{12} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 44.36 ; \mathrm{H}$, $\left.7.91 ; \mathrm{N}^{2}, 10.78 \%\right),[\alpha]_{\mathrm{r}}{ }^{26}+124.8^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right), \nu_{\text {max. }}(\mathrm{KBr}) 3350$, 1700,1550 , and $1045 \mathrm{~cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.21\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right)$, $\left.1.60\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}{ }^{[} \mathrm{CH}_{2}\right]_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 2.50\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right)$, $5.08\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime \prime}, 2^{\prime \prime}} 4 \mathrm{~Hz}, 1^{\prime \prime}-\mathrm{H}\right)$, and $5.29\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}\right.$ $\left.3.5 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right)$.
(2R)-2-Benzyloxycarbonylaminobutan-1-ol (80).-(2R)-2-Aminobutan-1-ol (79) (20 g) was dissolved in acetonewater $(4: 1 \mathrm{v} / \mathrm{v})(500 \mathrm{ml})$ and sodium carbonate $(18.7 \mathrm{~g})$ was added. Benzyl chloroformate (56.1 g) was added dropwise to the stirred solution at $0^{\circ} \mathrm{C}$ over 0.5 h . The mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h and was then filtered and the filtrate was evaporated to dryness to give the benzyloxycarbonyl derivative (80) ($42 \mathrm{~g}, 84 \%$) as a waxy solid. An aliquot $(200 \mathrm{mg})$ was subjected to preparative t.l.c. on silica gel using $5 \% \mathrm{v} / \mathrm{v}$ methanol-chloroform as the eluant (Found: C. $64.9 ; \mathrm{H}, 7.7 ; \mathrm{N}, 6.65 . \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3}$ requires $\mathrm{C}, 64.56 ; \mathrm{H}$,

[^5]7.67; N, $6.27 \%), m / e 192\left(M^{+\bullet}-31\right),\left[\alpha_{1}{ }^{26}+1.90^{\circ}\left(\mathrm{CHCl}_{3}\right)\right.$, $\nu_{\max }(\mathrm{KBr}) 3400,3250,1700$, and $1540 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right)$ $0.90\left(3 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}, 4-\mathrm{CH}_{3}\right), 1.48\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{CH}_{2}\right), 3.05(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{CH}), 3.55\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right), 5.08\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, and $7.34\left(5 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$.
(2R)-N-(2-Benzyloxycarbonylaminobutyloxycarbonyloxy)succinimide (81)--(2R)-2-Benzyloxycarbonylaminobutan-$1-\mathrm{ol}(80)(5 \mathrm{~g})$ was dissolved in a 0.9 m -solution of phosgene in dichloromethane (75 ml). Triethylamine (3.4 g) was added dropwise to the stirred solution at $25^{\circ} \mathrm{C}$ over 0.5 h and the mixture was stirred under dry nitrogen for 3 h . The excess of phosgene was removed with a stream of dry nitrogen and the solution was evaporated to dryness. The gum was taken up in ethyl acetate (100 ml), filtered, and then added dropwise to N-hydroxysuccinimide (2.59 g) in ethyl acetate (100 ml) containing pyridine (5 ml). After 1 h at $25^{\circ} \mathrm{C}$ the mixture was filtered, the filtrate was evaporated, and the residue was azeotroped with toluene to give the succinimide active ester (81) ($7.5 \mathrm{~g}, 51 \%$) as a yellow gum. Preparative t.l.c. on silica gel using $20 \% \mathrm{v} / \mathrm{v}$ ethyl acetate-dichloromethane as the eluant afforded an analytical sample (Found: C, 55.9; H, 5.6; N, 7.5. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $\mathrm{C}, 56.04 ; \mathrm{H}, 5.53 ; \mathrm{N}, 7.69 \%$), m/e 364 ($M^{+\cdot}$) $\left[\alpha_{1}{ }^{26}+20.8^{\circ}\left(\mathrm{CHCl}_{3}\right), \nu_{\text {max. }}\right.$ (liquid film) $3300,1830,1780$, 1720,1530 , and $1220 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 0.95(3 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{CH}_{2}$) , $1.51\left(2 \mathrm{H}, \mathrm{dq}, J 6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) 2.58 \mathrm{br}(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}), 2.79\left(4 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 3.69\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHNH}^{2}\right)$, $4.35\left(2 \mathrm{H}, \mathrm{d}, J 4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 5.13\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)$, and $7.20\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)$.
(2R)-3, 6^{\prime}-Bis-N-benzyloxy'carbonyl-1-N-(2-benzyloxycarbonylaminobutyloxycarbonyl)gentamicin B (65).-3,6'-Bis-N-benzyloxycarbonylgentamicin $\mathrm{B}(53)(1.5 \mathrm{~g})$ was dissolved in methanol-water ($1: 1 \mathrm{v} / \mathrm{v}$) $(100 \mathrm{ml})$ and triethylamine was added until the pH reached 9.0. $(2 R)-\mathrm{N}-(2-$ Benzyloxycarbonylaminobutyloxycarbonyloxy)succinimide (81) (728 mg) was added and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . The mixture was evaporated to dryness and the residue was chromatographed on a silica-gel column $(60 \times 2 \mathrm{~cm})$ using the lower phase of a chloroform-methanol-14\% ammonium hydroxide solution (2:1:1v/v) as the eluant to give the protected gentamicin B derivative (65) ($1.7 \mathrm{~g}, 85 \%$) as an amorphous solid (Found: C, 56.7 ; H, 6.5; $\mathrm{N}, 6.75 . \mathrm{C}_{48} \mathrm{H}_{65} \mathrm{~N}_{5} \mathrm{O}_{18} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 56.61 ; \mathrm{H}$, $6.63 ; \mathrm{N}, 6.87 \%),[\alpha]_{\mathrm{D}}{ }^{26}+66.1^{\circ}(\mathrm{DMSO}), \nu_{\text {max. }}(\mathrm{KBr}) 3320$, 1695,1540 , and $1050 \mathrm{~cm}^{-1}, \delta\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 0.83(3 \mathrm{H}, \mathrm{t}$, $\left.J 6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.19\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 5.00\left(6 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5}-\right.$ $\left.\mathrm{CH}_{2}\right), 7.29\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)$, and $7.33\left(10 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}\right)$.
(2R)-1-N-(2-Aminobutyloxycarbonyl)gentamicin B (66)... (2R)-3, 6^{\prime}-Bis- N-benzyloxycarbonyl-1- N-(2-benzyloxycarbonylaminobutyloxycarbonyl)gentamicin $\mathrm{B}(65)(1.6 \mathrm{~g})$ was dissolved in methanol-water ($1: 1 \mathrm{v} / \mathrm{v}$) (50 ml) containing 1 m -hydrochloric acid (6.4 ml), and 10% palladium-carbon $(0.96 \mathrm{~g})$ was added. The mixture was hydrogenated at $55 \mathrm{lbf} \mathrm{in}^{-2}$ at $25^{\circ} \mathrm{C}$ for 2 h . Additional 10% palladiumcarbon (0.96 g) was added and the hydrogenation was continued for a further 16 h . The catalyst was filtered off and washed with aqueous methanol. The combined filtrates were treated with Amberlite IRA 40IS $\left(\mathrm{OH}^{-}\right)$resin until pH 11.0 and then filtered. The filtrate was concentrated to a gum and chromatographed on a silica-gel column (60×2.5 $\mathrm{cm})$ using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution (2:1:1 v/v) as the eluant to give (2R)-1-N-(2-aminobutyloxycarbonyl)gentamicin B (66) ($375 \mathrm{mg}, 31 \%$) as an amorphous solid after passage over Amberlite IRA $40 \mathrm{IS}\left(\mathrm{OH}^{-}\right)$resin followed
by lyophilization (Found: $\mathrm{C}, 44.4$; H, 7.85 ; N, 10.5. $\mathrm{C}_{24} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{12} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 44.22 ; \mathrm{H}, 8.19 ; \mathrm{N}, 10.74 \%\right)$, $[\alpha]_{\mathrm{s}}{ }^{26}+115.5^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right), \nu_{\text {max. }}(\mathrm{KBr}) 3350,1700,1560$, and $1050 \mathrm{~cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 0.96\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.24(3 \mathrm{H}$, $\left.\mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.57\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right), 5.12\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime \prime}, 2^{\prime \prime}} 4 \mathrm{~Hz}\right.$, $\left.1^{\prime \prime}-\mathrm{H}\right)$, and $5.36\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 3.5 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right)$.
(2S)-2-Benzyloxycarbonylamino-4-methylpentan-1-ol (83). -(2S)-2-Amino-4-methylpentan-1-ol (L-leucinol) (82) (20 g) was dissolved in acetone-water ($4: 1 \mathrm{v} / \mathrm{v}$) (500 ml) and sodium carbonate (14.5 g) was added. Benzyl chloroformate $(44.4 \mathrm{~g})$ was added dropwise to the stirred solution at $0^{\circ} \mathrm{C}$ over a period of 0.5 h . The mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h and was then filtered, and the filtrate was evaporated to dryness. The resulting gum was chromatographed on a silica-gel column ($60 \times 3 \mathrm{~cm}$) using chloroform as the eluant to give the benzyloxycarbonyl derivative (83) ($38.5 \mathrm{~g}, 90 \%$) as a waxy solid (Found: C, 66.85; H, 8.8; N, 5.55. $\mathrm{C}_{14} \mathrm{H}_{21}{ }^{-}$ NO_{3} requires $\left.\mathrm{C}, 66.91 ; \mathrm{H}, 8.42 ; \mathrm{N}, 5.57 \%\right)$, $m / e 251\left(M^{+\bullet}\right)$, $[\alpha]_{\mathrm{D}}{ }^{26}-27.6^{\circ}\left(\mathrm{CHCl}_{3}\right), \nu_{\text {max. }}$ (KBr$) 3400,3325,1695$, and $1530 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 0.91\left[6 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2}\right], 5.08(2 \mathrm{H}$, s, $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, and $7.34\left(5 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$.
(2S)- N -(2-Benzyloxycarbonylamino-4-methylpentyloxycarbonyloxy)succinimide (84).-(2S)-2-Benzyloxycarbonyl-amino-4-methylpentan-1-ol (83) (5 g) was dissolved in a 0.9 m -solution of phosgene in dichloromethane (66 ml). Triethylamine (3.01 g) was added dropwise to the stirred solution at $25{ }^{\circ} \mathrm{C}$ over 0.5 h and the mixture was stirred under dry nitrogen for 3 h . The excess of phosgene was removed with a stream of dry nitrogen and the solution was evaporated to dryness. The gum was taken up in ethyl acetate (100 ml), filtered, and then added dropwise to N hydroxysuccinimide (2.29 g) in ethyl acetate (50 ml) containing pyridine (5 ml). After 1.5 h at $25^{\circ} \mathrm{C}$ the mixture was filtered and the filtrate was evaporated and the residue was azeotroped with toluene to give the succinimide active ester (84) ($6.55 \mathrm{~g}, 84 \%$) as a gum. Preparative t.1.c. on silica-gel using $20 \% \mathrm{v} / \mathrm{v}$ ethyl acetate-dichloromethane as the eluant afforded an analytical sample (Found: C, 57.95 ; $\mathrm{H}, 6.25 ; \mathrm{N}, 6.85 . \quad \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $\mathrm{C}, 58.16 ; \mathrm{H}, 6.17$; N, $7.14 \%), m / e 392\left(M^{+\bullet}\right),[\alpha]_{\mathrm{D}}^{26}-28.3^{\circ}\left(\mathrm{CHCl}_{3}\right), \nu_{\text {max. }}$ (liquid film) $3300,1810,1780,1720,1520$, and $1210 \mathrm{~cm}^{-1}, \delta$ $\left(\mathrm{CDCl}_{3}\right) 0.93\left[3 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 0.95[3 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 1.20-1.70\left[3 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}\right], 2.58 \mathrm{br}$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 2.75\left(4 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 4.03(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} H \mathrm{NHZ}), 4.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{O}\right)$, and $7.37\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)$.
(2S)-3, 6^{\prime}-Bis-N-benzyloxycarbonyl-1-N-(2-benzyloxycar-bonylamino-4-methylpentyloxycarbonyl)gentamicin B (67).-$3,6^{\prime}$-Bis- N-benzyloxycarbonylgentamicin B (53) (4 g) ${ }^{20, *}$ was dissolved in methanol-water ($1: 1 \mathrm{v} / \mathrm{v}$) $(100 \mathrm{ml})$ and triethylamine was added until the pH reached 9.0. (2S)-N-(2-Benzyloxycarbonylamino-4-methylpentyloxycarbonyloxy) succinimide (84) (2.09 g) was added and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . Additional $(2 S)-\mathrm{N}$-(2-benzyloxy-carbonylamino-4-methylpentyloxycarbonyloxy)succinimide (84) (2.09 g) was added and the mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for a further 18 h . The mixture was evaporated to dryness and the residue was chromatographed on a silica-gel column ($120 \times 5 \mathrm{~cm}$) using the lower phase of a chloroform-methanol- 14% ammonium hydroxide solution (2:1:1 v/v) as the eluant to give the protected gentamicin B derivative (67) ($4.45 \mathrm{~g}, 81 \%$) as a solid (Found: C, 57.8 ; H, 6.8; N , 6.85. $\mathrm{C}_{59} \mathrm{H}_{69} \mathrm{~N}_{5} \mathrm{O}_{18} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C , $57.41 ; \mathrm{H}$, $6.84 ; \mathrm{N}, 6.69 \%),[\alpha]_{\mathrm{D}}{ }^{26}+62.0^{\circ}(\mathrm{DMSO}), \nu_{\max }(\mathrm{KBr}) 3500$,

* Note as on page 2186.
$3350,1700,1680,1540,1520$, and $1050 \mathrm{~cm}^{-1}, \delta$ ($\left.\left.{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 0.84\left[6 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.23(3 \mathrm{H}, \mathrm{s}$, $\left.4^{\prime \prime}-\mathrm{CH}_{3}\right), 5.01\left(6 \mathrm{H}\right.$, s, $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right), 7.30\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)$, and $7.33\left(10 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)$.
(2S)-1-N-(2-A mino-4-methylpentyloxycarbonyl)gentamicin $B(68)$.- (2S)-3, 6^{\prime}-Bis- N-benzyloxycarbonyl-1- N-(2-benzyl-oxycarbonylamino-4-methylpentyloxycarbonyl)gentamicin B (67) (4.25 g) was dissolved in methanol-water ($1: 1 \mathrm{v} / \mathrm{v}$) (150 ml) containing $1 \mathrm{~m}-\mathrm{hydrochloric} \mathrm{acid} \mathrm{(} 4.3 \mathrm{ml}$) and, 10% palladium-carbon (2.7 g) was added. The mixture was hydrogenated at $55 \mathrm{lbf} \mathrm{in}^{-2}$ at $25^{\circ} \mathrm{C}$ for 18 h . The catalyst was filtered off and washed with aqueous methanol. The combined filtrates were evaporated to dryness and the residue was chromatographed on a silica-gel column (120×3 cm) using the lower phase of a chloroform-methanol-14\% ammonium hydroxide solution ($2: 1: 1 \mathrm{v} / \mathrm{v}$) as the eluant to give (2S)-1N-(2-amino-4-methylpentyloxyoarbonyl)gentamicin $B(68)(640 \mathrm{mg}, 25 \%)$ as an amorphous solid after passage over Amberlite IRA $40 \mathrm{IS}\left(\mathrm{OH}^{-}\right)$resin followed by lyophilization (Found: C, 44.2; H, 7.0; N, 9.8. $\mathrm{C}_{26} \mathrm{H}_{51} \mathrm{~N}_{5}$ $\mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{CO}_{2}$ requires $\left.\mathrm{C}, 43.7 ; \mathrm{H}, 8.0 ; \mathrm{N}, 9.8 \%\right),[\alpha]_{\mathrm{D}}{ }^{26}$ $+109.5^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right), \vee_{\text {max. }}(\mathrm{KBr}) 3350,1750,1540$, and 1050 $\mathrm{cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 0.90\left[3 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz},(\mathrm{CH})_{2} \mathrm{CH}\right], 0.92[3 \mathrm{H}, \mathrm{d}$, $\left.J 6 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 1.20\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 5.10(1 \mathrm{H}, \mathrm{d}$, $\left.J_{1^{\prime \prime}, 2^{\prime \prime}} 4 \mathrm{~Hz}, \mathrm{l}^{\prime \prime}-\mathrm{H}\right)$, and $5.31\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} \cdot 2^{\prime}} 3.5 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right)$. The more polar fractions from the column contained gentamicin B (62) ($274 \mathrm{mg}, 14 \%$).

1-N-[2-(2,2,2-Tvichloroethoxycarbonylamino)ethoxycarbonyl $]-3,2^{\prime}, 6^{\prime}$-tris-N-(2,2,2-trichloroethoxy carbonyl)gentamicin $C_{1 \mathrm{a}}$ (86).- $3,2^{\prime}, 6^{\prime}$-Tris- N-(2,2,2-trichloroethoxycarbonyl)gentamicin $C_{1 a}(85)(2 g) \dagger$ was dissolved in methanolwater ($1: 1 \mathrm{v} / \mathrm{v})(40 \mathrm{ml})$ containing $N-[2-(2,2,2$-trichloroethoxycarbonylamino)ethoxycarbonyloxy]succinimide (32) $(755 \mathrm{mg})$ and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . Additional reagent (151 mg) was added and the stirring was continued for 2 h . The solution was evaporated to dryness and chromatographed on a silica-gel column ($60 \times 2.5 \mathrm{~cm}$) using $7 \% \mathrm{v} / \mathrm{v}$ methanol-chloroform as the eluant to give the protected gentamicin $C_{1 a}$ derivative (86) ($1.54 \mathrm{~g}, 62 \%$) as an amorphous solid (Found: C, 33.6; H, 4.0; Cl, 33.4; N, 7.3. $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{Cl}_{12} \mathrm{~N}_{6} \mathrm{O}_{17}$ requires $\mathrm{C}, 33.00 ; \mathrm{H}, 3.9 ; \mathrm{Cl}, 34.4 ; \mathrm{N}$, $6.8 \%),[\alpha]_{\mathrm{D}}{ }^{26}+58.0^{\circ}(\mathrm{MeOH}), v_{\text {max. }}$ (Nujol) 3 350, 2920 , $1730,1560,1470$, and $1045 \mathrm{~cm}^{-1}, \delta\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 1.04$ $\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.50\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right)$, and $4.78(8 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CCl}_{3}$).

1-N-(2-Aminoethoxycarbonyl)gentamicin $C_{1 a}$ (87).-1-N-[2-(2,2,2-Trichloroethoxycarbonylamino)ethoxycarbonyl]$3,2^{\prime}, 6^{\prime}$-tris- N-(2,2,2-trichloroethoxycarbonyl)gentamicin $\mathrm{C}_{1 \mathrm{a}}$ (86) (1.5 g) was dissolved in $20 \% \mathrm{v} / \mathrm{v}$ acetic acid-methanol $(50 \mathrm{ml})$ containing activated zinc powder (780 mg) and the mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 18 h . Additional zinc powder (390 mg) was added and the stirring was continued for a further 4 h . The reaction mixture was filtered through a bed of Celite and the filtrate was evaporated to dryness. The residue was dissolved in water (20 ml) and a 20% aqueous sodium carbonate solution (w / v) was added until the pH reached 10.0 . The solids were filtered off and the filtrate was evaporated to dryness. The residue was chromatographed on a silica-gel column ($60 \times 2.5 \mathrm{~cm}$) using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution ($2: 1: 1 \mathrm{v} / \mathrm{v}$) as the eluant to give 1-N-(2-aminoethoxycarbonyl)gentamicin C_{12} (87) (107 $\mathrm{mg}, 16 \%$) as an amorphous solid after passage over Amberlite IRA 40IS $\left(\mathrm{OH}^{-}\right)$resin followed by lyophilization (Found:
\dagger Kindly provided by C. E. Luce.
$\mathrm{C}, 46.8 ; \mathrm{H}, 8.7 ; \mathrm{N}, 14.5 . \quad \mathrm{C}_{22} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{9} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ requires C , $46.9 ; \mathrm{H}, 8.40 ; \mathrm{N}, 14.9 \%),[\alpha]_{\mathrm{D}}{ }^{26}+107.3^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right), \nu_{\text {max. }}(\mathrm{KBr})$ $3350,3280,1705$, and $1050 \mathrm{~cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.25\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\right.$ $\left.\mathrm{CH}_{3}\right), 2.57\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right), 4.18\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)$, $5.14\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime \prime}, 2^{\prime \prime}} 4 \mathrm{~Hz}, 1^{\prime \prime}-\mathrm{H}\right)$, and $5.29\left(\mathrm{l} \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}\right.$ $\left.4 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right)$.

3, 6^{\prime}-Bis-N-benzyloxycarbonyl-1-N-(2-benzyloxycarbonylaminoethoxycarbonyl)kanamycin A (4).-3,6'-Bis-N-benzyloxycarbonylkanamycin A (3) (1 g$)^{20, *}$ was dissolved in a mixture of water (10 ml) and dioxan (5 ml). Triethylamine was added until the pH reached 9 . N-(2-Benzyloxycarbonylaminoethoxycarbonyloxy)succinimide (39) (427 mg) in dioxan (10 ml) was added dropwise over 0.5 h . The reaction mixture was then stirred at $25^{\circ} \mathrm{C}$ for 3 h . The solution was evaporated to dryness and a portion was chromatographed on a silica-gel column ($110 \times 1.5 \mathrm{~cm}$) using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution ($2: 1: 1 \mathrm{v} / \mathrm{v}$) as the eluant to give an analytical sample of $3,6^{\prime}$-bis- N-benzyloxy-carbonyl-1- N-(2-benzyloxycarbonylaminoethoxycarbonyl)kanamycin A (4) as an amorphous solid (Found: C, 53.45; $\mathrm{H}, 5.9$; $\mathrm{N}, 7.3$. $\mathrm{C}_{45} \mathrm{H}_{59} \mathrm{~N}_{5} \mathrm{O}_{19} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 53.51$; H, $6.29 ; \mathrm{N}, 6.93 \%),[\alpha]_{\mathrm{D}}{ }^{26}+49.7^{\circ}\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right)(1: 1 \mathrm{v} / \mathrm{v})$, $v_{\text {IIIax. }}(\mathrm{KBr}) 3325,1680,1535$, and $1045 \mathrm{~cm}^{-1}, \delta\left(\left[{ }^{2} \mathrm{H}_{6}\right]^{-}\right.$ DMSO) $5.02 \mathrm{br}\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ and $7.37 \mathrm{br}(15 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$).

1-N-(2-Aminoethoxycarbonyl)kanamycin A (7).-(a) Crude $3,6^{\prime}$-bis- N-benzyloxycarbonyl-1- N-(2-benzyloxycarbonylaminoethoxycarbonyl)kanamycin A (4) (from the previous preparation) was dissolved in methanol-dioxan-water $(2: 1: 1 \mathrm{v} / \mathrm{v})(20 \mathrm{ml})$ and 1 m -hydrochloric acid (5.3 ml) and 10% palladium-carbon (840 mg) were added. The mixture was hydrogenated at $25^{\circ} \mathrm{C}$ at $55 \mathrm{lbf}_{\mathrm{in}}{ }^{-2}$ and after 2 h additional catalyst (840 mg) was added. The hydrogenation was allowed to proceed for an additional 16 h . The catalyst was filtered off and Amberlite IRA 40IS (OH^{-}) resin was added to the filtrate until the pH reached 10 . The mixture was filtered and evaporated to dryness, and the residue was chromatographed on a silica-gel column $(120 \times 2.5 \mathrm{~cm})$ using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution ($1: 1: 1 \mathrm{v} / \mathrm{v}$) as the eluant to give 1-N-(2-aminoethoxycarbonyl)kanamycin A (7) ($132 \mathrm{mg}, 17 \%$) as an amorphous solid after passage over Amberlite IRA 40IS (OH^{-}) resin followed by lyophilization (Found: C, $40.05 ; \mathrm{H}, 6.7$; N, 10.15. $\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{13} \cdot 2 \mathrm{CO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ requires C , $39.72 ; \mathrm{H}$, $6.52 ; \mathrm{N}, 10.07 \%,[\alpha]_{\mathrm{D}}{ }^{26}+87.0^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right), \nu_{\text {max. }}(\mathrm{KBr}) 3350$, $1690,1585,1540$, and $1030 \mathrm{~cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}-\mathrm{DCl}, \mathrm{pH} 3\right) 4.18$ $\left(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 5.07\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime \prime}, 2^{\prime \prime}} 3.5 \mathrm{~Hz}\right.$, $\left.1^{\prime \prime}-\mathrm{H}\right)$, and $5.39\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 3 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right)$.
(b) 3,6'-Bis-N-(4-methoxybenzyloxycarbonyl)kanamycin A (5) $(4 \mathrm{~g})^{20, *}$ was dissolved in a mixture of dioxan $(20 \mathrm{ml})$ and water $(40 \mathrm{ml})$. Triethylamine was added until the pH reached 9.0 . N-[2-(4-Methoxybenzyloxycarbonylamino)ethoxycarbonyloxy]succinimide (34) (2.04 g) dissolved in dioxan (10 ml) was added dropwise over a period of 0.5 h . After 2 h at $25^{\circ} \mathrm{C}$ the solution was evaporated to dryness to give (6). The residue was dissolved in trifluoroacetic acid $(3 \mathrm{ml})$ and after 3 min at $25^{\circ} \mathrm{C}$, the solution was evaporated to dryness in vacuo and the residue was azeotroped with toluene. The product was chromatographed on a silica-gel column ($160 \times 3 \mathrm{~cm}$) using chloroform-methanol-concentrated ammonium hydroxide solution ($\mathbf{3 : 4 : 2 \mathrm { v } / \mathrm { v } \text {) as the }}$ eluant to give 1-N-(2-aminoethoxycarbonyl)kanamycin A

* Note as on page 2186.
(7) ($908 \mathrm{mg}, 32 \%$), identical with that prepared in (a) above.

1-N-(2-Aminoethylcarboxamido)sisomicin (25).--3, $2^{\prime}, 6^{\prime}, 3^{\prime \prime}-$ Tetrakis- N -(4-methoxybenzyloxycarbonyl)sisomicin (20) (2 g) was dissolved in dry dimethylformamide (10 ml) containing 2 -azidoethyl isocyanate (90) (1 ml) and triethylamine (20 mg) and the reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 18 h . The solution was added dropwise to diethyl ether (500 ml) and the resulting precipitate was filtered off and dissolved in dry pyridine (30 ml) containing triphenylphosphine (500 ml). The mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 1 h . Concentrated ammonium hydroxide (2 ml) was added and after stirring at $25{ }^{\circ} \mathrm{C}$ for 1 h , the solution was evaporated to dryness and the residue was azeotroped with toluene $(3 \times 20 \mathrm{ml})$. The resulting solid was dissolved in trifluoroacetic acid (5 ml) and after 3 min at $25^{\circ} \mathrm{C}$ the solution was evaporated to dryness. After trituration with ether, the residue was dissolved in the minimum volume of tetrahydrofuran and chromatographed on an Amberlite CG-50 (NH_{4}) resin column ($30 \times 2 \mathrm{~cm}$) using gradient elution with $0.1-$ 0.3 m -ammonium hydroxide as the eluant to give $1-\mathrm{N}$-($2-$ aminoethylcarboxamido)sisomicin (25) ($39 \mathrm{mg}, 4 \%$) as an amorphous solid after passage over Amberlite IR 40IS $\left(\mathrm{OH}^{-}\right)$resin followed by lyophilization, $[\alpha]_{\mathrm{D}}{ }^{26}+92.5^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)$, $\nu_{\text {max }}(\mathrm{KBr}) 3340,1650,1560$, and $1050 \mathrm{~cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.14$ $\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.41\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right), 2.58(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}$, $\left.\mathrm{CONHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 4.78\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 5.03(1 \mathrm{H}, \mathrm{d}$, $\left.J_{1^{\prime \prime} e q, 2^{\prime \prime} a x} 4 \mathrm{~Hz}, 1^{\prime \prime} e q-\mathrm{H}\right)$, and $5.25\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} e q, 2^{\prime} a x} 3 \mathrm{~Hz}\right.$, 1^{\prime} eq-H), and 1-N-(2-aminoethylcarboxamido)garamine (92) ($134 \mathrm{mg}, 18 \%$) as an amorphous solid after passage over Amberlite IR $40 \mathrm{IS}\left(\mathrm{OH}^{-}\right)$resin followed by lyophilization (Found: C, 44.6; H, 7.85; N, 15.7. $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{7} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 44.25 ; \mathrm{H}, 8.35 ; \mathrm{N}, 16.12 \%),[\alpha]_{\mathrm{D}}{ }^{26} 91.4^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)$, $v_{\text {max. }}(\mathrm{KBr}) 3340,1650,1560$, and $1050 \mathrm{~cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.19$ $\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.47\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{NCH}_{3}\right), 2.63(2 \mathrm{H}, \mathrm{t}, J 6.5$ $\left.\mathrm{Hz}, \mathrm{CONHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 3.12\left(2 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}, \mathrm{CONHCH}_{2}-\right.$ $\mathrm{CH}_{2} \mathrm{NH}_{2}$), and 5.07 ($\left.1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} e q, 2^{\prime} a x} 4 \mathrm{~Hz}, 1^{\prime} e q-\mathrm{H}\right)$.
$1-\mathrm{N}$-Carboxamidosisomicin (27).-3, $2^{\prime}, 6^{\prime}$-Tri- N-acetylsisomicin (26) $(400 \mathrm{mg})^{20, *}$ was dissolved in dry dimethylformamide $(40 \mathrm{ml})$ and the solution was cooled to $0^{\circ} \mathrm{C}$ under nitrogen. A solution of silicon tetraisocyanate (172 mg) in dry dimethylformamide (2.36 ml) was added using a syringe and the mixture was stirred at $0^{\circ} \mathrm{C}$ under nitrogen for 24 h . The solution was evaporated to dryness and the residue was heated under reflux with 5% aqueous sodium hydroxide $(60 \mathrm{ml})$ under nitrogen for 16 h . The solution was neutralized with Amberlite IRC $50\left(\mathrm{H}^{+}\right)$resin. The resin was washed with water (800 ml) and then eluted with 7% aqueous ammonium hydroxide (1.2 1). The latter eluate was evaporated to dryness and the residue was chromatographed on a silica-gel column ($160 \times 2.5 \mathrm{~cm}$) using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution ($2: 1: 1 \mathrm{v} / \mathrm{v}$) as the eluant to give 1-N-carboxamidosisomicin (27) ($80 \mathrm{mg}, 23 \%$) as an amorphous solid after passage over Amberlite IRA 40IS $\left(\mathrm{OH}^{-}\right)$resin followed by lyophilization (Found: C, 47.75; $\mathrm{H}, 7.45 ; \mathrm{N}, 16.8 . \mathrm{C}_{20} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{8} \cdot \mathrm{O} .5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 48.08$; $\mathrm{H}, 7.86 ; \mathrm{N}, 16.82 \%),[\alpha]_{\mathrm{D}}{ }^{26}+152.0^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)$, $\nu_{\max .}(\mathrm{KBr})$ $3350,1665,1600,1355$, and $1050 \mathrm{~cm}^{-1}, \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 1.23$ $\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.52\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right), 4.90(1 \mathrm{H}, \mathrm{m}$, $\left.4^{\prime}-\mathrm{H}\right), 5.16\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime \prime}}{ }^{\prime} q_{q .2^{\prime \prime} a x} 4 \mathrm{~Hz}, \mathrm{l}^{\prime \prime} e q-\mathrm{H}\right)$, and $5.36(\mathrm{l} \mathrm{H}$, d, $\left.J_{1^{\prime} e q .2^{\prime} a x} 2 \mathrm{~Hz}, 1^{\prime} e q-H\right)$.

1-N-(Methylcarboxamido)sisomicin (28).-3, 2', 6^{\prime} 'Tri-Nacetylsisomicin (26) (400 mg$)^{\mathbf{2 0 , *}}$ was dissolved in ethanolwater ($1: 1 \mathrm{v} / \mathrm{v}$) (30 ml) and methyl isocyanate (0.046 ml)
was added and the mixture was heated under reflux for 16 h . The solution was evaporated to dryness and the residue was heated under reflux with 5% aqueous sodium hydroxide $(60 \mathrm{ml})$ under argon for 7 h . The solution was neutralized with Amberlite IRC $50\left(\mathrm{H}^{+}\right)$resin. The resin was washed with water (11) and then eluted with 7% aqueous ammonium hydroxide solution (1.51). The latter eluate was evaporated to dryness and the residue was chromatographed on a silica-gel column ($160 \times 2.5 \mathrm{~cm}$) using chloroform-meth-anol-concentrated ammonium hydroxide solution (2:1:0.18 v/v) as the eluant to give 1-N-(methylcarboxamido)sisomicin (28) ($81 \mathrm{mg}, 23 \%$) as an amorphous solid after treatment with Amberlite IRA 40IS $\left(\mathrm{OH}^{-}\right)$ resin followed by lyophilization (Found: C, 47.15; H, 7.5; $\mathrm{N}, 14.8 . \mathrm{C}_{21} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{8} \cdot \mathrm{CO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 46.62 ; \mathrm{H}, 7.47$; $\mathrm{N}, 14.83 \%),[\alpha]_{\mathrm{D}}{ }^{26}+137.6^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right), \nu_{\text {max. }}(\mathrm{KBr}) 3300,1650$, 1570 , and $1060 \mathrm{~cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.19\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.50$ $\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right), 2.65(3 \mathrm{H}, \mathrm{s}, \mathrm{NHCONHCH} 3), 4.90(1 \mathrm{H}$, $\left.\mathrm{m}, 4^{\prime}-\mathrm{H}\right), 5.11\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}} e q .2^{\prime \prime} a x 4 \mathrm{~Hz}, \mathrm{I}^{\prime \prime}-e q \mathrm{H}\right)$, and $5.34(1 \mathrm{H}$, d, $\left.J_{1^{\prime} e q, ~ z^{\prime} a x} 2.5 \mathrm{~Hz}, \mathrm{l}^{\prime} e q-\mathrm{H}\right)$.
$3,6^{\prime}, 3^{\prime \prime}-$ Tris-N-benzyloxycarbonyl-1-N-(2-azidoethylcar-
boxamido)gentamicin B (69).-2-Chloroethyl isocyanate (91) (584 mg) and sodium iodide (834 mg) were dissolved in dry dimethylformamide (10 ml) and the mixture was heated at $60^{\circ} \mathrm{C}$ for 18 h . The solution was cooled to $25^{\circ} \mathrm{C}$ and sodium azide (361 mg) was added and the mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 18 h . The resulting crude solution of 2 -azidoethyl isocyanate (90) was used without further purification.
$3,6^{\prime}, 3^{\prime \prime}$-Tris- N-benzyloxycarbonylgentamicin B (56) (500 mg) was dissolved in dry dimethylformamide (5 ml) and the solution of 2 -azidoethyl isocyanate (90) (2 ml) was added. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h under dry argon. The solution was evaporated to dryness and the residue was chromatographed on a silica-gel column ($120 \times 3 \mathrm{~cm}$) using the lower phase of a chloroform-methanol- 14% ammonium hydroxide solution ($2: 1: 1 \mathrm{v} / \mathrm{v}$) as the eluant to give the protected gentamicin B derivative (69) ($159 \mathrm{mg}, 28 \%$) as an amorphous solid, $[\alpha]_{\mathrm{D}}{ }^{26}+75.7^{\circ}(\mathrm{MeOH})$, $\nu_{\text {max. }}\left(\mathrm{CCl}_{4}\right) 3700$, $3350,2950,2110,1730,1690,1550$, and $1060 \mathrm{~cm}^{-1}, \delta$ $\left(\mathrm{CDCl}_{3}\right) 1.15 \mathrm{br}\left(3 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 3.00 \mathrm{br}\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right)$, $5.00 \mathrm{br}\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{6}\right.$), and $7.27\left(15 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$.

1-N-(2-Aminoethylcarboxamido)gentamicin B (70).-1-N-(2-Azidoethylcarboxamido)- $3,6^{\prime}, 3^{\prime \prime}$-tris- N-benzyloxycarbonylgentamicin B (69) (139 mg) was dissolved in methanolwater ($1: 1 \mathrm{v} / \mathrm{v}$) (5 ml) containing lm -hydrochloric acid $(0.5 \mathrm{ml})$, and 10% palladium-carbon (84 mg) was added. The mixture was hydrogenated at $25^{\circ} \mathrm{C}$ and $55 \mathrm{lbf}_{\mathrm{in}}{ }^{-2}$ for 2 h . Additional catalyst (84 mg) was added and the hydrogenation was allowed to proceed for a further 16 h . The catalyst was filtered off and the filtrate was treated with Amberlite IRA 40IS $\left(\mathrm{OH}^{-}\right)$resin until the pH reached 10. The mixture was filtered and concentrated to dryness. The residue was chromatographed on a silica-gel column ($15 \times$ 2.5 cm) using the lower phase of a chloroform-methanolconcentrated ammonium hydroxide solution ($1: 1: 1 \mathrm{v} / \mathrm{v}$) as the eluant to give $1-N$-(2 -aminoethylcarboxamido)gentamicin B (70) ($39 \mathrm{mg}, 49 \%$) as an amorphous solid after passage over Amberlite IRA 40IS (OH^{-}) resin followed by lyophilization (Found: C, 41.4; H, 7.5; N, 11.8. $\mathrm{C}_{22} \mathrm{H}_{44}{ }^{-}$ $\mathrm{N}_{6} \mathrm{O}_{11} \cdot 2 \mathrm{CO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 41.6, \mathrm{H}, 7.00 ; \mathrm{N}, 12.1 \%$), $[\alpha]_{\mathrm{D}}{ }^{26}+99.4^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)$, $v_{\text {max. }}(\mathrm{KBr}) 3330,2920,1655,1565$, and $1050 \mathrm{~cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.23\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.51(3 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime \prime}-\mathrm{NCH}_{3}\right), 4.09\left(1 \mathrm{H}, \mathrm{d}, J_{5^{\prime \prime} e q .5^{\prime \prime} a x} 12 \mathrm{~Hz}, 5^{\prime \prime} e q-\mathrm{H}\right), 5.13(1 \mathrm{H}$, $\left.\mathrm{d}, J_{1^{\prime \prime}, 2^{\prime \prime}} 4 \mathrm{~Hz}, \mathrm{l}^{\prime \prime}-\mathrm{H}\right)$, and $5.32\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 3.5 \mathrm{~Hz}\right.$, $\left.l^{\prime}-\mathrm{H}\right)$.

1-N-Carboxanidogentamicin $B(72)$.- 3,6 '-Bis- N-t-butoxycarbonylgentamicin $\mathrm{B}(71)(750 \mathrm{mg})^{20, *}$ was dissolved in dry dimethylformamide (70 ml). Silicon tetraisocyanate $(52 \mathrm{mg})$ in dry dimethylformamide $(0.9 \mathrm{ml})$ was added and the mixture was stirred under dry argon at $25{ }^{\circ} \mathrm{C}$ for 24 h . The solution was evaporated to dryness and the residue was dissolved in trifluoroacetic acid (5 ml). After 3 min at $25^{\circ} \mathrm{C}$, the solution was evaporated to dryness. The residue was taken up in water and passed over Amberlite IRA 40IS $\left(\mathrm{OH}^{-}\right)$resin. The aqueous eluate was evaporated to dryness and the residue was chromatographed on a silica-gel column ($160 \times 2.5 \mathrm{~cm}$) using the lower phase of a chloroform-methanol-concentrated ammonium hydroxide solution ($1: 1: 1 \mathrm{v} / \mathrm{v}$) as the eluant to give $1-\mathrm{N}$-carboxamidogentamicin $B(72)(84 \mathrm{mg}, \mathbf{1 5} \%)$ as an amorphous solid after passage over Amberlite IRA 40IS $\left(\mathrm{OH}^{-}\right)$resin followed by lyophilization (Found: $\mathrm{C}, 44.8 ; \mathrm{H}, 7.35 ; \mathrm{N}, 12.9 . \quad \mathrm{C}_{20} \mathrm{H}_{39}{ }^{-}$ $\mathrm{N}_{5} \mathrm{O}_{11} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 44.93 ; \mathrm{H}, 7.54 ; \mathrm{N}, .13 .10 \%$), $[\alpha]_{\mathrm{D}}{ }^{26}+117.7^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right), v_{\text {max. }}(\mathrm{KBr}) 3370,1660,1550$, and $1050 \mathrm{~cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right), 1.20\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.50(3 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime \prime}-\mathrm{NCH}_{3}\right), 4.06\left(1 \mathrm{H}, \mathrm{d}, J_{5^{\prime \prime}\left(x, 5^{\prime \prime} e q\right.} 12.5 \mathrm{~Hz}, 5^{\prime \prime} a x-\mathrm{H}\right), 5.08$ ($\left.1 \mathrm{H}, \mathrm{d}, J_{1^{\prime \prime} e q, 2^{\prime \prime}{ }^{\prime \prime}} 4 \mathrm{~Hz}, \mathrm{l}^{\prime \prime} e q-\mathrm{H}\right)$, and $5.33\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} e q . \mathrm{s}^{\prime} a x}\right.$ $\left.3.5 \mathrm{~Hz}, \mathrm{I}^{\prime} e q-\mathrm{H}\right)$.
$1-\mathrm{N}-\left(\right.$ Ethylthiocarboxamido)gentamicin $C_{1 \mathrm{a}} \quad$ (88).-3, $2^{\prime}, 6^{\prime}-$ Tris- N-(2,2,2-trichloroethoxycarbonyl)gentamicin $\mathrm{C}_{1 \mathrm{a}}$ (85) $(1 \mathrm{~g}) \dagger$ was dissolved in tetrahydrofuran (100 ml) and ethyl isothiocyanate (104 mg) in tetrahydrofuran (5 ml) was added over 20 min . The reaction mixture was heated under reflux for 3 h . The solution was evaporated to dryness and the residue was dissolved in 10% acetic acid in methanol $(15 \mathrm{ml})$. Zinc powder $(254 \mathrm{mg})$ was added and the mixture was heated under reflux for 3 h . The mixture was filtered and the filtrate was evaporated to dryness and azeotroped with toluene. 2 m -Hydrochloric acid was added until the pH reached 3 and the solution was then evaporated to dryness. The residue was dissolved in water and passed over Amberlite IRA 40IS $\left(\mathrm{OH}^{-}\right)$resin and the aqueous eluate was evaporated to dryness. The residue was chromatographed on a silica-gel column ($160 \times 1.5 \mathrm{~cm}$) using chloroform-methanol- $\mathbf{3 \%}$ ammonium hydroxide solution ($1: 2: 1 \mathrm{v} / \mathrm{v}$) as the eluant to give $1-\mathrm{N}$-(ethylthiocarboxamido)gentamicin $C_{1 \mathrm{a}}$ (88) ($72 \mathrm{mg}, 13 \%$) as an amorphous solid after passage over Amberlite IRA 40IS (OH^{-}) resin followed by lyophilization (Found: C, 49.1; H, 8.0; N, 14.75 ; S, 5.05. $\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{~S}$ requires $\mathrm{C}, 49.23 ; \mathrm{H}, 8.26$; $\mathrm{N}, 15.66 ; \mathrm{S}, 5.97 \%),[\alpha]_{\mathrm{n}}{ }^{26}+104.1^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right), \nu_{\max }(\mathrm{KBr})$ $3350,3275,1650,1050$, and $1020 \mathrm{~cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.18$ $\left(3 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}\right), 1.21\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 2.50$ $\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{NCH}_{3}\right), 2.58\left(1 \mathrm{H}, \mathrm{d}, J_{2^{\prime \prime} a x, 3^{\prime \prime} a x} 10.5 \mathrm{~Hz}, 3^{\prime \prime} a x-\mathrm{H}\right)$, $3.27\left(1 \mathrm{H}, \mathrm{d}, J_{5^{\prime \prime}}{ }^{\prime} a x, 5^{\prime \prime} e q 12.5 \mathrm{~Hz}, 5^{\prime \prime} a x-\mathrm{H}\right), 3.41(2 \mathrm{H}, \mathrm{q}, J 6.5$ $\left.\mathrm{Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}\right), 4.08\left(1 \mathrm{H}, \mathrm{d}, J_{5^{\prime \prime} a x, 5^{\prime \prime} e q} 12.5 \mathrm{~Hz}, 5^{\prime \prime} e q-\mathrm{H}\right)$, $5.10\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime \prime} e q, 2^{\prime \prime} a x} 4 \mathrm{~Hz}, \mathrm{I}^{\prime \prime} e q-\mathrm{H}\right)$, and $5.19\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} e q, 2^{\prime} a x}\right.$ $\left.3.5 \mathrm{~Hz}, \mathrm{l}^{\prime} e q-\mathrm{H}\right)$.

3-N-(4-Methoxybenzyloxycarbonyl)-1-N-[2-(4-methoxybenzyloxycarbonylamino)ethoxycarbonyllgaramine (94).3, $2^{\prime}, 6^{\prime}$-Tris- N -(4-methoxybenzyloxycarbonyl) sisomicin (20) $(2 \mathrm{~g})$ was dissolved in methanol-water ($1: 1 \mathrm{v} / \mathrm{v}$) (20 ml) containing N-[2-(4-methoxybenzyloxycarbonylamino)ethoxycarbonyloxy]succinimide (34) (776 mg) and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . The mixture was evaporated to dryness and the residue was dissolved in dry tetrahydrofuran (20 ml) and Amberlite IR $120\left(\mathrm{H}^{+}\right)$ resin (30 g) was added. The reaction was stirred at $25^{\circ} \mathrm{C}$ for 7 h . The resin was filtered off and washed with methanol.

* Note as on page $2186 . \quad \dagger$ Note as on page 2204.

The combined filtrates were evaporated to dryness and the residue was chromatographed on a silica－gel column $(60 \times 2.5 \mathrm{~cm})$ using a chloroform－methanol－concentrated ammonium hydroxide solution（ $5: 1: 1: 0.1 \mathrm{v} / \mathrm{v}$ ）as the eluant to give the garamine derivative（94）（ $936 \mathrm{mg}, 60 \%$ ）as an amorphous solid（Found：C，55．2；H，6．35；N，7．55． $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{14}$ requires C， $\left.55.42 ; \mathrm{H}, 6.57 ; \mathrm{N}, 7.60 \%\right),\left[\alpha_{\mathrm{D}}{ }^{26}\right.$ $+74.0^{\circ}(\mathrm{MeOH}), v_{\max .}(\mathrm{KBr}) 3330,1700,1508,1240$ ，and $1025 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CD}_{3} \mathrm{OD}\right) 1.10\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{CH}_{3}\right), 2.52(3 \mathrm{H}, \mathrm{s}$ ， $\left.3^{\prime}-\mathrm{NCH}_{3}\right), 3.75\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 4.98\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\right.$ $\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$ ），and 6.80 and $7.22\left(8 \mathrm{H}, 2 \mathrm{~m}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right)$ ．
$1-\mathrm{N}$－（2－A minoethoxycarbonyl）garamine（93）．－3－N－（4－
Methoxybenzyloxycarbonyl）－1－N－［2－（4－methoxybenzyloxy－ carbonylamino）ethoxycarbonyl］garamine（94）（ 600 mg ）was dissolved in trifluoroacetic acid（ 3 ml ）and the solution was kept at $25{ }^{\circ} \mathrm{C}$ for 3 min ．The solution was evaporated to dryness and the residue was chromatographed on a silica－ gel column（ $30 \times 2.5 \mathrm{~cm}$ ）using the lower phase of a chloro－ form－methanol－concentrated ammonium hydroxide solu－ tion（2：1：1 v／v）as the eluant to give 1－N－（2－aminoethoxy－ carbonyl）garamine（ 93 ）（ $143 \mathrm{mg}, 43 \%$ ）as an amorphous solid after passage over Amberlite IRA 40IS $\left(\mathrm{OH}^{-}\right)$resin followed by lyophilization（Found：C，44．9；H，7．7；N， 12．95． $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 45.07 ; \mathrm{H}, 8.04 ; \mathrm{N}$ ， $13.14 \%),[\alpha]_{\mathrm{D}}{ }^{26}+98.0^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right), \nu_{\text {max．}}(\mathrm{KBr}) 3350,1700$ ， 1530,1270 ，and $1050 \mathrm{~cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.20\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{CH}_{3}\right)$ ， $2.49\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{NCH}_{3}\right), 2.52\left(1 \mathrm{H}, \mathrm{d}, J_{2^{\prime} a x .3^{\prime} a x} 11 \mathrm{~Hz}, 3^{\prime} a x-\mathrm{H}\right)$ ， $2.82\left(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 3.24\left(1 \mathrm{H}, \mathrm{d}, J_{5^{\prime} \alpha x .5^{\prime} \mathrm{eq}}\right.$ $\left.12.5 \mathrm{~Hz}, 5^{\prime} a x-\mathrm{H}\right), 3.65\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime} e q, 2^{\prime} a x} 4, J_{2^{\prime} a x, 3^{\prime} a x} 11 \mathrm{~Hz}\right.$ ， $\left.2^{\prime} a x-\mathrm{H}\right), 4.05\left(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 4.07(1 \mathrm{H}, \mathrm{d}$ ， $\left.J_{5^{\prime} a x .5^{\prime} e q} 12.5 \mathrm{~Hz}, 5^{\prime} e q-\mathrm{H}\right)$ ，and $5.07\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{I}^{\prime} e q .2^{\prime} a x} 4 \mathrm{~Hz}\right.$ ， $\left.1^{\prime} e q-\mathrm{H}\right)$ ．
（土）－1（3）－N－（4－Methoxybenzyloxycarbonyl）－2－deoxystrept－
amine（97）．－2－Deoxystreptamine（96）（ 10 g ）was dissolved in methanol－water（ $1: 1 \mathrm{v} / \mathrm{v})(200 \mathrm{ml})$ containing 4－methoxy－ benzyl－S－（4，6－dimethylpyrimidin－ 2 －yl）thiocarbonate（ 9.38 g）${ }^{43}$ and the mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 1 h ．Addi－ tional reagent（ 4.7 g ）was added and the mixture was stirred for a further 1 h ．The solution was evaporated to dryness and the residue was chromatographed on a silica－ gel column（ $60 \times 3 \mathrm{~cm}$ ）using the lower phase of a chloro－ form－methanol－concentrated ammonium hydroxide solu－ tion $(2: 1: 1 \mathrm{v} / \mathrm{v})$ as the eluant to give the (\pm)－mono－ $\mathrm{N}-(4-$ methoxybenzyloxycarbonyl）derivative（97）（ $14 \mathrm{~g}, 70 \%$ ）as an amorphous solid（Found：C，53．9；H，6．75；N，8．45． $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 53.64 ; \mathrm{H}, 7.05 ; \mathrm{N}, 8.34 \%$ ）， $\nu_{\text {max．}}(\mathrm{KBr}) 3320,1670,1240$ ，and $1035 \mathrm{~cm}^{-1}, \delta\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\right.$ DMSO） $4.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right)$ ， $5.07\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OC}_{6}-\right.$ $\mathrm{H}_{4} \mathrm{CH}_{2}$ ），and 6.98 and $7.38\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right)$ ．
（ \pm ）－1（3）－N－（2－A minoethoxycarbonyl）－2－deoxystreptamine （99）．－（土）－1（3）－N－（4－Methoxybenzyloxycarbonyl）－2－de－ oxystreptamine（97）（ 500 mg ）was dissolved in methanol－ water（ $1: 1 \mathrm{v} / \mathrm{v}$ ）（ 5 ml ）containing N－$[2$－（4－methoxybenzyl－ oxycarbonylamino）ethoxycarbonyloxy］succinimide（34） $(420 \mathrm{mg})$ and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h ．The solution was evaporated to dryness and the residue was dissolved in trifluoroacetic acid $(2 \mathrm{ml})$ ．After 3 min at $25^{\circ} \mathrm{C}$ ，the solution was evaporated to dryness． The residual gum was extracted with diethyl ether and the insoluble residue was dissolved in water and Amberlite IRA 40IS $\left(\mathrm{OH}^{-}\right)$resin was added until the pH reached 10．The resin was filtered off and washed with water．The com－ bined filtrates were evaporated to dryness and the residue was chromatographed on a silica－gel column（ $60 \times 2 \mathrm{~cm}$ ） using the lower phase of a cilloroform－methanol－concen－
treated ammonium hydroxide solution（2：1：1v／v）as the eluant to give the（土）－N－（2－aminoethoxycarbonyl）deoxy－ streptamine（99）（ $91 \mathrm{mg}, \mathbf{2 4} \%$ ）as an amorphous solid after passage over Amberlite IRA 40IS（ OH^{-}）resin followed by lyophilization（Found：C，58．65；H，5．15；N，10．6． $\mathrm{C}_{8} \mathrm{H}_{19}{ }^{-}$ $\mathrm{N}_{3} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C， $58.90 ; \mathrm{H}, 5.46 ; \mathrm{N}, 10.85 \%$ ），$\nu_{\text {max }}$ （ KBr ） $3330,1690,1540$ ，and $1020 \mathrm{~cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.21(\mathrm{l} \mathrm{H}$ ， ddd，$\left.J_{1 a x, \text { sax }}=J_{2 a x, 2 e q}=J_{2 a x, 3 q x}=12 \mathrm{~Hz}, 2 a x-\mathrm{H}\right), 1.95$ $\left(1 \mathrm{H}\right.$, ddd，$J_{1 a x, 2 e q}=J_{2 e q, 3 a x}=4 \mathrm{~Hz}, J_{2 a x, 2 e q}=12 \mathrm{~Hz}$ ， $2 e q-\mathrm{H}), 2.88\left(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)$ ，and $4.07(2 \mathrm{H}$ ， $t, J 6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ ）．
（ \pm ）－1（3）－N－Acetyl－2－deoxystreptamine（100）．－2－Deoxy－ streptamine（96）（ 500 mg ）was dissolved in methanol－ water（ $1: 1 \mathrm{v} / \mathrm{v}$ ）（ 5 ml ）containing N－acetoxysuccinimide $(410 \mathrm{mg})$ and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 6 h ．The solution was evaporated to dryness and the residue was chromatographed on a silica－gel column（ $120 \times 2.5 \mathrm{~cm}$ ） using the lower phase of a chloroform－methanol－14\％ ammonium hydroxide solution（2：1：1 v／v）as the eluant to give（土）－1（3）－N－acetyl－2－deoxystreptamine（100）（ 330 mg ， 52% ）as an amorphous solid after passage over Amberlite IRA 40IS $\left(\mathrm{OH}^{-}\right)$resin followed by lyophilization（Found： $\mathrm{C}, 40.15 ; \mathrm{H}, 8.2 ; \mathrm{N}, 11.6 . \mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ requires C ， $39.99 ; \mathrm{H}, 8.39 ; \mathrm{N}, 11.66 \%$ ）， $\mathrm{v}_{\text {max．}}(\mathrm{KBr}) 3300,1640$ ，and $1550 \mathrm{~cm}^{-1}, \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.23\left(1 \mathrm{H}, \mathrm{ddd}, J_{1 a x, 2 a x}=J_{2 a x, 2 e q}=\right.$ $\left.J_{2 a x, 3 a x}=12 \mathrm{~Hz}, 2 a x-\mathrm{H}\right), 1.97\left(1 \mathrm{H}\right.$, ddd，$J_{1 a x, 2 e q}=J_{2 e q .3 a x}$ $\left.=4 \mathrm{~Hz}, J_{2 a x, 2 e q} 12 \mathrm{~Hz}, 2 e q-\mathrm{H}\right)$ ，and $2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{NAc})$ ．
（2R）－1－N－（2－A minobutoxycarbonyl）－2－deoxystreptamine （101）．－（2R）－3， 6^{\prime}－Bis－N－benzyloxycarbonyl－1－N－（2－benzyl－ oxycarbonylaminobutoxycarbonyl）gentamicin B （65）（3．9 g）was dissolved in methanol－water（ 150 ml ）． 10% Palladium－carbon（ 2.3 g ）and 1 m －hydrochloric acid（ 3.9 ml ） were added and the mixture was hydrogenated at $25{ }^{\circ} \mathrm{C}$ a $55 \mathrm{lbf} \mathrm{in}^{-2}$ for 18 h ．Additional 10% palladium－carbon $(2.3 \mathrm{~g})$ was added and the hydrogenation was continued for a further 18 h ．The catalyst was filtered off and the filtrate was evaporated to dryness．The residue was chromato－ graphed on a silica－gel column（ $120 \times 3 \mathrm{~cm}$ ）using the lower phase of a chloroform－methanol－14\％ammonium hydroxide solution（ $2: 1: 1 \mathrm{v} / \mathrm{v}$ ）as the eluant．The principal product was rechromatographed on a silica－gel column（ 160×1.5 $\mathrm{cm})$ using chloroform－methanol－concentrated ammonium hydroxide solution（ $3: 4: 2 \mathrm{v} / \mathrm{v}$ ）as the eluant to give（ 2 R ）－ 1－N－（2－aminobutoxycarbonyl）－2－deoxystreptamine（101）（137 $\mathrm{mg}, 13 \%$ ）as an amorphous solid after passage over Amber－ lite IRA $4015\left(\mathrm{OH}^{-}\right)$resin followed by lyophilization （Found： $\mathrm{C}, 45.05 ; \mathrm{H}, 7.85 ; \mathrm{N}, 13.2 . \mathrm{C}_{11} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5} \cdot \mathrm{CO}_{2}$ requires $\mathrm{C}, 44.85 ; \mathrm{H}, 7.22 ; \mathrm{N}, 13.08 \%),\left[\alpha_{j_{\mathrm{D}}}{ }^{26}+13.8^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)\right.$ ， $\nu_{\text {max．}}(\mathrm{KBr}) 3350,1700,1540,1280$ ，and $1040 \mathrm{~cm}^{-1}, \delta$ （ $\left.\mathrm{D}_{2} \mathrm{O}\right) 0.93\left(3 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$ and $2.00(1 \mathrm{H}, \mathrm{ddd}$ ， $\left.J_{1 a x, 2 e q}=J_{2 e q, 3 a x}=4, J_{2 a x, 2 e q} 12 \mathrm{~Hz}, 2 e q-\mathrm{H}\right)$ ．

We thank Mr．J．McGlotten and his staff for providing spectral and analytical data．
［0／1621 Received，21st October，1980］

REFERENCES

${ }^{1}$ Part 9，D．L．Boxler，R．Brambilla，D．H．Davies，A．K． Mallams，S．W．McCombie，J．B．Morton，P．Reichert，and H．F． Vernay，preceding paper．
${ }^{2}$ A．K．Mallams，P．Reichert，and J．B．Morton，Abstracts， 11th lnternational Congress of Chemotherapy and 19th Inter－ science Conference on Antimicrobial Agents and Chemotherapy， Boston，Massachusetts，U．S．A．，October 1－5，1979，Paper 767.
${ }^{3}$ H．Kawaguchi，T．Naito，S．Nakagawa，and K．Fujisawa，J． Antibiot．，1972，25， 695.

4 J. J. Wright, J. Chem. Soc., Chem. Commun., 1976, 206.
5 U.S.P. 4,002,742/1977.
${ }^{6}$ T. H. Haskell, R. Rodebaugh, N. Plessas, and R. D. Westland, Carbohydr. Res., 1973, 28, 263.

7 A. Afonso and F. Hon, Abstracts, 11th International Con gress of Chemotherapy and 19th Interscience Conference on Antimicrobial Agents and Chemotherapy, Boston, Massachusetts, U.S.A., October 1-5, 1979, Paper 766.
${ }^{8}$ P. J. L. Daniels, J. Weinstein, and T. L. Nagabhushan, J. Antibiot., 1974, 27, 889.
${ }^{9}$ J. J. Wright, A. Cooper, P. J. L. Daniels, T. L. Nagabhushan, D. Rane, W. N. Turner, and J. Weinstein, J. Antibiot., 1976, 29, 714.
${ }^{10}$ T. L. Nagabhushan, A. B. Cooper, H. Tsai, P. J. L. Daniels, and G. H. Miller, J. Antibiot., 1978, 31, 681.

11 T. L. Nagabhushan and A. B. Cooper, Abstracts, 11th International Congress of Chemotherapy and 19th Interscience Conference on Antimicrobial Agents and Chemotherapy, Boston, Massachusetts, U.S.A., October 1-5, 1979, Paper 769.
${ }^{12}$ D. F. Rane and P. J. L. Daniels, Abstracts, 11th International Congress of Chemotherapy and 19th Interscience Conference on Antimicrobial Agents and Chemotherapy, Boston, Massachusetts, U.S.A., October 1-5, 1979, Paper 768.
${ }^{13}$ T. Naito, S. Nakagawa, Y. Narita, S. Toda, Y. Abe, M. Oka, H. Yamashita, T. Yamasaki, K. Fujisawa, and H. Kawaguchi, J. Antibiot., 1974, 27, 851.
${ }^{14}$ K. Richardson, S. Jevons, J. W. Moore, B. C. Ross, and J. R. Wright, J. Antibiot., 1977, 30, 843.
${ }^{15}$ Belg. P. 855,709/1977.
${ }^{16}$ Belg. P. 865,015/1978.
${ }^{17}$ Belg. P. 860,048/1978.
${ }^{18}$ European P. 1,643/1979.
19 Dutch P. 2,753,769/1979.
${ }^{20}$ T. L. Nagabhushan, A. B. Cooper, W. N. Turner, H. Tsai, S. McCombie, A. K. Mallams, D. Rane, J. J. Wright, P. Reichert, D. L. Boxler, and J. Weinstein, J. Am. Chem. Soc., 1978, 100, 5253.
${ }^{21}$ J. J. Wright, unpublished observations.
${ }_{22}$ P. J. L. Daniels, 14th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, California, U.S.A., September 11-13, 1974.
${ }_{23}$ M. Kugelman, A. K. Mallams, H. F. Vernay, D. F. Crowe, and M. Tanabe, J. Chem. Soc., Perkin Trans. 1, 1976, 1088.
${ }^{24}$ J. B. Morton, R. C. Long, P. J. L. Daniels, R. W. Tkach, and J. H. Goldstein, J. Am. Chem. Soc., 1973, 95, 7464.
${ }^{25}$ R. U. Lemieux, T. L. Nagabhushan, K. J. Clemetson, and L. C. N. Tucker, Can. J. Chem., 1973, 51, 53.
${ }^{26}$ K. F. Koch, J. A. Rhoades, E. W. Hagaman, and E. Wenkert, J. Am. Chem. Soc., 1974, 96, 3300.

27 D. H. Davies, D. Greeves, A. K. Mallams, J. B. Morton, and R. W. Tkach, J. Chem. Soc., Perkin Trans. 1, 1975, 814.
${ }^{28}$ M. Kugelman, A. K. Mallams, and H. F. Vernay, J. Chem. Soc., Perkin Trans. 1, 1976, 1113.
${ }^{29}$ A. K. Mallams, S. S. Saluja, D. F. Crowe, G. Detre, M. Tanabe, and D. M. Yasuda, J. Chem. Soc., Perkin Trans. 1, 1976, 1135.
${ }^{30}$ P. J. L. Daniels, C. E. Luce, A. K. Mallams, J. B. Morton, S. S. Saluja, H. Tsai, J. Weinstein, J. J. Wright, G. Detre, M. Tanabe, and D. M. Yasuda, J. Chem. Soc., Perkin Trans. 1, 1981, 2137.
${ }^{31}$ D. H. Davies, M. Kugelman, P. Lee, C. E. Luce, A. K. Mallams, J. B. Morton, S. S. Saluja, J. J. Wright, G. Detre, M. Tanabe, and D. M. Yasuda, J. Chem. Soc., Perkin Trans. 1, 1981, 2151.
${ }^{32}$ P. J. L. Daniels, A. K. Mallams, S. W. McCombie, J. B. Morton, T. L. Nagabhushan, D. F. Rane, P. Reichert, and J. J. Wright, following paper.
${ }^{33}$ P. J. L. Daniels, unpublished observations.
${ }^{34}$ R. U. Lemieux, A. A. Pavia, J. C. Martin, and K. A. Watanabe, Can. J. Chem., 1969, 47, 4427.
${ }^{35}$ R. U. Lemieux and J. C. Martin, Carbohydr. Res., 1970, 13, 139.
${ }^{36}$ R. U. Lemieux, Ann. N.Y. Acad. Sci., 1973, 222, 915.
${ }^{37}$ R. U. Lemieux and S. Koto, Tetrahedron, 1974, 30, 1933.
${ }^{38}$ S. Toda, S. Nakagawa, T. Naito, and H. Kawaguchi, Tetrahedron Lett., 1978, 3193.
${ }^{39}$ T. L. Nagabhushan and P. J. L. Daniels, Tetrahedron Lett., 1975, 747.
${ }^{40}$ A. K. Mallams, P. Reichert, and J. B. Morton, Current Chemotherapy and Infectious Disease, Proceedings of the llth International Congress of Chemotherapy and the 19th Interscience Conference on Antimicrobial Agents and Chemotherapy, Boston, Massachusetts, U.S.A., October 1-5, 1979, vol. 1, p. 406, 1980.
${ }^{41}$ R. S. Hare, T. W. Schafer, P. J. Chiu, F. J. Sabatelli, E. L. Moss, jun., and G. H. Miller, Abstracts, 11 th International Congress of Chemotherapy and 19th Interscience Conference on Antimicrobial Agents and Chemotherapy, Boston, Massachusetts, U.S.A., October $1-5,1979$, paper 765.
${ }^{42}$ R. S. Hare, T. W. Schafer, P. J. Chiu, F. J. Sabatelli, E. L. Moss, jun., and G. H. Miller, Current Chemotherapy and Infectious Disease, Proceedings of the 11 th International Congress of Chemotherapy and the 19 th Interscience Conference on Antimicrobial Agents and Chemotherapy, Boston, Massachusetts, U.S.A., October 1-5, vol. 1, p. 403, 1980.
${ }^{43}$ T. Nagasawa, K. Kuroiwa, K. Narita, and Y. Isowa, Bull. Chem. Soc. Jpn., 1973, 46, 1269.
${ }_{44}$ W. G. Rose, J. Am. Chem. Soc., 1947, 69, 1384.

[^0]: * Full experimental details for the preparation of these key N-protected aminoglycoside intermediates by the transitionmetal complexing procedure of Nagabhushan will be published elsewhere.

[^1]: * Note as on page 2186.

[^2]: * Note as on page 2186

[^3]: * Obtained by passage of an aqueous solution of the base over Amberlite IRA $401 \mathrm{~s}\left(\mathrm{OH}^{-}\right)$resin under an inert atmosphere of argon.

[^4]: * Kindly provided by Dr. D. F. Rane.

[^5]: * Note as on page 2186.

