Enantioselective Synthesis of Neoambrosin, Parthenin, and Dihydroisoparthenin

Morio Asaoka,* Taketoshi Ohkubo, Hirotsune Itahana, Takatoshi Kosaka, and Hisashi Takei

Department of Life Chemistry, Tokyo Institute of Technology, Nagatsuta Midoriku, Yokohama 226 Japan

Abstract

Enantioselective synthesis of the titled ambrosanolides is described. Use of the trimethylsilyl group as an anchor contributed to the stereoselective introduction of two methyl groups.

The pseudoguaianolide sesquiterpene lactones have contiguous chiral centers on the flexible sevenmembered ring portion of the bicyclo[5.3.0]decane framework, and therefore have been the challenging and attractive synthetic targets for many years. 1) In connection with our studies on enantioselective synthesis of terpenes using 5-trimethysilyl-2-cyclohexenone (6) as a chiron, we were interested in the structural and stereochemical complexities in conjunction with the once presumed potential for use as therapeutic agents. We designed enantioselective synthesis of ambrosanolide neoambrosin (1a) ${ }^{2}$, parthenin (1b) 3), and dihydroisoparthenin (1c) ${ }^{3 a, 4)}$ which have two methyl groups with cis relationship. Homochiral keto lactone 2 can be considered as a key intermediate for an enantioselective access to the ambrosanoides. Actually, in the racemic version, 1 b was synthesized from 2.5) Our synthetic route adopted stepwise introduction of functional groups to an unsaturated 7 -membered ring, and as a stereocontrol strategy, the trimethylsilyl group anchoring method 6) was examined.

Neoambrosin
$1 \mathbf{1 a}$

Parthenin
1b

Dihydroisoparthenin 1 c

2

Scheme 1.

We envisioned that the presence of the trimethylsilyl group of 6 enable stereoselective introduction of the methyl group to 6 position of $\mathbf{1}$, and subsequent stereocontrol at 6 a position and angular methyl group at 9 a.

Stereoselective introduction of the methyl group to $(S)-(-)-6$ was carried out by the same method for its enantiomer 7) to give enol silyl ether 7. Cyclopropanation of the enol silyl ether 8) followed by oxidative ring opening with $\mathrm{FeCl}_{3}{ }^{9}$) and dehydrochlorination afforded cycloheptenone (-)-5 in 83% overall yield from $(S)-(-)-6$.

83% from 6

Scheme 2. a) $\mathrm{MeMgI}, \mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}, \mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{HMPA}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$; b) $\mathrm{CH}_{2} \mathrm{I}_{2}, \mathrm{ZnEt}, \mathrm{PhMe}$, $0^{\circ} \mathrm{C}$; c) FeCl_{3}, DMF, $0{ }^{\circ} \mathrm{C}-\mathrm{rt}$; d) $\mathrm{NaOAc}, \mathrm{MeOH}$, reflux; e) $\mathrm{ZnI}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{Et}$, $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}, \mathrm{Me}_{3} \mathrm{SiCl} ;$ f) $\mathrm{KF}, \mathrm{MeOH}$.

For cyclopentane annulation, introduction of C 3 unit to (-)-5 by 1,4-addition was examined. Titanium (IV) chloride catalyzed 1,4-addition of allylsilane proceeded smoothly to give a $2: 1$ mixture (determined by $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR) of diastereomers in 83% combined yield, however, the diastereomers could not be separated by column chromatography. 1,4-Addition of zinc homoenolate, which was generated from ethyl 3-iodopropionate, in the presence of $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}$ and $\mathrm{Me} 3 \mathrm{SiCl}^{10}$) gave an easily separable 3:1 mixture of diastereoisomers $[(-)-9$ and $(-)-10]$ in 87% combined yield. The stereostructures of $(-)-9$ and $(-)-10$ were established by the total synthesis of clavukerin A and its epimer. 11) The reaction of the homoenolate generated from (1-ethoxy)cyclopropyl trimethylsilyl ether ${ }^{12 \text {) gave almost the same results. In this system, stereo control }}$ with the Me 3 Si group turned out to be less effective. To test the anchoring effect of the Me3Si group on angular methyl introduction step, two types of bicyclo[5.3.0]decane-2,10-diones, the one with a Me3Si group (Scheme 4), and the other without a Me3Si group (Scheme 3) were subjected to methylation.

Treatment of (-)-9 with excess bromine followed by reduction with zinc and hydrogenation gave desilylated product (+)-11 in 70% overall yield. The Claisen condensation with t-BuOK in THF gave dione $(+)-12$, which exists as an enolketone in CDCl_{3}, in 83% yield. Initial trial for in situ methylation of the potassium salt of the diketone under refluxing conditions resulted in a failure. Methylation of $(+)-12$ in refluxing acetone with excess of methyl iodide and anhydrous potassium carbonate gave an easily separable 1:1 mixture of diastereoisomers, $(-)-3$ and (-)-13, in 81% combined yield. In a similar manner, (-)-14 was obtained from $(-)-10$ in 56% yield. Claisen condensation of $(-)-14$ gave $(-)-15(77 \%)$ whose methylation gave $(+)-16$ as an exclusive product in 67% yield. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $(-)-3$ were virtually identical with
those previously reported for $(\pm)-3.5)$ Thus, the structure of $(-)-13$ was deduced as depicted in Scheme 3. NOE experiment revealed the cis relationship of the ring junction of $(+)-16$.

Scheme 3. a) $\mathrm{Br}_{2}, \mathrm{CCl}_{4} ; \mathrm{Zn}, \mathrm{EtOH} ; \mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C} ;$ b) t - $\mathrm{BuOK}, \mathrm{THF}, 0^{\circ} \mathrm{C}$;
c) Mel, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, reflux.

The Dieckmann-type condensation of (-)-9 gave diketone (- - $\mathbf{- 1 7}$ in 98% yield. In this case also the in situ methylation was unsuccessful. Methylation of $(-)-17$ under the same conditions used for (+)-12 gave $(-)-18(79 \%)$ and $(-)-19(16 \%)$. Thus the presence of the trimethylsilyl group contributes the stereoselectivity in the methylation. The structure of $(-)-18$ was confirmed by the transformation into $(-)-\mathbf{3}(93 \%)$. In the same way, (-)-10 was converted to $(-)-20(95 \%)$ and subjected methylation to give $(-)-21(78 \%)$ as a sole product. The structure of $(-)-21$ was confirmed by the transformation into $(+)-16$. Consequently, the following sequence of operations for the conversion of the major isomer (-) -9 to desired $(-)-3$ turned out to be the best choice: $(-)-9 \rightarrow(-)-17(98 \%) \rightarrow(-)-18(79 \%) \rightarrow(-)-3(93 \%)$.

Scheme 4. a) t-BuOK, THF, $0^{\circ} \mathrm{C}$; b) Mel, acetone, reflux.

Although the trial for selective reduction of diketone (-)-3 was unsuccessful, selective protection of one hydroxy group of diol derivative obtained by the reduction of (-)-3 with excess DIBAH (80% yield) gave the corresponding TBDMS ether in 96% yield. Oxidation with PDC gave (+)-23 quantitatively. The relative stereochemistry of (+)-23 was confirmed after removal of the TBDMS group by comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR with those of racemic one. ${ }^{5}$) After the treatment with LDA, (+)-23 was alkylated with ethyl iodoacetate at $-78{ }^{\circ} \mathrm{C}$ in the presence of HMPA to give $(-)-\mathbf{2 4}$ in 79% yield. The structure of $(-)-24$ was determined by the NOE enhancement between depicted two protons. To convert (-)-24 to a lactone derivative, chemoselective reduction of the ketone to hydroxy group was examined. Reduction with NaBH_{4} in MeOH at $0{ }^{\circ} \mathrm{C}$-rt resulted in a recovery of the starting keto ester. Use of DIBAH in ether at $-78{ }^{\circ} \mathrm{C}$ resulted in a reduction of ester to aldehyde and the ketone remained intact. These results should be ascribed to the steric bulkiness of TBDMS ether. Therefore, to release the steric hindrance, removal of TBDMS group was first carried out. Trials for direct conversion of hydroxy keto ester (- - -25 into lactone (+)-27 resulted in a failure due to the formation of triol 26 as a by-product. Reduction of (-)-25 with excess DIBAH (5 eq) gave triol 26 which was oxidized with O_{2} in the presence of $\mathrm{PtO}_{2}{ }^{13}$) gave $(+)-27$ in 82% overall yield from $(-)-25$. Jones oxidation of $(+)-27$ gave the key intermediate $(+)-2$ in 91% yield. The ${ }^{1}$ H NMR data of $(+)-2$ showed good agreement with those of reported for (\pm) -2 whose structure was confirmed by X -ray analysis, however, the ${ }^{13} \mathrm{C}$ NMR data were apparently different. ${ }^{5}$) The results of X-ray analysis on $(+)-2^{14)}$ were consistent with the depicted structure. These seemingly inconsistent results can be explained by the fact that the chemical shifts of ${ }^{13} \mathrm{C}$ NMR of $(+)-2$ are concentration dependent which suggest the strong self-association ability of this type of compounds. Such disagreement of ${ }^{13} \mathrm{C}$ NMR spectra data between optically active and racemic ones was observed on 28 also. In a racemic series, the conversion of $\mathbf{2}$ to $\mathbf{3 0}$ is already reported.5) Initially, we applied the method to the subsequent transformations but sometimes the harsh reaction conditions caused decomposition of products. Therefore, we examined mild methods. Silylation of $(+)-2$ with TMSOTf and Et 3 N at room temperature followed by treatment with stoichiometric amount of $\mathrm{Pd}(\mathrm{OAc}) 2$ in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature gave (+)-28 in 72% overall yield. 1,4 -Addition of benzeneselenol to (+)-28 and subsequent acetalization gave (-)-29 in 75% overall yield. The oxidative elimination of phenylseleno group with NaIO_{4} gave a $4: 6$ mixture of the desired $(-)-\mathbf{3 0}$ and $\mathbf{3 1}$ in quantitative yield. Though the undesired compound $\mathbf{3 1}$ is a major product, $\mathbf{3 1}$ can be recycled via conversion into $(+)-28$ (quantitative yield). The isolation of (-)-30 from the mixture was carried out by careful column chromatography or by chromatographical separation after selective hydrolysis of $\mathbf{3 1}$ to $(+)-28$ in an acidic media. The introduction of exo-methylene group to (-)-30 by usual method followed by deacetalization gave neoambrosin (1a) in 56% overall yield from (-)-30. The synthesis of parthenin (1b) from $(-)-30$ was carried out according to Heathcock's method.5) The epoxidation of $(-)-30$ gave (-)-32 in quantitative yield and parthenin (1b) was obtained in 67% overall yield from (-)-32. Transformation of parthenin (1b) into dihydroisoparthenin (1c) was achieved in 70% yield according to Herz's method.3a)

82% from (-)-25

Scheme 5. a) DIBAH, THF, $-78^{\circ} \mathrm{C}$; b) TBDMSCl, imidazole, DMF, $0^{\circ} \mathrm{C}$; c) $\mathrm{PDC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt ;
d) LDA, $\mathrm{ICH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, HMPA, THF, $-78^{\circ} \mathrm{C}$; e) $\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}-\mathrm{THF}, 100{ }^{\circ} \mathrm{C}$; f) DIBAH, THF;
g) $\mathrm{PtO}_{2}, \mathrm{O}_{2}$; h) Jones ox.; i) TMSOTf, $\mathrm{Et}_{3} \mathrm{~N} ;$ j) $\mathrm{Pd}(\mathrm{OAc})_{2} ;$ k) $\mathrm{PhSeH}, \mathrm{AcOH} ;$ l) $\left(\mathrm{TMSOCH}_{2}\right)_{2}$, TMSOTf, $0^{\circ} \mathrm{C} ; \mathrm{m}$) $\mathrm{NaIO}_{4}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C} ; \mathrm{n}$) ref. $15 ; \mathrm{o}$) ref. $5 ; \mathrm{p}$) ref. 3 a .

The spectral (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and IR) and physical data of synthesized $1 \mathrm{a}-\mathrm{c}$ were in full agreement with those of reported. The optical rotation of synthesized 1a-c showed good agreement with those of natural ones, however, the sign of synthesized $\mathbf{1 b}$ was opposite. The CD spectrum of synthesized 1c was consistent with the structure of natural dihydroisoparthenin. These results led us to the conclusion that the reported sign of $[\alpha] D$ value of natural $1 b$ is in error.

Experimental

General Procedures. All solvents were dried and stored over molecular sieves. All reactions were carried out under Ar. Infrared spectra were recorded on a Hitachi $260-50 .{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra were recorded on a Hitachi R-24B, JEOL JNM-FX-90Q, or a JEOL JNM-EX 270 in CDCl_{3} otherwise noted. Specific rotation was measured on a Horiba SEPA-200 in CHCl_{3} otherwise noted. CD spectrum was recorded on a JASCO J-500C Spectropolarimeter. Melting points were obtained on a Mitamura Riken melting-point apparatus and are uncorrected.
(3S, 5S)-3-Methyl-1-trimethylsiloxy-5-trimethylsilyl-1-cyclohexene (7). To a mixture of (-)-5-trimethysilyl-2-cyclohexenone $[(-)-6](8.6 \mathrm{~g}, 51 \mathrm{mmol})$ and $\mathrm{CuBr}^{-} \mathrm{Me}_{2} \mathrm{~S}(0.52 \mathrm{~g}, 5 \mathrm{~mol} \%)$ in THF (500 ml) cooled to $-78^{\circ} \mathrm{C}$ were added HMPA ($17.9 \mathrm{ml}, 102 \mathrm{mmol}$) and chlorotrimethylsilane ($19.6 \mathrm{ml}, 153 \mathrm{mmol}$). After the addition of 1 M solution of $\mathrm{MeMgI}(100 \mathrm{ml})$ over a period of 2 h , the reaction mixture was stirred at that temperature further 10 minutes, and then $\mathrm{Et} 3 \mathrm{~N}(21.3 \mathrm{ml}, 153 \mathrm{mmol})$ was added. The reaction mixture was warmed to room temperature and extracted with hexane and then with ether. The organic layers were combined, washed with brine, and dried over MgSO_{4}. After removal of the solvent under reduced pressure, distillation of the residue gave $7\left(26.2 \mathrm{~g}, 92 \%\right.$): oil; bp $75-82^{\circ} \mathrm{C} / 3 \mathrm{mmHg}$; IR (neat) $1665 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; ${ }^{1} \mathrm{H}$ NMR $\delta-0.01(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-2.47(\mathrm{~m}, 9 \mathrm{H}), 4.86(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H})$.
(4S,6S)-4-Methyl-6-trimethylsilyl-2-cycloheptenone [(-)-5]: To a cooled ($0{ }^{\circ} \mathrm{C}$) mixture of 7 (27.4 $\mathrm{g}, 107 \mathrm{mmol})$ in toluene $(100 \mathrm{ml})$ and 1 M solution of $\mathrm{Et}_{2} \mathrm{Zn}$ in hexane $(160 \mathrm{ml})$ was added $\mathrm{CH}_{2} \mathrm{I}_{2}(11.3 \mathrm{ml}$, 140 mmol), and the resulting solution was stirred further 1.5 h at that temperature. After quenching with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min , filtrated through a short pad of celite. The organic layer was washed with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and then with water. Concentration under reduced pressure gave 28.1 g of a crude oil which was used in the following reaction without further purification. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of Fe (III) chloride ($24.2 \mathrm{~g}, 150 \mathrm{mmol}$) in dry DMF (68.8 ml) was added the crude oil ($13.5 \mathrm{~g}, 50 \mathrm{mmol}$) in dry DMF (31.6 ml) $-\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.3 \mathrm{ml})$ over a period of 1 h . Stirring was continued for 0.5 h at $0^{\circ} \mathrm{C}$ and 2 h at room temperature. The reaction mixture was poured into cooled 1 M hydrochloric acid and extracted with hexane 7 times. The combined organic layer was washed with cold 1 M hydrochloric acid, saturated NaHCO_{3} solution, and brine. The organic layer was dried over MgSO_{4}. After filtration, saturated NaOAc in MeOH (200 ml) was added to the filtrate and the volatiles were removed with rotary evaporator. To the residue was added $\mathrm{MeOH}(200 \mathrm{ml})$ and the mixture was refluxed for 2 h . Usual workup followed by column chromatography on silica gel (hexane:AcOEt=40:1) gave (-)-5 (8.96 g, 91\%); oil; [$\alpha]_{\mathrm{D}}{ }^{19}-207.3^{\circ}$ (c 1.0); IR (neat) $1660 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.0(\mathrm{~s}, 9 \mathrm{H}), 0.90-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-1.85(\mathrm{~m}$,
$2 \mathrm{H}), 2.20-3.05(\mathrm{~m}, 3 \mathrm{H}), 5.85(\mathrm{dd}, \mathrm{J}=11,1 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, \mathrm{J}=11,4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta-3.4,18.1$, 21.2, 33.6, 34.8, 43.5, 131.2, 151.4, 205.6. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{OSi}: \mathrm{C}, 67.28 ; \mathrm{H}, 10.27$. Found: C, 67.26; H, 10.48 .
(4S,6S)-3-[2-(Ethoxycarbonyl)ethyl]-4-methyl-6-trimethylsilylcycloheptanone [(-)-9, (-)10]. A mixture of Zn powder ($3.14 \mathrm{~g}, 48 \mathrm{mmol}$) and 1,2 -dibromoethane in THF $(4 \mathrm{ml})$ was heated at $65^{\circ} \mathrm{C}$ for 2 min . Chlorotrimethylsilane ($0.2 \mathrm{ml}, 1.6 \mathrm{mmol}$) was added to the mixture at rt and the mixture was stirred for 10 min . To the reaction mixture was added ethyl iodopropionate ($10.7 \mathrm{~g}, 47 \mathrm{mmol}$) in dry THF (25 ml) at $30^{\circ} \mathrm{C}$, and the resulted solution was stirred at $35-40^{\circ} \mathrm{C}$ for 24 h . To the cooled $\left(-10^{\circ} \mathrm{C}\right)$ slurry were added $\mathrm{LiCl}(83.3 \mathrm{~g}, 80 \mathrm{mmol})$ and $\mathrm{CuCN}(3.58 \mathrm{~g}, 40 \mathrm{mmol})$ in dry THF (40 ml). After being stirred for 10 min the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. After addition of a mixture of $(-)-5(2.94 \mathrm{~g}, 15 \mathrm{mmol})$ and chlorotrimethylsilane $(10.3 \mathrm{ml}, 81.5 \mathrm{mmol})$ in dry ether $(20 \mathrm{ml})$ over a period of 1 h , stirring was continued at $-78^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was warmed to room temperature over a period of 3 h , and stirred at room temperature overnight. Usual workup and purification by column chromatography (hexane:AcOEt=8:1) afforded (-)-9 (2.9 $\mathrm{g}, 65 \%)$ and $(-)-10(0.98 \mathrm{~g}, 22 \%) .(-)-9: \mathrm{mp} 39-39.5^{\circ} \mathrm{C}$ (pentane); [$\left.\alpha\right] \mathrm{D}^{22}-50.1^{\circ}(c 0.99)$; IR (neat) 1695 , $1735 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.0(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.2-2.9(\mathrm{~m}, 13 \mathrm{H})$, $4.05(\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta-3.6,14.3,14.9,19.1,29.1,32.0,32.2,35.5,39.6,42.7,45.0,60.2$, 173.4, 214.3. Anal. Calcd For $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 64.38 ; \mathrm{H}, 10.13$. Found: C, $64.66 ; \mathrm{H}, 10.33$. (-)-10: oil; $[\alpha] \mathrm{D}^{26}-52.68^{\circ}(c 1.1)$; IR (neat) $1710,1745 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.0(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.25(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.8-2.7(\mathrm{~m}, 13 \mathrm{H}), 4.08(\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta-3.5,11.7,14.3,17.8,30.1$, $32.5,35.5,37.5,38.4,43.9,45.2,60.4,173.3,213.8$. Anal. Calcd For $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 64.38 ; \mathrm{H}, 10.13$. Found: C, 64.16; H, 10.06.
(3S,4S)-3-[2-(Ethoxycarbonyl)ethyl]-4-methylcycloheptanone [(+)-11]. To a solution of (-)-9 $(4.0 \mathrm{~g}, 13.4 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(10 \mathrm{ml})$ was added a 1 M solution of Br_{2} in $\mathrm{CCl}_{4}(40 \mathrm{ml})$ at room temperature. After being stirred for 2 h , the solution was quenched with saturated aq. NaHCO_{3} and solid $\mathrm{Na}_{2} \mathrm{SO}_{3}$. After usual workup, the crude product was dissolved in $\mathrm{EtOH}(40 \mathrm{ml})$. A mixture of the solution and activated Zn powder ($2.0 \mathrm{~g}, 3 \mathrm{mmol}$) was heated to $60^{\circ} \mathrm{C}$ for 0.5 h and then cooled to room temperature. The reaction mixture was filtrated through a short pad of celite, and the filtrate was concentrated to 20 ml . To the solution was added $10 \% \mathrm{Pd} / \mathrm{C}(0.8 \mathrm{~g})$, and stirring under $\mathrm{H}_{2}(1 \mathrm{~atm})$ was continued for 24 h . Usual workup and purification by column chromatography (hexane:AcOEt=85:15) gave (+)-11 ($2.12 \mathrm{~g}, 70 \%$): oil; $[\alpha] \mathrm{D}^{26}$ $+19.76^{\circ}$ ((2.7); IR (neat) $1705,1730 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.02(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H})$, 1.2-2.0 (m, 8 H), 2.15-2.70 (m, 6 H), $4.05(\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.3,20.5,29.4,31.3,35.0$, 38.1, 41.2, 43.7, 45.5, 60.3, 173.4, 213.6. Anal. Calcd For $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}: \mathrm{C}, 68.99 ; \mathrm{H}, 9.80$. Found: C, 68.99; H, 10.05.
(3R,4S)-3-[2-(Ethoxycarbonyl)ethyl]-4-methylcycloheptanone [(-)-14]. Yield 56%; oil; $[\alpha] \mathrm{D}^{24}-3.55^{\circ}(c 4.0)$; IR (neat) $1700,1740 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.95(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.25(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.2-3.0(\mathrm{~m}, 14 \mathrm{H}), 4.05(\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta \mathbf{1 4 . 3}, 15.1,21.0,27.3,32.2$,
35.3, 37.1, 38.4, 43.8, 45.9, 60.24 173.3, 213.5. Anal. Calcd For $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}$: C, 68.99; H, 9.80. Found: C, 69.05; H, 10.12.
($6 S, 7 R$)-6-Methylbicylo [5.3.0]decane-2,10-dione [(+)-12]. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of t-BuOK (22 mmol) in THF (10 ml) was slowly added a solution of $(+)-11(1.0 \mathrm{~g}, 4.4 \mathrm{mmol})$, and the mixture was stirred for 15 min . Usual workup and column chromatography (hexane:AcOEt=94:6) gave (+)-12 ($645 \mathrm{mg}, 81 \%$): oil; $[\alpha]_{\mathrm{D}}{ }^{21}+43.44^{\circ}(c 1.2)$; IR (neat) $1640,1610 \mathrm{~cm}^{-1}(\mathrm{C}=0, \mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.95$ (d, $\mathrm{J}=6 \mathrm{~Hz}, 3 \mathrm{H}$), 1.0-2.8 (m, 12 H), 14-15 (br s, 1 H); ${ }^{13} \mathrm{C}$ NMR $\delta 20.6,24.1,27.7,36.0,37.2,39.3,40.4$, 45.8, 113.8, 183.4, 204.9. Anal. Calcd For $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 73.30; H, 8.95. Found: C, 72.98; H, 9.14.
(6S,7S)-6-Methylbicylo[5.3.0]decane-2,10-dione [(-)-15]. Yield 77\%; oil; [$\alpha]_{\mathrm{D}}{ }^{15}$-60.80 ${ }^{\circ}$ (c 1.5); IR (neat) $1645,1610 \mathrm{~cm}^{-1}(\mathrm{C}=0, \mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.80(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.3-3.3$ (m, 12 H), 12.5-13.5 (br $\mathrm{s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 11.8,18.2,24.8,34.6,35.6,37.3,38.7,43.5,111.1,186.5,199.9$. Anal. Calcd For $\mathrm{C}_{11 \mathrm{H} 16 \mathrm{O}}^{2}$: C, 73.30; H, 8.95. Found: C, 72.83; H, 9.23.
($6 S, 7 R$)-1,6-Dimethylbicyclo [5.3.0]decane-2,10-dione [(-)-3, (-)-13]. A mixture of (+)-12 ($111 \mathrm{mg}, 0.62 \mathrm{mmol}$), Mel ($1.2 \mathrm{~g}, 8.45 \mathrm{mmol}$), acetone (5 ml), and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($530 \mathrm{mg}, 3.84 \mathrm{mmol}$) was heated under reflux for 5 h . Usual workup and column chromatography (hexane:AcOEt=4:1) gave (-)$(1 R, 6 S, 7 R)-3(48 \mathrm{mg}, 40 \%)$ and $(-)-(1 S, 6 S, 7 R)-13(49 \mathrm{mg}, 41 \%) .(\cdot)-(1 R, 6 S, 7 R)-3: \mathrm{mp} 77-77.5^{\circ} \mathrm{C}$ (hexane); $[\alpha]^{12} \mathrm{D}-65.12^{\circ}$ ($c 0.8$); IR (KBr) $1705,1745 \mathrm{~cm}^{-1}(\mathrm{C}=0) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.05(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.41(\mathrm{~s}, 3 \mathrm{H}), 1.2-2.9(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR (CCl4) $\delta 1.02(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.4-2.8(\mathrm{~m}$, $12 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 21.5,23.5,23.9,26.6,32.1,37.8,38.3,40.5,52.8,210.4,218.6$. Anal. Calcd For $\mathrm{C}_{12} \mathrm{H}_{18 \mathrm{O}}^{2}$: C, 74.19; H, 9.34. Found: C, 73.90; H, 9.65. (-)-($1 S, 6 S, 7 R$)-13: mp $75-76.5^{\circ} \mathrm{C}$ (hexane); $[\alpha] \mathrm{D}^{15}-9.45^{\circ}(c 0.7)$; IR (neat) $1690,1760 \mathrm{~cm}^{-1}(\mathrm{C}=0) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.05(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$, $1.4-2.70(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.02(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.2-2.65(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\delta 16.0,19.9,22.0,23.5,32.9,37.0,37.9,42.7,50.0,63.9,209.4,213.1$. Anal. Calcd For $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 74.19; H, 9.34. Found: C, 74.24; H, 9.43.
(1S,6S,7S)-1,6-Dimethylbicyclo[5.3.0]decane-2,10-dione [(+)-16]. Yield 67\%; mp $49-50{ }^{\circ} \mathrm{C}$ (pentane); $[\alpha] \mathrm{D}^{20}+137.6^{\circ}$ (c 1.1); IR (KBr), $1715,1740 \mathrm{~cm}^{-1}\left(\mathrm{C}=0\right.$); ${ }^{1} \mathrm{H}$ NMR $\boldsymbol{\delta} 1.07$ (d, $\mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}$), $1.29(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.61(\mathrm{~m}, 3 \mathrm{H})$, 1.82-1.93 (m, 2 H$),$, 2.01-2.18 (m, 1 H$), ~ 2.21-2.35(\mathrm{~m}$, 1 H), 2.38-2.62 (m, 3 H); ${ }^{13}{ }^{3}$ C NMR δ 19.7, 20.8, 22.9, 24.7, 30.8, 33.8, 37.4, 42.5, 51.5, 66.2, 208.2, 216.6. Anal. Calcd For $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 74.19; H, 9.34. Found: C, 73.72; H, 10.02 .
($4 S, 6 S, 7 R$)-6-Methyl-4-trimethylsilylbicylo[5.3.0]decane-2,10-dione [(-)-17]. Yield 98\%; $\mathrm{mp} 60-61.5^{\circ} \mathrm{C}$ (pentane); $[\alpha] \mathrm{D}^{21}-44.0^{\circ}$ (c 1.0); IR (neat) $1620,1660 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.0(\mathrm{~s}, 9 \mathrm{H})$, $0.93(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-2.62(\mathrm{~m}, 11 \mathrm{H}), 13.9(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 0.0,22.7,23.4,31.3,37.7$, 39.9, 41.0, 41.9, 46.0, 117.4, 183.6, 210.2. Anal. Calod For $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 66.61 ; \mathrm{H}, 9.58$. Found: C, 66.71; H, 9.86.
(4S,6S,7R)-1,6-Dimethyl-4-trimethylsilylbicylo[5.3.0]decane-2,10-dione [(-)-18, (-)-19]. ($1 S, 4 S, 6 S, 7 R$)-18 : yield 79\%; mp $68-69{ }^{\circ} \mathrm{C}$ (pentane); $[\alpha] \mathrm{D}^{21}-122.0^{\circ}$ (c 1.1); IR (KBr) $1690,1740 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.0(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.36-2.43(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $0.0,21.7,22.4,26.7,28.9,34.5,38.5,41.2,46.9,54.4,69.3,210.9,220.0$. Anal. Calcd For $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 67.61 ; \mathrm{H}, 9.84$. Found: C, 67.32; H, 9.87. ($1 R, 4 \mathrm{~S}, 6 \mathrm{~S}, 7 \mathrm{R}$)-19: yield 16%; mp $84-85^{\circ} \mathrm{C}$ (pentane); $[\alpha] \mathrm{D}^{21}-83.1^{\circ}$ (c 1.1); IR (KBr) $1690,1745 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.0(\mathrm{~s}, 9 \mathrm{H})$, $0.92(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.22-2.56(\mathrm{~m}, 10 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 0.0,17.9,19.7,22.1,27.3,35.9$, $37.0,41.2,46.0,52.0,68.0,213.2,216.7$. Anal. Calcd For $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 67.61 ; \mathrm{H}, 9.84$. Found: C, 67.56; H, 9.92.
($4 S, 6 S, 7 S$)-6-Methyl-4-trimethylsilylbicylo[5.3.0]decane-2,10-dione [(-)-20]. Yield 95\% (crude). The crude product was used in the next alkylation. IR (KBr) $1640 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\delta-0.01$ (s , $1 \mathrm{H}), 0.76(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.99(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.82-2.10(\mathrm{~m}, 3 \mathrm{H}), 2.26-2.50(\mathrm{~m}$, $4 \mathrm{H})$, 3.11-3.17 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR $\delta-3.5,11.7,15.9,24.6,35.0,35.2,38.5,40.0,43.8,110.8,189.5$, 197.0.
(1R,4S,6S,7S)-1,6-Dimethyl-4-trimethylsilylbicylo[5.3.0]decane-2,10-dione [(-)-21]. Yield 78%; $[\alpha] \mathrm{D}^{28}-16.6^{\circ}$ (c 1.5); IR (neat) $1740,1700 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; ${ }^{1} \mathrm{H}$ NMR $\delta-0.01(\mathrm{~s}, 9 \mathrm{H}), 0.88-0.95$ (m, $1 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.99(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.10(\mathrm{~m}, 3 \mathrm{H})$, 2.27-2.36 (m, 2 H), 2.49-2.54 (m, 2 H); ${ }^{13}{ }^{2} \mathrm{C}$ NMR $\delta-3.7,18.0,19.6,21.3,21.9,31.0,31.6,36.4,39.6$, 50.8, 64.7, 210.9, 217.4.

Transformation of (-)-18 into (-)-3 by Desilylation. A solution of (-)-18 ($405 \mathrm{mg}, \mathbf{1 . 5 2} \mathbf{~ m m o l}$) and $\mathrm{Br} 2(3.5 \mathrm{ml})$ in $\mathrm{CCl}_{4}(18.5 \mathrm{ml})$ was left at room temperature overnight. The solution was poured into saturated NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After removal of the solvent, the residue was dissolved into glacial acetic acid (12 ml). To the solution was added zinc powder (400 mg) and the mixture was stirred at room temperature for 20 min . The mixture was slowly poured into cooled saturated NaHCO_{3} solution. Filtration through a short pad of celite, extraction of the filtrate with ether, and removal of the solvent gave a crude product. To a solution of the crude product in $\mathrm{EtOH}(20 \mathrm{ml})$ was added $10 \% \mathrm{Pd} / \mathrm{C}$ and the mixture was stirred for 1 h under $\mathrm{H}_{2}(1 \mathrm{~atm})$. To the reaction mixture were added saturated NaHCO_{3} solution and ether. Filtration, extraction with ether, concentration, and purification by column chromatography (hexane: $\mathrm{AcOEt}=10: 1$) gave (-)-3 ($275 \mathrm{mg}, 93 \%$).
(1S,6S,7R,10S)-10-t-Butyldimethylsiloxy-1,6-dimethylbicyclo[5.3.0]decane-2-one [(+)23]. To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $(-)-3(194 \mathrm{mg}, 1.0 \mathrm{mmol})$ in THF $(10 \mathrm{ml})$ was added 1 M DIBAH (2.5 ml), and the solution was stirred 10 min . After addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was warmed to room temperature, filtrated through a short pad of celite, and extracted with ether. Usual workup and purification by column chromatography (hexane:AcOEt=4:1) gave ($1 R, 6 S, 7 R, 10 S$)-2,10-Dihydroxy -1,6dimethylbicy clo[5.3.0]decane ($159 \mathrm{mg}, 80 \%$): mp $73-74^{\circ} \mathrm{C}$ (hexane); [α] $\mathrm{D}^{16}+22.8^{\circ}$ (c 1.1); IR (KBr) $3100-3650 \mathrm{~cm}^{-1}(\mathrm{OH}) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{dt}, \mathrm{J}=5.6,12.5 \mathrm{~Hz}, 1 \mathrm{H})$,
1.23-1.37 (m, 1 H), 1.40-1.83 (m, 9 H), 1.87-1.96 (m, 1 H), 2.66 (br s, 1 H), 2.95 (br s, 1 H), 3.80 (d, $\mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, \mathrm{J}=5.9,11.2 \mathrm{HZ}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.7,23.4,24.3,28.5,31.1,31.7,36.7$, $38.1,48.5,56.8,75.8,76.2$. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the above diol ($251 \mathrm{mg}, 1.26 \mathrm{mmol}$) in DMF $(12.6 \mathrm{ml})$ were added imidazole ($95 \mathrm{mg}, 1.39 \mathrm{mmol}$) and chloro-t-butyldimethylsilane ($190 \mathrm{mg}, 1.26 \mathrm{mmol}$), and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 22 h . Usual workup and purification by column chromatography (hexane:AcOEt=30:1) gave ($1 R, 6 S, 7 R, 10 S$)-10-t-Butyldimethylsiloxy-2-hydroxy-1,6dimethylbicyclo[5.3.0]decane ($378 \mathrm{mg}, 96 \%$): oil; IR (neat) $3650,3250-3600 \mathrm{~cm}^{-1}(\mathrm{OH}$); ${ }^{1} \mathrm{H}$ NMR $\delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.98-1.11(\mathrm{~m}, 1 \mathrm{H}), 1.21$ $1.84(\mathrm{~m}, 12 \mathrm{H}), 3.71(\mathrm{q}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, \mathrm{J}=10.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta-5.0,-4.2,18.0$, $23.4,23.9,24.7,25.9,29.0,30.4,32.5,36.7,39.0,49.3,56.9,75.7,76.2$. To a solution of the above TBDMS ether ($306 \mathrm{mg}, 0.98 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(27 \mathrm{ml})$ was added $\mathrm{PDC}(2.0 \mathrm{~g}, 5.3 \mathrm{mmol})$, and the mixture was stirred at room temperature for 3 h . Usual workup and purification by preparative TLC (hexane:ether=3:1) gave (+)-23 (304 mg , quant): mp 50-51 ${ }^{\circ} \mathrm{C}$ (pentane); $[\alpha] \mathrm{D}^{20}+76.4^{\circ}$ (c 0.4); IR (neat), $1690 \mathrm{~cm}^{-1}$ ($\mathrm{C}=0$); 1_{H} NMR $\delta 0.0(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}$, $3 \mathrm{H}), 1.38-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.89(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{ddd}, \mathrm{J}=4.3,5.0,11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.83(\mathrm{dt}, \mathrm{J}=5.3,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dt}, \mathrm{J}=5.3,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, \mathrm{J}=6.3,10.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $-4.9,-4.7,18.0,22.2,22.8,25.8,25.9,27.7,32.8,36.4,39.0,39.3,55.7,59.3,74.3,214.6$. Anal. Calcd For $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 69.62 ; \mathrm{H}, 11.04$. Found: C, $69.20 ; \mathrm{H}, 10.96$.
(1 $S, 3 S, 6 S, 7 R, 10 S$)-10-t-Butyldimethylsiloxy-3-[2-(ethoxycarbonyl)methyl]-1,6-
dimethylbicyclo[5.3.0]decane-2-one [(-)-24]. To a cooled ($-78^{\circ} \mathrm{C}$) solution of LDA (1.62 mmol) in THF (10 ml) was added (+)-23 ($315 \mathrm{mg}, 1.2 \mathrm{mmol}$) in THF (10 ml), and stirred for 1 h . After addition of a mixture of ethyl iodoacetate ($181 \mathrm{ml}, 1.56 \mathrm{mmol}$) and HMPA ($315 \mathrm{mg}, 1.0 \mathrm{mmol}$) in THF (10 ml) over a period of 40 min , the reaction mixture was left to warm to room temperature. Usual workup and purification
 ($\mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR $\delta-0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.24$ $(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-2.06(\mathrm{~m}, 10 \mathrm{H}), 2.35(\mathrm{dd}, \mathrm{J}=6.9,16.8,1 \mathrm{H}), 2.73(\mathrm{dd}, \mathrm{J}=6.9,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ (ddt, J=4.3, $6.9,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{dd}, \mathrm{J}=6.3,9.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta-5.0$, $-4.6,14.2,18.0,20.4,21.1,25.7,28.6,29.0,30.5,34.5,35.6,36.7,44.0,54.5,59.7,60.3,77.2,172.6$, 214.4.
(1S,3S,6S,7R,10S)-3-[2-(Ethoxycarbonyl)ethyl]-10-hydroxy-1,6-
dimethylbicyclo[5.3.0]decane-2-one [(-)-25]. A solution of (-)-24 (981 mg, 2.48 mmol) in AcOH$\mathrm{H}_{2} \mathrm{O}$-THF (3:1:1) was heated at $110^{\circ} \mathrm{C}$ for 4 h . After cooling to room temperature, the volatiles were removed under reduced pressure. Purification of the residue by column chromatography (hexame:AcOEt=25:1) gave unreacted (-)-24 (163 mg, 17\%) and (-)-25 (545 mg, 78\%). (-)-25: oil; [α]D $\mathrm{D}^{22}-53.7^{\circ}$ (c 1.1); IR (neat) 3550 $(\mathrm{OH}), 1740$ and $1700(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.91(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3$ H), 1.09-1.85 (m, 9 H), 1.93-2.12 (m, 1 H), $2.06(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, \mathrm{J}=3.1,17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.07$ (dd, J=11.4, 17.6 Hz, 1 H), $3.39(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{dd}, \mathrm{J}=6.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.1,18.9,21.5,27.7,28.7,30.6,31.4,36.9,37.1,40.8,55.6,61.0,61.4,77.9,173.7,216.2$.
(3aS, $6 S, 6 \mathrm{a}, 9 \mathrm{~S}, 9 \mathrm{aS}, 9 \mathrm{~b} R$)-9-Hydroxy-6,9a-dimethyl-3,3a,4,5,6,6a,7,8,9,9a,9b-undecahydroazureno[4,5-b]furan-2-one [(+)-27]. To a cooled (-78 ${ }^{\circ} \mathrm{C}$) solution of (-)-25 (149 mg, 0.53 mmol) in THF (14 ml) was added 0.93 M solution of DIBAH in hexane ($2.9 \mathrm{ml}, 2.7 \mathrm{mmol}$) and the solution was stirred at that temperature for 1 h . After addition of 2 M HCl , the mixture was warmed to room temperature and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \times 30 \mathrm{ml})$. Removal of the solvent gave an oil which was used for the next step without further purification. Under oxygen atmosphere, to a mixture of platinum black prepared from $\left.\mathrm{PtO}_{2}(149 \mathrm{mg}, 0.53 \mathrm{mmol})^{13}\right)$ and $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{ml})$ was added a $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{ml})$-acetone $(5 \mathrm{ml})$ solution of the above oil. The mixture was heated to reflux and stirred at that temperature for 1 h . After cooling to room temperature, the mixture was filtered trough celite and the filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Removal of the solvent and purification of the residue by column chromatography (hexane: $\mathrm{AcOE} t=5: 3$) gave (+)-27(103 mg, 82%): mp $106-107^{\circ} \mathrm{C}$ (hexane-ether); $[\alpha] \mathrm{D}^{22}+52.0^{\circ}(\mathrm{c} 0.7)$; IR (KBr) $3510(\mathrm{OH}), 1780(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; 1_{H} NMR $\delta 0.84(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.13-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.45-2.00(\mathrm{~m}, 9 \mathrm{H}), 2.29$ (dd, $\mathrm{J}=11.9,17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, \mathrm{J}=9.9,17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{dd}, \mathrm{J}=5.6,11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.81(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 17.6,21.0,27.1,27.3,29.8,33.8,35.2,35.4,37.4,47.4,51.6$, 83.0, 90.4, 176.4. Anal. Calcd For $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O} 3$: C, 70.56 ; H, 9.31. Found: C, 70.53; H, 9.36 .
(3aS,6S,6aR,9aR,9bR)-6,9a-Dimethyl-3,3a,4,5,6,6a,7,8,9a,9b-decahydroazureno[4,5-b]furan-2,9-dione [(+)-2]. To a stirred solution of (+)-27 (214 mg, 0.9 mmol) in acetone (20 ml) was slowly added the Jones reagent until (+)-27 was consumed. After addition of 2-propanol, the mixture was poured into a 2 M HCl solution. Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, removal of the solvent, and purification of the residue by column chromatography (hexane: $\mathrm{AcOEt}=2: 1$) gave (+)-2 ($193 \mathrm{mg}, 91 \%$): $\mathrm{mp} 103-105{ }^{\circ} \mathrm{C}$ (hexaneether); $[\alpha] \mathrm{D}^{23}+47.4^{\circ}(c 1.1)$; IR (KBr) $1780,1740 \mathrm{~cm}^{-1}(\mathrm{C}=0) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.05(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.35$ ($\mathrm{s}, 3 \mathrm{H}$) , 1.30-1.88 (m, 6H), $1.94(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{dd}, \mathrm{J}=4.1,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 2 \mathrm{H})$, $2.82(\mathrm{dd}, \mathrm{J}=9.4,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.5,23.6,25.3$, $29.8,30.4,34.1,36.3,36.9,38.4,50.6,55.6,85.2,176.7,217.8$. Anal. Calcd For $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 71.16; H, 8.53. Found: C, 70.96; H, 8.28.
(3aS,6S,6aS,9aR,9bR)-6,9a-Dimethyl-3,3a,4,5,6,6a,9a,9b-octahydroazureno[4,5-b]furan-2,9-dione [(+)-28]. A mixture of (+)-2 ($175 \mathrm{mg}, 0.74 \mathrm{mmol}$), $\mathrm{Et} 3 \mathrm{~N}(0.19 \mathrm{ml}, 1.3 \mathrm{mmol})$, and trimethylsilyl trflate $(0.22 \mathrm{ml}, 1.1 \mathrm{mmol})$ in toluene $(6.6 \mathrm{ml})$ was stirred at room temperature for 4.5 h . After dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the mixture was washed with saturated NaHCO_{3} solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation gave a crude enol silyl ether. A mixture of the enol silyl ether and $\mathrm{Pd}(\mathrm{OAc}) 2$ (166 $\mathrm{mg}, 0.74 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(4.5 \mathrm{ml})$ was stirred at room temperature for 1 h . Filtration through a short pad of silica gel followed by purification by column chromatography (hexane: AcOEt=1:1) gave (+)-28 (126 mg, 72%): mp 156-157.5 ${ }^{\circ} \mathrm{C}$ (hexane-ether); $[\alpha]^{22}+54.4^{\circ}(c 0.7)$; IR (KBr) $1780,1700 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR δ 1.08 (d, J=6.3 Hz, 3 H), $1.26(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.95(\mathrm{~m}, 5 \mathrm{H}), 2.29(\mathrm{dd}, \mathrm{J}=10.8,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56$ (ddd, $\mathrm{J}=1.7,3.0,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, \mathrm{J}=9.9,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.15$ (dd, J=1.7, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.68\left(\mathrm{dd}, \mathrm{J}=3.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ NMR $\delta 20.6,21.2,27.4,34.1,35.0,35.6$,
37.5, 51.7, 56.4, 81.2, 130.5, 164.7, 176.1, 210.2. Anal. Calcd For $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$: $\mathrm{C}, 71.77 ; \mathrm{H}, 7.74$. Found: C, 71.14; H, 7.57.
(3aS, 6S,6aR,9aR,9bR)-6,9a-Dimethyl-7-phenylseleno-3,3a,4,5,6,6a,7,8,9a,9b-decahydroazureno[4,5-b]furan-2,9-dione 9-Ethylen Acetal [(-)-29]. A mixture of diphenyldiselenide ($241 \mathrm{mg}, 1.03 \mathrm{mmol}$) and $\mathrm{NaBH}_{4}(83 \mathrm{mg}, 2.19 \mathrm{mmol})$ in $\mathrm{EtOH}(4 \mathrm{ml})$ was stirred at room temperature under Ar until a clear solution was obtained. To the cooled $\left(0^{\circ} \mathrm{C}\right)$ solution were added glacial acetic acid ($0.22 \mathrm{ml}, 3.84 \mathrm{mmol}$) and (+)-28($241 \mathrm{mg}, 1.03 \mathrm{mmol}$) in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.5 \mathrm{ml})$. After being stirred at $0^{\circ} \mathrm{C}$ for 1.5 h , the solution was poured into a saturated NaHCO_{3} solution. Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentration of the organic layer gave a crude selenol adduct which was used without further purification. A mixture of the crude adduct, 1,2-bis(trimethylsiloxy)ethane ($0.76 \mathrm{ml}, 3.09 \mathrm{mmol}$), and trimethylsilyl triflate ($0.11 \mathrm{ml}, 0.58 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at $0{ }^{\circ} \mathrm{C}$ overnight. After addition of $\mathrm{Et} 3 \mathrm{~N}(0.34 \mathrm{ml})$, the mixture was poured into a saturated NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Removal of the solvent and purification by column chromatography (hexane:AcOEt=3:1) gave (-)-29 ($335 \mathrm{mg}, \mathbf{7 5 \%}$): IR (KBr) 1770 $\mathrm{cm}^{-1}(\mathrm{C}=0)$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.90(\mathrm{~m}, 5 \mathrm{H})$, 1.90 and $1.94(2 \mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.00$ and $2.14(2 \mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ and $2.28(2 \mathrm{~d}, \mathrm{~J}=17.8 \mathrm{~Hz}$, 1 H), 2.51 and $2.55(2 \mathrm{~d}, \mathrm{~J}=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H}), 3.74-4.08(\mathrm{~m}, 4 \mathrm{H}), 5.25(\mathrm{~d}$, $\mathrm{J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.65(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 20.1,20.6,26.6,31.7,35.5,36.1,37.6,38.3,42.1$, $51.2,55.3,64.8,65.3,77.2,81.1,117.8,128.2,128.5,129.0,136.2,176.9$.

(3aS,6S,9aR,9bR)-6,9a-Dimethyl-3,3a,4,5,6,8,9a,9b-octahydroazureno[4,5-b]furan-2,9dione 9-Ethylen Acetal [(-)-30] and (3aS, $6 S, 6 \mathrm{aS}, 9 \mathrm{a} R, 9 \mathrm{~b}$) -6,9a-Dimethyl-3,3a,4,5,6,6a,9a,9b-octahydroazureno[4,5-b]furan-2,9-dione 9-Ethylen Acetal [31]. To a cooled ($-10^{\circ} \mathrm{C}$) solution of $(-)-29(64 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{MeOH}(7 \mathrm{ml})$ was slowly added a solution of NaIO_{4} ($500 \mathrm{mg}, 2.35 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$. The mixture was stirred at $-10^{\circ} \mathrm{C}$ for 3 h and at room temperature for 0.5 h. After addition of saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and NaHCO_{3} solutions, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

 Removal of the solvent and purification by tle (hexane:ether=1:2) gave a 4 to 6 mixture of $(-)-30$ and 31 ($42 \mathrm{mg}, \mathbf{1 0 0 \%}$). (-)-30: [$\alpha]_{\mathrm{D}}{ }^{29} \cdot 26.4^{\circ}$ (c 0.56); IR (KBr) $1780 \mathrm{~cm}^{-1}\left(\mathrm{C}=0\right.$); ${ }^{1} \mathrm{H}$ NMR $\delta 1.18$ (d, J=7.3 Hz, 3 H), 1.28 (s, 3 H), 1.58-1.90 (m, 4 H), 2.36 (dd, J=7.6, $17.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.43-2.50 (m, 2 H), 2.64 (dd, $\mathrm{J}=9.2,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.98(\mathrm{~m}, 2 \mathrm{H}), 3.90-4.10(\mathrm{~m}, 4 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}$, $1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta .17 .6,22.9,26.1,28.5,36.2,37.2,39.2,40.1,56.8,64.9,64.9,82.8,120.0,125.0$, 149.9, 177.4.Neoambrosin (1a). A mixture of (-) $\mathbf{- 3 0 (2 0 ~ m g , ~} 0.07 \mathrm{mmol}$) and a 2 M solution of MMC (methyl methoxymagnesium carbonate) in DMF (4 ml) was heated at $140^{\circ} \mathrm{C}$ for 3 h . To the cooled $\left(-10^{\circ} \mathrm{C}\right)$ solution was added $5 \% \mathrm{HCl}$. Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentration of the organic layer gave a crude carboxylic acid. A mixture of the crude acid, $\mathrm{NaOAc}(51 \mathrm{mg}$), diethylamine (0.5 ml), formalin (1.5 ml), and acetic acid (2 ml) was stirred at $110^{\circ} \mathrm{C}$ for 15 min . After being cooled to $0^{\circ} \mathrm{C}$, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water, $5 \% \mathrm{HCl}$, and saturated NaHCO_{3} solution. The organic layer was concentrated and the residue was dissolved into $\mathrm{MeOH}(2.0 \mathrm{ml})-3 \mathrm{M} \mathrm{HCl}(1.3 \mathrm{ml})$. After 1.5 h at $15^{\circ} \mathrm{C}$, the solution was poured
into a cold saturated NaHCO_{3} solution. Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, concentration of the organic layer, and purification by tlc (ether:hexane=1.5:1) gave 1a (10 mg, overall 56%): $[\alpha]{ }_{D}{ }^{25}-68.7^{\circ}(c 0.4)\left[1 i t .{ }^{2 a}\right)[\alpha]_{\mathrm{D}}-66^{\circ}$ (c 2)]; IR (KBr) $1750 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.17(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.60-2.20(\mathrm{~m}, 4 \mathrm{H})$, 2.82 (dd, J=2.3, $23.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.90(\mathrm{~m}, 1 \mathrm{H}), 3.13$ ($\mathrm{dd}, \mathrm{J}=2.3,23.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (m, 1H), 4.42 (d, $\mathrm{J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $15.1,21.2,24.0,30.1,38.8,39.9,43.5,58.5,79.8,119.9,124.3,138.8,149.3,169.8,213.8$.
(3aS, 6S,6aR,7S,9aR,9bR)-6a,7-Epoxy-6,9a-dimethyl-3,3a,4,5,6,6a,7,8,9a,9b-decahydroazureno[4,5-b]furan-2,9-dione 9-Ethylen Acetal [(-)-32]. To a solution of a mixture of (-)-30 and $\mathbf{3 1}$ (4 to 6 mixture, 51 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added m-CPBA ($40 \mathrm{mg}, 0.23 \mathrm{mmol}$) and the mixture was stirred at room temperature for 2 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solution was washed with cold saturated NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solutions. Removal of the solvent and purification by column chromatography (hexane: $\mathrm{AcOEt}=4: 1$) gave recovered 31 (36 mg , quant) and (-)-32 (23 mg , quant): mp 196-197.5 ${ }^{\circ} \mathrm{C}$ (hexane-ether); $[\alpha] \mathrm{D}^{20}-52.6^{\circ}$ (c 1.6); IR (KBr) $1780 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.22$ (d, $\mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.60-2.07(\mathrm{~m}, 5 \mathrm{H}), 2.16(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{dd}, \mathrm{J}=12.4,17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.63$ ($\mathrm{dd}, \mathrm{J}=9.6,17.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.03(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 1 \mathrm{H}), 3.75-4.17(\mathrm{~m}, 4 \mathrm{H}), 5.13(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13}$ C NMR $\delta 14.4,18.4,24.5,28.5,36.1,38.5,38.9,38.9,54.8,58.6,64.5,65.6,69.5,81.4,116.1$, 176.9.

Parthenin (1 b). A mixture of (-)-32 ($64 \mathrm{mg}, 0.22 \mathrm{mmol}$) and a 2 M solution of MMC in DMF (4 ml) was heated at $140{ }^{\circ} \mathrm{C}$ for 3 h . To the cooled $\left(-10{ }^{\circ} \mathrm{C}\right)$ solution was added $5 \% \mathrm{HCl}$. Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentration of the organic layer gave crude a carboxylic acid. A mixture of the crude acid, $\mathrm{NaOAc}(51 \mathrm{mg}$), diethylamine (0.5 ml), formalin (1.5 ml), and acetic acid (2 ml) was stirred at $110^{\circ} \mathrm{C}$ for 15 min . After being cooled to $0^{\circ} \mathrm{C}$, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water, $5 \% \mathrm{HCl}$, and saturated NaHCO_{3} solution. The organic layer was concentrated and the residue was dissolved into $\mathrm{MeOH}(4.5 \mathrm{ml})$-conc. HCl (1.5 ml). After 12 h , the solution was poured into cold saturated NaHCO_{3} solution. Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, concentration of the organic layer, and purification by tlc (ether) gave 1 b (38 mg , overall 67%): mp 165-166.5 ${ }^{\circ} \mathrm{C}$ (hexane-AcOEt); $[\alpha] \mathrm{D}^{24}-7.1^{\circ}$ (c 0.4) [lit. ${ }^{3 \mathrm{a})}[\alpha] \mathrm{D}^{25}+7.02^{\circ}$ (c 2.71)]; IR (KBr) $3400(\mathrm{OH}), 1730,1710$ $(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.13(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.62-2.42(\mathrm{~m}, 6 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H}), 5.01$ $(\mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}$, $\mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 17.4,18.4,28.4,29.8,40.5,44.2,59.1,78.9,84.3,121.9,131.6,140.4$, 163.4, 171.0, 210.9.

Dihydroisoparthenin (1c): A mixture of 1 b ($13 \mathrm{mg}, 0.05 \mathrm{mmol}$) and Pd / C in ethanol (2 ml) was stirred under $\mathrm{H}_{2}(1 \mathrm{~atm})$ for 1.5 h . Filtration through a short pad of celite, concentration of the filtrate, and purification by tlc (ether) gave $1 \mathrm{c}\left(9 \mathrm{mg}, 70 \%\right.$): mp $192.5-193.0^{\circ} \mathrm{C}$ (hexane-AcOEt); [$\left.\alpha\right] \mathrm{D}^{24}+15.8^{\circ}(c 0.1)$ $\left.\left[\mathrm{lit} .^{3 \mathrm{a}}\right)[\alpha] \mathrm{D}^{25}+16.6^{\circ}(c 0.783)\right]$; IR (KBr) $3330(\mathrm{OH}), 1740,1720(\mathrm{C}=0) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.85(\mathrm{~s}, 3 \mathrm{H})$, $1.11(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.87(\mathrm{~m}, 7 \mathrm{H}), 5.40$ ($\mathrm{s}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 8.4,11.1,18.2,23.3,30.2,32.7,33.3,43.3,57.5,81.7,84.1,123.5,162.7,175.3$, 215.5. $\mathrm{CD}\left(c 3.4 \times 10^{-3}\right.$, dioxane, $\left.25^{\circ} \mathrm{C}\right)[\theta] 3350,[\theta] 310+1911,[\theta] 2820,[\theta] 269-332,[\theta] 2640$.

Acknowledgments

We thank Dr. Toshiji Tada of Fujisawa Pharmaceutical Co., Ltd. for X-ray analysis and Mr. Naoaki Fujii of the same company for his helpful suggestion.

References and Notes

1) a) H. Yoshioka, T. J. Mabry, and B. N. Timmerman, "Sesquiterpene Lactones", University of Tokyo Press, Tokyo, 1973; b) C. H. Heathcock, S. L. Graham, M. C, Pirrung, F. Plavac, and C. T. White, "The Total Synthesis of Natural Products", Vol. 5, J. ApSimon, Ed., John Wiley and Sons, New York, 1983, pp 347-377.
2) a) T. A. Geissman and F. P. Toribio, Phytochemistry, 1967, 6, 1563; b) A. Romo de Vivar, L. Rodriguez-Hahn, J. Romo, M. V. Lakshmikantham, R. N. Mirrington, J. Kagan, and H. Herz, Tetrahedron, 1966, 22, 3279; c) A. A. Ali, O. M. Abdallah, and W. Steglish, Pharmazie, 1989, 44, 800.
3) a) W. Herz, H. Watanabe, M. Miyazaki, and Y. Kishida, J. Am. Chem. Soc., 1962, 84, 2601; b) P. Joseph-Nathan, J. Espiñeira, and S. Gibaja, Rev. Latinoamer. Quim., 1980, 11, 35; c) V. K. Sethi, S. K. Koul, S. C. Taneja, and K. L. Dhar, Phytochemistry, 1987, 26, 3359.
4) A. K. Picman, F. Balza, and G. H. N. Towers, Phytochemistry, 1982, 21, 1801.
5) C. H. Heathcock, C. M. Tice, and T. C. Germroth, J. Am. Chem. Soc., 1982, 104, 6081.
6) a) M. Asaoka and H. Takei, Yuki Gosei Kagaku Kyokai Shi, 1990, 48, 216; b) M. Asaoka, S. Sonoda, N. Fujii, and H. Takei, Tetrahedron, 1990, 46, 1541.
7) M. Asaoka, K. Takenouchi, and H. Takei, Chem. Lett., 1988, 1225.
8) J. Furukawa, N. Kawabata, and J. Nishimura, Tetrahedron, 1968, 24, 53.
9) Y. Itoh, S. Fujii, and T. Saegusa, J. Org. Chem., 1976, 41, 2073.
10) M. C. P. Yeh and P. Knochel, Tetrahedron Lett., 1988, 29, 2395.
11) M. Asaoka, T. Kosaka, H. Itahana, and H. Takei, Chem. Lett., 1991, 1295.
12) E. Nakamura and I. Kuwajima, Org. Synth., 1986, 66, 43.
13) J. Fried and J. C. Sih, Tetrahedron Lett., 1973, 3899.
14) Crystal data of $(+)-2: \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} ; \mathrm{M}=236.31$; crystal dimensions 0.200 X 0.200 X 0.100 ; orthorhobic; lattice type P; lattice parameters $a=8.986(1) \AA, b=16.158(1) \AA, c=8.900(1) \AA, V=1292.3(2) \AA 3$; space group P212121 (\#9); $\mathrm{Z}=4 ; \mathrm{D}_{\text {calc }}=1.215 \mathrm{~g} / \mathrm{cm}^{3} ; \mathrm{F}_{000}=512.00 ; \mu(\mathrm{MoK} \alpha)=6.78 \mathrm{~cm}^{-1}$.
15) W. L. Parker and F. Johnson, J. Org. Chem., 1973, 38, 2489.
(Received in Japan 14 November 1994; accepted 18 January 1995)
